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A symmetric relation such as “... are adjacent” or ... are re-
lated” is characterized by not distinguishing among two or more
of its arguments. Such a relation may efficiently be represented as
a relation that takes a set as its argument, or as one of its argu-
ments. The semantics of such a representation is, in part, deter-
mined by the instantiation (matching or unification) rule used by
the reasoning system operating on the representation. Two such
rules are discussed. One interprets the relation to be reflexive, the
other does not. Since many of these relations are not reflexive, we
prefer the latter rule, which forbids two distinct variables from
matching the same term. It is argued that this apparently strange
restriction is actually reasonable if the rules of the system are in-
terpreted as fully intensional. Under that interpretation, an even
stronger version of the instantiation rule emerges, which we name
the Unique Variable Binding Rule (UVBR). Considering the behav-
iorofthe UVBR when reasoning about reflexive relations and about
nonreflexive relations used reflexively casts light on the implica-
tions of a fully intensional knowledge representation scheme.
These ideas are illustrated by the output of an intensional, rule-
based knowledge representation system that has been modified
to allow the choice of using the UVBR instead of standard unifi-
cation.

I. INTRODUCTION

This paper is one in a series advocating the intensional
interpretation of knowledge representation systems and
examining the implications of that view [1}, [S], [6], [9], [10],
[12], [15]. In particular, in this paper, we consider the rep-
resentation and use of such assertions as “/Betty, Jane, and
Mary resemble each other.” This sentence seems already
to contain the information that ‘Betty and Mary resemble
each other.” So the latter should be obtainable from the
former with far less explicit reasoning than inferring it from
“Betty and Jane resemble each other” and “’Jane and Mary
resemble each other.” The keys to the fast inference are in
using sets as arguments, and in designing an appropriate
instantiation rule to make use of them. These ideas are de-
veloped in Sections Il and 111
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Section |V discusses relations such as ‘“‘are brothers”
which are not reflexive, although the instantiation rule we
develop in Section |1l would treat them as such. Therefore,
in Section V, we present an alternative rule that forbids two
distinct variables in one rule from binding to the same term.
In section VI, we discuss the operation of these two rules
on negated assertions such as ‘Betty, Jane, and Mary do not
resemble each other.”

[n Section VII, we present an intensional interpretation
of variables that is similar to that of [4] rather than that of
(5]; namely, that variables represent arbitrary, intensional
individuals. Based on this interpretation, an even stronger
version of the modified instantiation rule, called ‘‘the
Unique Variable Binding Rule” (UVBR) is presented, along
with the thesis that this rule should be used in intensional
knowledge representation/reasoning systems.

In Sections VIII and IX, we discuss the implications of
using the UVBR in cases of reflexive relations and relations
used reflexively. The major implication is that when an in-
dividual is related to itself, it is really treated as two inten-
sional individuals which are co-referential.

In the Appendix, we illustrate the differences among the
instantiation rules by showing output from a knowledge
representation/reasoning system that has been modified to
allow the user to choose which rule is to be used.

Il. SeTs AS ARGUMENTS

There are many relations and functions that do not dis-
tinguish among two or more of their arguments. Symmetric
relations, such as “‘adjacent”’ are like this; so are most pred-
icate functions, such as ““‘and” and “‘or,”” and many other
functions, such as “sum.” Nevertheless, it is common in
knowledge representation and reasoning systems, as well
asin non-Al formalizations, to represent these relations and
functions by predicates that do distinguish among their ar-
guments. For example,

(1) The sum of 5and 9 is 14.

(2) Canada and the U.S. are adjacent.

(3) Mary is the female parent of Bill.

(4) Logic gate g1 has input wires iw1and iw2 and output
wire owl.
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might be represented by

1) Sum(, 9, 14)

(2') Adjacent(Canada, US)

(3') Female(Mary) & Parent-of (Mary, Bill)
4') Gate(g1, iw1, iw2, ow1)

respectively.

With such representations, the fact that these relations
and functions do not distinguish among some or all of their
arguments must be represented by explicit rules, or must
be programmed explicitly into the inference mechanism.
Reasoning about the above examples would require the
rules.

(r1) Sum(x, y, z) => Sum(y, x, z)

(r2) Adjacent(x, y) => Adjacent(y, x)
r3) (A&B)=>B&A)

(rd) Gate(w, x, y, z) => Gate(w, y, x, 2).

Since the only difference between the antecedents and
consequents of these rules is the order of their arguments,
they are directly recursive, and would cause many reason-
ing systems to go into an infinite loop (but see [8], [13]).

Such rules would not be needed if relations and func-
tions that do not distinguish among some of their argu-
ments were represented by predicates that take sets in one
of their argument positions. Examples (2)-(4) above could
then be represented by

(2”) Adjacent{Canada, US}
(3”) &{Female(Mary), Parent-of(Mary, Bill)}
(4”) Gate(g1, {iw1, iw2}, owT).

The Sum example apparently could not be treated this way,
since there would then be no way to represent Sum(s, 5, 10)
(but see Section VIII). Rules (r2)-(r4) would not be needed
because their antecedents and consequents would be ex-
actly the same. This assumes, of course, that the problem
of recognizing two explicitly given sets as the same is a sim-
pler problem than that of applying recursive rules such as
those shown above. This is certainly true, especially if all
sets are canonically represented. In this paper, we will dis-
play sets with their elements numerically or lexicograph-
ically ordered.

The one style of knowledge representation system that
has traditionally used sets as arguments of relations and
functions is the semantic network (see the papers in 3], [7]).
In semantic networks, arguments are distinguished, not by
position, but by keyword, with the keyword being an arc
label. To put a set as the argument of a predicate, a semantic
network has several arcs with the same label going from the
node representing the predicate to each of the members
of the set. Arcs that themselves represent relationships are
elements of a conjunctive set of assertions. For example,
Fred, an albino male penguin, may be represented as anode
with Isa arcs to the nodes for ““albino,” ““male,” and “pen-
guin.” These arcs are not ordered; they are just there. In
a linear formalism, this situation is most accurately re-
flected by the use of sets, either & {/sa(Fred, albino), Isa(Fred,
male), IsalFred, penguin)}, or Isa(Fred, {albino, male, pen-
guin}).

1. SYMMETRIC RELATIONS

It need hardly be stressed that a binary relation (between
members of the domain D) may be represented as a unary
relation whose argument is a set of two elements (of D) only
if the relation is symmetric.' If R is asymmetric, (V(x, y) [R(x,
y) => "~ R(y, x)]), sets cannot be used, because, for example,
R{a, b} does not distinguish between the two cases R(a, b)
and R(b, a), only one of which can hold. Similarly, if Ris non-
symmetric (neither v(x, y}[R(x, y) => R(y, x)]), nor v(x, y}[R(x,
y) => “R(y, x)])), there is no consistent representation,
using sets, of the possible situation, R(a, b) & “R(b, a).

If R is both symmetric and transitive (and, therefore, also
reflexive?), there is great representational economy in rep-
resenting it as a unary relation that takes a set of arbitrary
cardinality. R{a, b, ¢, d} can be taken to represent that all
of the sixteen binary relationships, R(a, a), R(a, b), - - -, R(d,
¢),and R(d, d) hold. I say, “‘can be taken to represent’’ rather
than “represents,’” because the issue is really decided by
the inference mechanism and, basically, by the pattern-
matching mechanism. The following questions are among
those that need to be answered:

1) If R{a, b, ¢, d} is the only assertion in the system, and
the query is R{b, d}?, what is the answer?

2) If R{a, b, ¢, d} is the only assertion in the system, and
the Wh-question R{a, x}? is asked, what are the answers?

3) If R{a, b, c, d} is asserted along with the rule R{x, y}
=> S(x, y), and the query S(w, z)? is asked (note that S dis-
tinguishes between its two arguments), what is the answer?

If we want R to be treated as symmetric, transitive, and
reflexive, we want the answers to these three questions to
be:

1) Yes.

2) xcanbe a, b, ¢, ord.

3) All sixteen relationships, S(a, a), S(a, b), - - -, S(d, ¢},
S(d, d).

We can enforce that treatment with an inference/pattern-
matching mechanism that implements the rule:

R1 If @ and B are sets, possibly containing variables but
with no variable in both « and 8, R is a relation, and R«
holds, then if there is a subset o, of a and a substitution
o which unifies Ra; and RS, we may conclude RBo.

In all above three examples, the set a is the set {a, b, ¢, d }.
In example (1), 8 and a, are the set {b, d }, and o is the null
substitution. In (2), 8 is {a, x}, and there are four possible
values for o, and o, viz.: {a} and {a/x}; {a, b} and {b/x};
{a, ¢} and {c/x}; {a, d} and {d/x}. In (3), there are sixteen
possible values for 8 and g, each of which produces an in-
stance of the antecedent of the given rule, allowing the
mentioned sixteen S conclusions.

The extension of rule R1 to relations of multiple argu-
ments, one or more of which are sets, is obvious but te-
dious, and so will not be given explicitly here. R1 does not
apply to all functions. For example, although it does apply
to &, it does notapply to OR. OR can take a set of arguments,
but OR{P, Q, R} does not imply OR{P, Q}. A version of R1

I mean to exclude the use of sets of sets, such as {{a}, {a, b}},
to code ordered pairs, such as (a, b).

2By “reflexive’” in this paper, | mean reflexive in its domain, viz.
v(x, ) [R(x, y) => R(x, x} & R(y, y)] rather than VxR(x, x).
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can apply to the set-oriented logical connectives used in
SNePS [11], but a discussion of these connectives would
distract the reader too much from the main points of this
paper.

Notice that if R1 is used on a relation R, R will be treated
as a symmetric, transitive, and reflexive relation. One might,
instead, restrict R1 so that it only applies to such relations,
but my main concern in this paper is to investigate instan-
tiation (unification-like) rules that can be applied uniformly,
as part of the underlying reasoning mechanism in a knowl-
edgerepresentation/reasoning system. Second-order prop-
erties of relations (such as symmetry) can be asserted ex-
plicitly in such a system (and SNePS can represent such as-
sertions), so any rule that has such a property as a condition
will be an explicit rule of the system rather than an un-
derlying rule of inference used to implement the system.
(Compare explicit rules represented as Prolog clauses to
the resolution rule of inference used to implement Prolog
itself.)

Also note that the transitivity obtained by the use of R1
does not obviate the need for explicit transitivity rules, but
where R1applies it provides a faster, more direct inference.
The distinction occurs with humans reasoning on natural
language examples. An R1-like rule may be used to infer
from‘Bob, Joe, and Harry are brothers’ that “Bob and Harry
are brothers,” but more explicit reasoning is needed to rea-
son from ““Bob, Joe, and Harry are brothers’’ and “Harry,
Sam, and Ted are brothers’’ to ““Bob and Sam are brothers.”

Representing “Betty, Jane, and Mary resemble each
other” as Resemble{Betty, Jane, Mary}, and applying R1,
we get Resemble{Jane}. Should this be read as ‘’Jane re-
sembles herself,” or as the ungrammatical “/Jane resembles
each other’’? It is at least reasonable to argue that relations
like “resembles each other”” never apply to only one ar-
gument, even though we normally say that they are re-
flexive. In the next two sections, we develop an alternative
rule to R1 that would not infer Resemble{Jane} from Re-
semble{Betty, Jane, Mary}, and in Section IX we return to
the representation of “Jane resembles herself.”

IV. SYMMETRIC, NONREFLEXIVE RELATIONS

As intended, when rule R1 is applied to relations rep-
resented as unary relations on sets of arbitrary cardinality,
the relations are taken to be symmetric, transitive, and re-
flexive (equivalence relations). When R1 is applied to re-
lations represented as unary relations on sets of no more
than two elements, the relations are treated as symmetric
and reflexive. There are, however, many relations that are
symmetric and nonreflexive (neither v(x) R(x, x) nor ¥(x)” R(x,
x)), and many that are symmetric and irreflexive (¥(x)” R(x,
x)). Some of these were mentioned in Section II. Adja-
cent(Canada, US) implies Adjacent(US, Canada), but not Ad-
jacent(Canada, Canada), nor Adjacent(US, US). Gate(g1, iw1,
iw2, ow1) implies Gate(g1, iw2, iw1, owT), but not Gate(g7,
iwl, iwl, ow1) nor Gate(gl, iw2, iw2, owl). Sum(5, 9, 14)
implies Sum(9, 5, 14), but not Sum(5, 5, 14) nor Sum(9, 9, 14).

Other symmetric, nonreflexive relations are what we
might call “almost transitive.”” An almost transitive relation
R obeys the rule, ¥(x, y, z)[xRy & yRz & x #+ z => xRz].
Examples are ‘‘are brothers’ and ‘‘are related.” If Bob, Joe,
and Harry are brothers, then certainly Bob and Harry are
brothers, but we would not want to say that Bob and Bob

are brothers, even though Bob and Joe are brothers and Joe
and Bob are brothers.

For the reasons cited in Sections Il and Iil, we want to
represent symmetric relations, even symmetric, nonreflex-
ive relations, as relations that take sets as arguments. For
example, we want to use the representations Adja-
cent{Canada, US}, Gate(gl, {iwl, iw2}, owl), Brothers
{Bob, Joe, Harry}. However, rule R1 would treat these ir-
reflexive relations as reflexive.

Experience shows that symmetric nonreflexive relations
and symmetric almost transitive relations are used more
often in Al reasoning and expert systems than symmetric
reflexive relations or equivalence relations. We here, there-
fore, developed a modification of R1 that treats symmetric
relations as nonreflexive, rather than reflexive. Additional
motivations arise from more fundamental knowledge rep-
resentation issues and will be discussed in Section VI.

Treating R as a symmetric, almost transitive relation, R{a,
b, ¢, d} would be taken to represent that the twelve binary
relationships, R(a, b), R(a, ¢), - - -, R(d, b), and R(d, c) hold.
In this case, we would want the three questions of Section
Il to be answered as:

1) Yes.

2) xcanbeb, ¢, ord.

3) The twelve relationships, S(a, b), S(a, ¢), - - -, S(d, b),
S, o).

This treatment of question (3) shows that the modification
of RT must forbid two different variables from matching the
same term. Answer (2) shows that a variable must also not
match a term also contained in the same relationship. Our
formal revision of R1 will be presented in Section V.

Some example rules using symmetric nonreflexive re-
lations are:

Brothers like each other: Brothers{x, y} => Likes(x, y)
(notice that Likes is nonsymmetric, and we do not need
to add & Likes(y, x) because the rule will apply two,
though not four, ways to Brothers{Bob, Joe}).

In a neurologic diagnosis system [16], we want to say that
if one nerve tract is malfunctioning, and it is adjacent to
another, then the other should be examined: &{Mal-
functioning(x), Tract(x)} => [&{Adjacent{x, y}, Tract(y)}
=> Should(examine, y)].

In a fault-diagnosis system, we want to say that if the volt-
age of the two inputs to an AND gate are high and the out-
put is low, the aND gate is faulty: & {AND-gate(x), Gate(x,
{y, z}, w} => [&{High(y), High(z), Loww)} =>
Faulty(x)].

Notice that in all these examples, sets are used as ar-
guments when the order of the elements of the sets is ir-
relevant, but that itis important that the variables in the sets
not be substituted for by the same term. In the first ex-
ample, no one is his own brother, so the rule should not
be used to infer that someone likes himself. In the second
example, a tract is not adjacent to itself, and, moreover, a
tract already known to be malfunctioning need not be ex-
amined further. In the third example, an AND gate is not nec-
essarily faulty because its output wire is low and one of its
input wires is high; the other input wire might be low.



V. A RULE FOR SYMMETRIC, NONREFLEXIVE RELATIONS

As mentioned above, the proper modification of rule R1
1o treat relations with sets as arguments as symmetric, non-
reflexive, and almost transitive is to prevent two different
variables in the same relation from matching the same term,
and to prevent any variable in a relation from matching an-
other term in it. This modification is incorporated in the
rule:

R2 !f « and B are sets, possibly containing variables but
with no variable in both «and 8, Ris a relation, and Ra
holds, then if there is a subset a, of a and a substitution
& which unifies Ra; and Rg such that the cardinality of
Ba is the same as the cardinality of 8, we may conclude
RBo.

The cardinality restriction enforces both the restriction
that two different variables cannot match the same term
and that no single variable can match aterm alsointhesame
relation, because in either of these two cases, Bawould have
a smaller cardinality than 8. This assumes that the repre-
sentation of sets and their elements are such that the car-
dinality count will not be confused by the same term being
represented in two different ways.

VI. NEGATED RELATIONS

If RB is an instance of Ra, then so is “RB an instance of
- Ree. This raises the question of the semantics of negative
assertions such as ~Resemble{Betty, Jane, Mary}. We will
discuss this in two parts: the negation of a relation applied
to a set of two elements; the negation of a relation applied
to a set of more than two elements.

Maida and Shapiro [6] discuss the relation EQUIV{x, y},
which means that the two intensional entities, x andy, are
co-referential. The proposition that the Morning Star is not
Mars, would be represented by ~ EQUIV{Mars, Morning-
Star}, but, by R1, taking {Mars, MorningStar} for a,
{MorningStar} for a;, {x, y} for 8, and {MorningStar/x,
MorningStar/y} for o, this would imply that the Morning Star
is not co-referential with itself (for purposes of some rule
with "EQUIV{x, y} inits antecedent). This problem was the
actual motivation for the work reported in this paper. R2
solves this problem since the cardinality of 8o is 1 while the
cardinality of 8 is 2, and this is disallowed by R2.

A more serious problem is exemplified by ~Resem-
ble{Betty, Jane, Mary}. If Resemble{Betty, Jane, Mary}
means that “Betty, Jane, and Mary resemble each other”’ it
should be the case that ~Resemble{Betty, Jane, Mary}
means that “‘Betty, Jane, and Mary do not resemble each
other.” The question is, does it follow from ““Betty, Jane,
and Mary do not resemble each other” that “Betty and jane
do not resemble each other?”’ Logically, it does not, since
the complement of a transitive relation is not necessarily
transitive. For example, from x is different from y and yis
different from z it does not follow that x is different from z.
On the other hand, we have already pointed out that R{x,
y} & R{y, z} is treated differently from R{x, y, z}.
Whatever the intuition, R1 and R2 will both take “R{a,
b, ¢} as implying “R{a, b}, etc. Therefore, just as the se-
mantics of Ra, where a is a set, is “The elements of aall have
the relation R to each other,” the semantics of "Rais “None

of the elements of a have the relation R to any of the others,”
if R1 or R2 is used as the rule of instantiation.

VIl. AN INTENSIONAL INTERPRETATION

In previous papers (6], [12], we argued that symbols of a
knowledge representation system represent intensions
rather than extensions, and that the Uniqueness Principle
holds in propositional semantic networks. The Uniqueness
Principle states that every concept represented in the net-
work is represented by one and only one node. Two distinct
nodes always represent two different intensions, or con-
cepts, although they may be asserted to be co-referential
by an instance of the EQUIV equivalence relation. EQUIV
is not Equal. In particular, the entire network, being inten-
sional, is an opaque context, and a property may not be
transferred from one node to an EQUIV one without an ex-
plicit assertion that the property is referentially transpar-
ent.

A variable may be considered to represent an intension;
namely, the arbitrary individual satisfying the appropriate
conditions of the antecedent of the rule within which the
variable appears (or satisfying the restriction of its quan-
tifier, if restricted quantifiers are used) (cf. [4]). For example,
in the rule

& {Malfunctioning(x), Tract(x)}
=> [&{Adjacent{x, y}, Tract(y)}
=> Should(examine, y)]

x represents an arbitrary malfunctioning tract, and y rep-
resents an arbitrary tract adjacent to it. In the rule,

&{AND-gate(x), Gate(x, {y, z}, w}
=> [&{High(y), High(z), Low(w)}
=> Faulty(x)]

x represents an arbitrary AND gate, yand z its arbitrary input
wires, and w its arbitrary output wire.? it is important to re-
alize that, in the kind of semantic network being discussed
here, the variables x and y of the first rule would be different
nodes from the x and y used in the second rule, but that
all instances of a single variable in one rule are precisely the
same node. Moreover, since semantic networks allow
structure sharing, every rule about AND gates can share the
very same node representing the predicate AND-gate(x),
and, by the Uniqueness Principle, this should be the case.
That means that the node used for this x is the one and only
node in the network representing an arbitrary AnD gate, and
all rules about AND gates are propositions about this ar-
bitrary AND gate. Thus the one and only arbitrary AnD gate
serves the same role in this representation scheme as the
typical anD gate would in some other representation sys-
tems.

Considering the discussion that has gone on so far, the
interpretation of these rules, and the interpretation of var-
iables as arbitrary intensional entities, it should be clear that
distinct variables used in a single rule are meant to rep-
resent distinct concepts. Therefore, it would be an abuse
of the intended meaning of the rule to instantiate it so that
two distinct concepts were collapsed into one. This is the

3Cf. [4) for a discussion of the way arbitrary individuals y, z, and
w are dependent on arbitrary individual x.



primary theoretical justification for the part of rule R2 re-
quiring that two variables not match the same term. Re-
moved from the context of relations having sets as argu-
ments, we will call it the Unique Variable Binding Rule:

UVBR No instance of a rule is allowed in which two dis-
tinct variables of the rule are replaced by the same
term, nor inwhich any variable is replaced by aterm
already occurring in the rule.

The central thesis of this paper is that the Unique Variable
Binding Rule should be used in Al rule-based systems that
adopt the principle of intensional representation and the
Uniqueness Principle.

In[2], anetwork knowledge representation system, NETL,
was presented that used typical individuals as the main
method for storing general knowledge. A version of UVBR
also arose, in a slightly different guise, in the NETL book.
The issue presented there was: if Hates(TYPICAL-ELE-
PHANT, TYPICAL-ELEPHANT) is stored in the system, does
that mean that: 1) every elephant hates itself; 2) every el-
ephant hates every elephant including itself; or 3) every el-
ephant hates every elephant excluding itself? It was de-
cided that Hates(TYPICAL-ELEPHANT, TYPICAL-ELEPHANT)
should represent (1), every elephant hates itself. In order
to represent (3), a new representational technique was in-
troduced; namely, a chain of typical individuals (called
*OTHER-nodes in [2, pp. 153-159)). Let TYPICAL-ELEPHANT
be the typical elephant, TYPICAL-ELEPHANT1 be any ele-
phant except TYPICAL-ELEPHANT, TYPICAL-ELEPHANT2 be
any elephant except TYPICAL-ELEPHANT or TYPICAL-
ELEPHANTT, etc., for as many elephants as needed for any
general statement. Thus to represent (1), put Hates
(TYPICAL-ELEPHANT, TYP{CAL-ELEPHANT) in the network.
To represent (3), put Hates(TYPICAL-ELEPHANT, TYPICAL-
ELEPHANT1) in the network. Torepresent (2), put them both
in the network.

The interpretation of variables being presented in the
present paper, along with the UVBR, includes the NETL
chain of typical individuals as a special case. The statement
that every elephant hates itself is represented by the rule
Elephant(x) => Hates(x, x). The statement that every ele-
phant hates every other elephant is represented by &{E/-
ephant(x), Elephant(y)} => Hates(x, y). The statement that
every elephant hates every elephant including itself is rep-
resented by Elephant(x) => & {Hates(x, x), Elephant(y) =>
Hates(x, y) }.

VIII. NONREFLEXIVE RELATIONS USED REFLEXIVELY

An apparent problem is the reflexive use of nonreflexive
relations, or (which we shall discuss first) cases where a sin-
gle constant appears in two or more argument positions of
a relation that distinguishes its arguments. It might appear
that, because of the UVBR, the general rules designed to
deal with these relations would not work properly in these
cases. The argument to be made in this section is that if one
uses intensional representation, these cases never occur!
Instead, different intensional constants are involved in the
relations, but these different constants are co-referential.

Consider the rule, “’If someone likes someone, she buys

her presents.” This can be represented* as Likes(x, y) =>
Buys(x, y, presents). As should now be clear, this rule will
not apply to the situation expressed by “Jane likes herself”
if we represent that by Likes(Jane, Jane). We probably do
want to conclude that “‘Since Jane likes herself, she buys
herself presents.” Notice, however, that we can go on:

Since jane likes herself, she buys herself presents, and
since she knows herself so well they are always just right
and never unduly duplicate things she already has, which
is good, because otherwise she would have to tell herself
to take them back.

What seems to be going on here is that jJane is filling two
different roles, that of the gift giver, and that of the gift re-
ceiver. To say that Jane s filling two roles is just another way
of saying that there are two different intensions involved,
Jane the gift giver, and Jane the gift receiver, and that they
are both co-referential with Jane. (Also see [14] for a lin-
guistic discussion of this phenomenon.)

If this analysis is correct, the correct way to represent
“Jane likes herself’’ is & {EQUIV{Jane, Janel}, Likes(Jane,
JaneT)}. The rule about buying presents applies to this in-
stance of Likes, and implies Buys(Jane, Janel, presents),
which shows Jane in her two roles.

A similar analysis applies to cases like applying the rule
for computing the area of a rectangle to a particular rec-
tangle that just happens to be a square. Just because the
length and the width happen to co-refer to the same value
does not mean thatthey are not distinctintensional entities.
At very bottom, the elementary school rule that 2 times 2
is 4 mentions two intensions, the multiplier and the mul-
tiplicand, which are co-referential. Thus we are not really
multiplying a number by itself, but are multiplying two
different occurrences of a number by each other.

Therefore, we can revise our conclusion of Section |l that
sets cannot be used for the representation of Sum, ‘'since
there would then be no way to represent Sum(5, 5, 70).” The
representation would in fact be v(x, y) [EQUIV{x, y, 1} =>
2)&[EQUIV{z, 2}, Sum({x, y}, 2)]]. That is, if you add any
occurrences of 1 together, you get an occurrence of 2.

IX. REFLEXIVE RELATIONS REVISITED

Finally, let us consider the use of UVBR with reflexive re-
lations. There apparently are two kinds: ones that distin-
guish their arguments, such as ““<”’; ones that do not, such
as Similar. However, the analysis of the previous section
holds, and shows that, in order to compare an individual
to itself, it is necessary to consider it as two intensional in-
dividuals. Thus to say that every number is < itself, we say
that for every two occurrences of it, one is < the other, i.e.,
vx[Number(x) => Vy[EQUIV(x, y) => x < y]], and to say that
everything is similar to itself, we say, v(x, y) [EQUIV(x, y) =>
Similar{x, y}]. So, the representation of ’Jane resembles
herself’” discussed at the end of Section 1lI is not Resem-
ble{Jane}, but vx[EQUIV{Jane, x} => Resemble{Jane, x} ].

If this proliferation of co-referential entities seems very

“We will drop the Person predicate for space reasons, and ignore
tense, aspect, and number because they are independent of the
concerns of this paper.



cumbersome, it is probably because it is, and to overcome
this, humans have a number of special case terms. So, in-
stead of adding a number to itself, we double it, and instead
of a rectangle with equal length and width, we speak of a
square.

X. IMPLEMENTATION STATUS

The SNePS Semantic Network Processing System [11] is
a combined knowledge representation/reasoning system
that has used R1. Recently, SNePS was modified to allow
a choice of R1 or UVBR. The Appendix contains transcripts
of SNePS runs showing the difference between R1 and
UVBR on the major examples of this paper.

Xl. CONCLUSIONS

This paper is one in a series advocating the intensional
interpretation of knowledge representation systems and
examining the implications of that view [1], [5], [6], (9], [10],
[12), {15]). Here, we have been concerned with the inter-
pretation, as intensional individuals, of variables in rules of
rule-based systems. Under this interpretation, it is inap-
propriate to use an instance of a rule that collapses two or
more variables into the same term, because that would vi-
olate the meaning intended by whomever entered that rule
in the system. The rule expressing this restriction on var-
iable binding was termed the Unique Variable Binding Rule
(UVBR).

It turned out that the UVBR is a vital part of a rule (R2 of
Section V) for instantiating symmetric, nonreflexive rela-
tions, and symmetric, almost transitive relations without
treating them as reflexive. Rule R2 is needed to take ad-
vantage of the benefits of representing such relations as
relations with sets as one or more of their arguments. These
benefits include an almost exponential savings in repre-
sentation space (e.g., one relation on a set of four elements
instead of twelve relations) and the automatic inference of
the relation’s symmetric and transitive implications by the
selection of subsets.

The UVBR further supports the intensional interpretation
of knowledge representation systems, because in those
cases where nonreflexive relations are used reflexively, it
requires that the different occurrences of an individual in
different argument positions be considered different, but
co-referential, intensional individuals.

APPENDIX

In orderto experiment with the UVBR, a modification was
made to the SNePS semantic network processing system
[11], so that if the switch DuplBind (a global Lisp variable)
is set to t, R1 is used, but if DuplBind is set to nil, UVBR is
used.

This Appendix contains a script of a run of SNePS show-
ing the difference between R1 and UVBR. SNePS is imple-
mented in Franz Lisp and, for this demonstration, was run,
compiled, on a VAX 11/750 under the UNIX™ operating sys-
tem. The SNePS prompt is ““*". Lines beginning that way
areinputto SNePS. Lines beginning with *‘;"’ are comments.
Other lines are SNePS output. Text beginning with a **;"" in
mid-line is a comment added to the script for this paper.

: Define the arc labels we will use.

: For each label R, R- labels the converse arc.

* (define member member- class class- object object-

* property property- rel rel- argument argument-
* al al- a2 a2- a3 a3-)

(member member-) ; points to an object being classified
(class class-) i points to the class of an object
(object object-) ; points to an object
(property property-) : points to the property of an object
(rel rel-) ; points to a relation

(argument argument-) ; points t0a set of arguments

(al al-) : points 10 the first argument
(a2 a2-) : points to the second argument
(a3 a3-) ; points to the third argument
(defined)

exec: 0.16 sec gc: 0.00 sec

; Example 1

; Bob, Joe, and Harry are brothers.

* (desc : desc produces a Lispish description.
* (build rel brothers

. argument (Bob Joe Harry)))

(ml (argument (Harry) (Joe) (Bob)) (rel (brothers)))
{dumped)

exec: 0.10 sec ge: 0.00 sec

. If x and y are brothers, then x likes y.

* (desc

*  (build

* avb ($x $y) : avb is the universal quantifier.
. ant (build rel brothers ; ant points to the antecedent.

. argument ('x °y))
. cq (build rel likes al *X a2 *y))) : cq points to the consequent.
i actual variable nodes are v1, v2, etc.
(ma (cq (m3 (a2 (v2)) (al (v1)) (rel (likes))))
(ant (m2 (argument (v2) (v1)) (rel (brothers))))
(avb (v2) (v1)))
(dumped)

exec: 0.31 sec ge: 0.00 sec

: Save old nodes for a later. second run of the deduction.

* ((*nodes oldnodes) - oldnodes)

(m4 likes m3 m2 v2 y vl x brothers Harry Joe Bob ml oldnodes)

exec: 0.08 sec gc: 0.00 sec

; First, use R1.

+ ("(setq DuplBind t))
()

exec: 0.03 sec ge: 0.00 sec



; Who likes whom? exec: 0.05 sec gc: 0.00 sec

* (desc (deduce rel likes al %x a2 %y)) * (erase ‘*nodes - *oldnodes)

(m5 (a2 (Harry)) (al (Harry)) (rel (likes))) ; Harry likes himself. (m19 (a2 (Joe)) (al (Bob)) (rel (likes)))
(m6 (a2 (Joe)) (al (Harry)) (rel (likes))) : Harry lLikes foe. (m18 (a2 (Harry)) (al (Bob)) (rel (likes)))
(m7 (a2 (Bob)) (al (Harry)) (rel (1likes})) ; Harry likes Bob. {(m17 (a2 (Bob)) (al (Joe)) (rel (likes)))
(m8 (a2 (Harry)) (al (Joe)) (rel (likes))) ; Joe likes Harry. (m16 (a2 (Harry)) (al (Joe)) (rel (likes)))
(m9 (a2 (Joe)) (al (Joe)) (rel (1ikes))) : Joe likes himself. (m15 (a2 (Bod)) (al (Harry)) (rel (likes)))
(m10 (a2 (Bob)) (al (Joe)) (rel (likes))) ; joe likes Bob. (m14 (a2 (Joe)) (2l (Harry)) (rel (likes)))
(m11 (a2 (Harry)) (al (Bob)) (rel (1ikes))) ; Bob likes Harry. (nodes deleted)

(m12 (a2 (Joe)) (al (Bob)) (rel (likes))) ; Bob likes Joe. exec: 0.13 sec ge: 0.00 sec

(m13 (a2 (Bob)) (al (Bob))  (rel (1likes))) ; Bob likes himself.

(dumped ) i Note that each person likes himself.

: Example 2
exec: 3.83 sec ge: 0.00 sec

; If & tract (of the central nervous system) is malfunctioning,
; Now, clear the working storage used for this deduction. ; adjacent tracts should be examined.

* (clear-infer) * (desc
(cleared) * (build avb $x
exec: 0.05 sec gc: 0.00 sec * dant ((build object *x property Malfunctioning)
* (build member *x class Tract))
: Erase the nodes built by the first run of the deductioa. * cq (build avb $y
* #ant ((build rel Adjacent argument (*x *y))
* (erase *nodes - *oldnodes) * (build member *y class Tract))
* ¢g  (build rel Should al examine a2 *y))))
(m13 (a2 (Bob)) (al (Bob)) (rel (likes)))
(n12 (a2 (Joe)) (al (Bob)) (rel (likes))) . (m26 (eq

(ml1 (a2 (Harry)) (al (Bob)) (rel (likes))) (m25 (cq  (m24 (a2 (v4)) (al (examine)) (rel (Should))))

(m10 (a2 (Bob)) (al (Joe)) (rel (1likes))) (#ant (m23 (class (Tract)) (member (v4)))

(m9 (a2 (Joe)) (al (Joe)) (rel (likes))) (m22 (argument (v4) (v3)) (rel (Adjacent))))

(m8 (a2 (Harry)) (al (Joe)) (rel (likes))) (avb  (v4))))

(m7 (a2 (Bob)) (al (Harry)) (rel (likes))) (#ant (m21 (class (Tract)) (member (v3)))

(6 (a2 (Joe)) (al (Harry)) (rel (likes))) (n20 (property (Malfunctioning)) (object (v3))))
(avb (v3)))

(n5 (a2 (Harry)) (al (Harry)) (rel (likes)))

(nodes deleted) (dumped )

exec: 0.20 sec ge: 0.00 sec exec: 0.63 sec ge: 0.00 sec

: Change the setting of DuplBind to use UVER. 16R 1is a tract.

* (“(setq DuplBind nil)) * (desc (build member 16R class Tract))

nil (m27 (class (Tract)) (member ( 16R()))
exec: 0.05 sec gc: 0.00 sec (dumped )
exec: 0.10 sec ge: 0.00 sec

; Now, who likes whom?
13RC8-C2 is a tract.
* (desc (deduce rel likes al %x a2 %y))

* (desc (build member 13RC8-C2 ¢l Tract
(214 (a2 (Joe)) (al (Harry)) (rel (likes))) ; Harry likes Joe. ¢ " i elass Tract))

(m15 (a2 (Bob)) (al (Harry)) (rel (1ikes))) : Harry likes Bob. (m28 (class (Tract)) (member (113RCB-C2()))
(m16 (a2 (Harry)) (al (Joe)) (rel (1likes))) ; Joe likes Harry. (dumped)
(m17 (a2 (Bob)) (al (Joe)) (rel (1ikes))) ; foe likes Bob. exec: 0.10 sec go: 0.00 sec

(m18 (a2 (Harry)) (al (Bob)) (rel (1likes))) ;: Bob likes Harry.

(m19 (a2 (Joe)) (al (Bob))  (rel (1ikes))) ; Bob likes Joe.
; They are adjacent.

(dumped) i Note that now, no one likes himself.
exec: 2.50 sec gc: 2.40 sec

* (desc (build rel Adjacent argument (16R 13RC8-C2)))
¢ Agaln clear memory for the next example. (m29 (argument (!'13RC8-C2)) (118R1)) (rel (Adjacent)))
* (clear-infer) (dumped )

{cleared) exec: 0.10 sec ge: 0.00 sec



; 16R is malfunctioning. ; Example 3
+ (desc (build object 16R property Malfunctioning)) . If an AND gate has high inputs and a low output, it is faulty.

(m30 (property (Malfunctioning)) (object (116R!)))
*+ (desc (build avb ($x $y $z $w)

(dumped )

* ant ((build member *x class AND-gate)
exec: 0.11 sec ge: 0.00 sec
* (build rel Gate al *x a2 (*y *z) a3 *w))
* [ build &ant build object * operty HKigh
. Save the current nodes for use in the next example. 4 ¢ « J y prop y gn)
. * (build object *z property High)
* (build object *w property Low
* (*nodes - oldnodes) I property )
* c build object *x property Fault
(m30 m29 13RC8-C2 m28 16R m27 m26 m25 Should examine m24 m23 g ¢ J property y200)
Adjacent m22 v4 Tract m2l Malfunctioning m20 v3 oldnodes (md4l (cg
ma likes m3 m2 v2 y vl x brothers Harry Joe Bob ml) {(m40 (cq (m39 (property (Faulty)) (object (v5))))
exec: 0.05 sec gc: 0.00 sec (@ant (m38 (property (Low)) (object (v8)))

(m37 (property (High)) (object (v7)))
i Use Ri. (m36 (property (High))  (object (v6))))))

; (want (m35 (a3 (v8)) (a2 (v7) (v6)) (al (v5)) (rel (Gate)))

* (“(setq DuplBind t)) (m34 (class (AND-gate)) (member (v5))))
(t) (avb (v8) (v7) (v6) (v5)))
exec: 0.05 sec ge: 0.00 sec (dumped)

exec: 0.81 sec ge: 0.00 sec

Wwhat should be examined?

+ (desc (deduce rel Should al examine a2 %x)) i Al is an AND gate.

(m31 (a2 (116R1)) (al (examine)) (rel (Should))) ; Examine 16R. . (desc (build member Al class AND-gate))

(m32 (a2 (113RC8-C21)) (al (examine)) (rel’'(Should)})) : Examine 13RC3-C

(dumped) ; Itis not necessary to examine a tract already known to be malfunctioning. (ma2 (class (aND-gate)) (member (A1)))

exec: 1.98 sec ge: 0.00 sec (dumped)

exec: 0.08 sec ge: 0.00 sec

; Clear storage for next run.
. Al's inputs are Alinpl and Alinp2, and its output is Aloutp.
* (clear-infer)
+ (desc (build rel Gate al Al a2 (Alinpl Alinp2) ad Aloutp))

(cleared)

exec: 0.03 sec  ge: 0.00 sec (na3 (a3 (Aloutp)) (a2 (Alinp2) (Alimpl)) (el (A1) (rel (Gate)))
(dumped)

+ (erase 'nodes - *oldnodes)
exec: 0.13 sec gec: 0.00 sec

(m32 (a2 (113RC8-C21)) (al (examine)) (rel (Should)))

(m31 (a2 (116R1)) (al (examine)) (rel (Should))) . Alinpl is high.

(nodes deleted)

exec: 0.20 sec ge: 0.00 sec » (desc (build object Alinpl property High))
Use UVBR. (ma4 (property (High)) (object (Alinpl)))
(dumped )
* ("(setq DuplBind nil)) exec: 0.10 sec ge: 0.00 sec
nil
exec: 0.01 sec gc: 0.00 sec . Alinp2 is low.

Again, what should be examined? .
+ (desc (build object Alinp2 property Low))

+ (desc (deduce rel Should al examine a2 %X)) (m45 (property (Low)) (object (Alinp2)))

(dumped )
(n33 (a2 (113RC8-C21)) (al (examine)) (rel (Should))) : Examine 13RC8-L2
exec: 0.11 sec ge: 0.00 sec
(dumped) ; Now we weren't told 10 examine 16R.
exec: 1.80 sec gc: 0.00 sec . Aloupt is low.

; Clear storage again.
+ (desc (build object Aloutp property Low))

* (clear-infer) (me6 (property (Low)) (object (Aloutp)))
(cleared) (dumped)

exec: 0.03 sec gc: 0.00 sec exec: 0.11 sec ge: 0.00 sec



; Save current nodes i dJumbo is an elephant.
* (*podes = oldnodes)

* (desc (build member Jumbo class elephant))
(m46 m45 m44 Alinp2 Alinpl Aloutp m43 Al m42 m¢l m40

Faulty m39 Low m38 m37 High m36 Gate m35 AND-gate (m49 (class (elephant)) (member (Jumbo)))
m34 v8 w v7 2z v6 v5 m33 m30 m29 13RC8-C2 m28 16R (dumped )

m27 m26 m25 Should examine m24 m23 Adjacent m22 v4 exec: 0.11 sec gc: 0.00 sec

Tract m21 Malfunctioning m20 v3 oldnodes m4 likes

m3 m2 v2 y vl x brothers Harry Joe Bob ml) Elephants hate each other.

exec: 0.08 sec ge: 0.00 sec
* (desc (build avb ($x $y)
: Use R1. :
* ®ant ((build member *x class elephant)
* (build member *y class elephant))
* ("(setq DuplBind t
T o » * ¢q (build rel hates al *x a2 °y)))
t)
exec: 0.03 sec ge: 0.00 sec

(m53 (cq (m52 (a2 (v10)) (al (v9)) (rel (hates))))

(#ant (w51 (class (elephant)) (member (v10)))
What is faulty?
(m50 (class (elephant)) (member (v9))))
' (avb (v10) (v9)))
* (desc (deduce object %x property Faulty))

(dumped )
(m47 (property (Faulty)) (object (A1))) : Alisfaulty. exec: 0.46 sec gc: 0.00 sec
(dumped ) i because Alinpl was counted as both inputs.
exec: 3.35 sec ge: 0.00 sec : Save current nodes.

Clear storage. * (*nodes = oldnodes)

(mS3 hates m52 m51 m50 v10 v9 Jumbo m49 Clyde elephant
* (clear-infer) m48 m46 m45 m44 Alinp2 Alinpl Aloutp m43 Al m42 m4l
(cleared) . m40 Faulty m39 Low m38 m37 High m36 Gate m35 AND-gate
exec: 0.03 sec gc: 0.00 sec n34 v8 w v7 z v6 v5 m33 m30 m29 13RC8-C2 m28 16R m27
: m26 m25 Should examine m24 m23 Adjacent m22 v4 Tract
* (erase *nodes - *oldnodes) ®»21 Malfunctioning m20 v3 oldnodes m4 likes m3 m2 v2

y vl x brothers Harry Joe Bob ml)
(m47 (property (Faulty)) (object (Al)))

exec: 0.05 sec ge: 0.00 sec
(nodes deleted)
exec: 0.33 sec gc: 0.00 sec . Use R1.
. Use UVBR. * ("(setq DuplBind t))
(t)
* (“(setq DuplBind nil)) exec: 0.03 sec ge: 0.00 sec
nil
exec: 0.05 sec ge: 0.00 sec : Who hates whom?
i Now. what is faulty? * (desc (deduce rel hates al %x a2 %y))

l (m54 (a2 (Clyde)) (2l (Clyde)) (rel (hates))) : Clvde hates himself.
* (desc (deduce object %x property Faulty))
(m55 (a2 (Jumbo)) (al (Clyde)) (rel (hates))) : Clvde hates Jumbo.

(dumped) : No answer means nothing was found. (m56 (a2 (Clyde)) (al (Jumbo)) (rel (hates))) : Jumbo hates Clyde.
exec: 2.86 sec ge: 0.00 sec (mS7 (a2 (Jumbo)) (al (Jumbo)) (rel (hates))) : Jumbo hates himself.
(dumped)
Clear storage. exec: 2.68 sec ge: 0.00 sec

* (clear-infer) ; Clear storage.

(cleared)
exec: 0.03 sec ge: 0.00 sec * (clear-infer)
(cleared)
. Example 4 exec: 0.05 sec ge: 0.00 sec

; Clyde is an elephant. * (erase *nodes - *oldnodes)

(m57 (a2 (Jumbo)) (al (Jumbo)) (rel (hates)))

* (desc (build member Clyde class elephant))
(m56 (a2 (Clyde)) (al (Jumbo)) (rel (hates)))

(m48 (class (elephant)) (member (Clyde)))
(dumped )

exec: 0.15 sec ge: 0.00 sec

(m55 (a2 (Jumbo)) (al (Clyde)) (rel (Lates)))
(m54 (a2 (Clyde)) (al (Clyde)) (rel (hates)))

(nodes deleted)



exec: 0.51 sec ge:

0.00 sec

: Use UVBR.

+ (“(setq DuplBind nil))

nil

exec:

0.03 sec gc: 0.00 sec

; And now, who hates whom?

« (desc (deduce rel hates al %x a2 %y))

(m58 (a2 (Jumbo)) (al (Clyde)) (rel (hates)))
(m59 (a2 (Clyde)) (al (Jumbo)) (rel (hates))) :

; Clyde hates Jumbo.

Jumbo hates Clyde.

(dumped) : Now, no one hates himself.
exec: 1.90 sec gc: 0.00 sec
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