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SUMMARY

Neurological diagnosis is an ideal application of
artificial intelligence. This paper reviews work on
the design of model-based expert computer systems
intended to simulate human behavior, with an em-
phasis on the modeling schemes and reasoning
mechanisms of these systems, and presents the
authors’ experimental approach to neuroanatomic
localization.

INTRODUCTION

Computer-aided diagnosis, an active area of research
in computer science, has potential applications in
domains ranging from machine repair to medicine.
A diagnostic expert system (DES) is a computer pro-
gram capable of inferring in an expert-like manner
the internal status of the subject of a diagnostic
analysis from the subject’s observed behavior and
supplementary data. The design of DESs, a branch
of artificial intelligence, incorporates such tech-
niques as symbolic representation, pattern-directed
inference, and heuristic reasoning.’

How the knowledge involved in diagnostic deci-
sion-making is conceptualized determines the struc-
ture and function of a DES. For example, one can
map behavioral changes (symptoms, physical find-
ings, adjunctive laboratory abnormalities, or any
combination of the three) to symbolic names for the
underlying cause of the internal problem (eg, specific
diseases or pathophysiological states). Mapping is
accomplished by a combination of categorical and
probabilistic reasoning that proceeds through in-
termediate stages to reach diagnostic conclusions.
This approach is used in many systems, including
INTERNIST-1, PIP, CASNET, MYCIN, and PUFF.*
Such systems are based on “shallow” knowledge,
because they do not relate input data and conclu-
sions to the structure of the subject, to the function
associated with components of structure, or to other
knowledge such as taxonomy.

A system that associates behavioral changes with
a functional model of the subject has “deep” knowl-
edge. When this core representation is coupled with
reasoning strategies,** the system is based on “first
principles.”® Understanding a subject’s structure and
function allows a DES to explain the causal relation-
ships between internal status and behavior. For in-
stance, a machine repair system needs to know how
the machine works in order to analyze complex mal-
functions, whereas a knowledge of how the machine
fails makes it possible to handle simple disorders by
mapping symptoms to specific types of dysfunction.

Efficient and economic diagnostic reasoning de-
pends on the appropriate selection of models. A sub-
ject can be modeled logically, physically, or in differ-
ent ways at various levels of abstraction, depending
on the required diagnostic tasks. Logical modeling
provides a function-oriented abstraction of the sub-
ject in which each logical component tends to have
its localized contribution to the overall functional
behavior of the subject. The knowledge base of
CADUCEUS,* which exemplifies the use of logical
modeling, includes causal relations between obser-
vations and diseases (also pathophysiologic states),
nosology, and heuristic information.

Physical modeling provides a structure-oriented
abstraction in which each physical component tends
to have its concrete appearance as a part of the sub-
ject. Two models of the same type have a hierarchical
relation if one is an abstraction of the other.

The logical and physical models of a subject usu-
ally correspond. Thus, generally speaking, the
power train of an automobile consists of two func-
tional (logical) components: the engine, providing
power, and the transmission, converting the power
to motion. These, in turn, correspond to the two
physical components, the engine assembly and the
transmission assembly. The diagnosis of faults in
digital circuits*® also relies explicitly on logical
modeling (the circuit diagram) as well as physical
modeling (the chip arrangement, which accounts,
for example, for heat or magnetic field disturbance).
The two types of models sometimes intersect. A dig-
ital circuit may be functionally modeled by a logical
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diagram in which such logical components as “AND
gates” or “OR gates” contribute locally to the whole
circuit, but several logical components that are func-
tionally irrelevant may be enclosed in the same chip
(ie, correspond to the same physical component).

The physical structure of a subject refers to its
organization in three-dimensional or, in special
cases, two-dimensional space. The representation of
three-dimensional structure has been studied for a
long time in computer science.”* The methods used
are either analogical or propositional.’

Analogical representations are detailed geometric
descriptions that allow objects to be specified suc-
cinctly and unambiguously by means of coordinates.
This specification can be accomplished by mathemat-
ical equations or by dividing three-dimensional
space into volume elements (voxels), where sets of
voxels specify the curves, surfaces, or objects within
the space.® The advantages of these approaches are
that inference rules for spatial reasoning can be im-
plemented by algorithms from computational geom-
etry and that graphics and image processing tech-
niques can be adapted without much difficulty. The
disadvantage of these approaches is that they usually
overspecify the real world. Every entity cannot or
need not be given an exact geometric description.
Furthermore, these approaches sometimes have lit-
tle relation to the cognitive approaches of human
beings.

Propositional representations abstract salient
topological features in order to describe entities in
terms such as shape and position and to describe
spatial relationships by adjacency, connectivity,
direction, and other terms. Propositional represen-
tations, which favor modeling intelligence, may
overcome some of the disadvantages inherentin ana-
logical representations. They, too, however, have

Figure 1. Head and neck drawn on a graphics screen (left),
with superimposed distribution of cutaneous sensory
nerves to the affected area (right). (Published originally
in Xiang Z, Srihari SN, Shapiro SC, Chutkow JG. A
modeling scheme for diagnosis. In: Karna KN, ed. Expert
systems in government. Washington, DC: IEEE Computer
Society, 1985:538-547. © 1985 IEEE.)
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limitations: not all structural information can be ex-
pressed in the form of propositions. Sometimes, spa-
tial information is better depicted in pictures.

In neurological diagnosis, reasoning processes
rely heavily on both physical and logical modeling.
Even early diagnostic programs, which do not use
techniques of artificial intelligence, maintain simple
models of the neuroanatomy.

The following sections of this article describe the
fundamentals of neurological diagnosis, review and
comment on major publications on computerized
neurological diagnosis, with an emphasis on model-
ing schemes and reasoning mechanisms, and de-
scribe NEUREX, our experimental approach to the
integration of modeling and diagnostic reasoning.

FUNDAMENTALS
OF NEUROLOGICAL DIAGNOSIS

Neurological diagnosis™' is the process by which
diseases of the neurologic system (brain, spinal cord,
peripheral nerves, neuroeffectors and neurorecep-
tors, and supporting structures) are identified. It is
ongoing serial acquisition and analysis of data about
a patient (subject).

In the first stage of the clinical database, the neu-
rologist collects preliminary data, including qualita-
tive and quantitative descriptions of symptoms (Sxs),
the relationships between Sxs, the results of past
and present physical examinations (Pxs), adjunctive
laboratory data (Lxs), other relevant information,
and the overall temporal profile or course of the
illness. The clinician documents these (particularly
Pxs) in writing on forms and on pictorial drawings.
The latter not only indicate the extent of the disability
but, when designed appropriately, also provide con-
siderable information about the anatomy underlying
the findings. For example, by indicating sensory
losses as in Figure 1 (right), the neurologist can read-
ily identify malfunctioning nerves.

In the next stage—neuroanatomic localization—
the diagnostician uses functional general anatomic
and functional neuroanatomic knowledge to infer
the presence and site(s) of the cause of the neurologic
Sxs, Pxs, and Lxs. This stage, providing the scientific
foundation for the remaining diagnostic analysis,
consists of two steps: axial and transverse localiza-
tion. In the former, clinical data are assigned to their
appropriate axial neurosystem(s).

“Axial neurosystem” is an idiosyncratic phrase
conceptualizing a neuroanatomic-physiologic or
neuroanatomic-psychologic unit transmitting or pro-
cessing a specific set of clinically definable functions
and roughly paralleling the axial lines of the body
and limbs as it extends physically through many of
the transverse segments into which the neurologic
system is divided. A neurosystem or one of its indi-
vidual components may transmit impulses related
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to specific sensations; integrate and evaluate sensory
data; store information; regulate consciousness, at-
tention, or affect; program motor, communicative,
or secretory responses; or effect the desired re-
sponses. A neurosystem, depending on its func-
tional state, gives rise to different types of Sxs, Pxs,
and/or Lxs. Therefore, these data (Sxs, Pxs, and Lxs)
can be used to infer the status of the neurosystem.

An axial neurosystem, in turn, is subdivided trans-
versely into two major segments: one part transvers-
ing the parenchymal central nervous system (brain
and spinal cord) and the other part passing through
the peripheral nervous system (the parenchymal
neurologic system external to the brain stem and the
spinal cord). The central nervous system (CNS) and
peripheral nervous system (PNS) are further sub-
divided transversely, in a manner described below,
thereby setting up precise spatial coordinates with
which to pinpoint a lesion.

For neuroanatomic localization, the neurologist or
neurosurgeon must have in mind a functional three-
dimensional model of the clinically important parts
of the neurologic system along with its receptors
(including eyes, ears, and sensors in the skin) and
effectors (including skeletal muscles and sweat
glands). Figure 2, a schematic of the spinal cord at
three of its 31 levels, shows the distribution of a few
axial neurosystems (tracts) and segment-limited
(transverse) structures. Half of the cord mirrors the
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Neurosystems

Segment-
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Structures

Figure 2. Schematic of the spinal cord at three levels:
cervical (fop), thoracic (center), and lumbar (bottom).
(Published originally in Xiang Z, Srihari SN, Shapiro SC,
Chutkow JG. A modeling scheme for diagnosis. In: Karna
KN, ed. Expert systems in government. Washington, DC:
IEEE Computer Society, 1985:538-547. © 1985 1EEE.)
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Figure 3. Schematic of a peripheral root system with the
roots attached to a transverse segment of the spinal cord
and a peripheral nerve system beginning with the spinal
nerve. The two types of peripheral neurosystem distribu-
tion are the same unless they become part of a plexus.
(Published originally in Xiang Z, Srihari SN, Shapiro SC,
Chutkow JG. A modeling scheme for diagnosis. In: Karna
KN, ed. Expert systems in government. Washington, DC:
IEEE Computer Society, 1985:538-547. © 1985 1EEE.)

other half, and the physical positions and, therefore,
spatial relations are fixed. Although the physical
positions and spatial relations vary from one indi-
vidual to the next, the variations are relatively minor
from a diagnostic point of view and can be handled
statistically.

The axial neurosystems and segment-limited
structures carry information about homologous
areas on each side of the body. The homologous
areas, too, are relatively consistent from one indi-
vidual to another. For example, lesions on one side
of the thoracic cord at a given level, regardless of
etiology, cause a predictable pattern of neurologic
deficits in different patients—provided that the le-
sions involve the same axial and segment-limited
structures. Conversely, a combination of Sxs, Pxs,
and Lxs can be traced back to an anatomic source,
which helps the clinician decide whether the patient
has a single well-circumscribed (focal) lesion, more
than one focallesion (a multifocal problem), dysfunc-
tion of one or more axial neurosystems (a systems-
limited disorder), or an uncircumscribed processran-
domly involving many structures, usually in more
than one transverse segment (a diffuse disorder).
Similar anatomic principles govern structure, func-
tion, and localization in the PNS (Figure 3) and, with
much greater complexity, in the brain.

Having determined the probable site and number
of lesions, the clinician combines the neuroanatomic
localization with elements of the clinical database
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(relationships between Sxs, Pxs, and Lxs; modifying

factors; coexistence of other diseases; and the tem-

poral profile of the illness) to deduce the underlying

pathophysiological mechanisms (eg, ischemia or in-
- flammation). Disordered anatomy and physiology
" are combined to form patterns suggesting patho-
genetic categories of illness (eg, genetically deter-
mined disorders, vascular disorders, neoplasia). The
pathogenetic categories of illness and multiple
epidemiologic facts allow the clinician to concentrate
on a small number of disease-specific etiologies, such
as atherostenotic occlusion of a specific blood vessel,
embolic infarction, or syphilitic endarteritis.

Hypothesis formation and data generation are
ongoing, interactive, and mutually correcting.
Hypotheses lead to a search for additional data and
correction of erroneous information. These data and
corrections, in turn, enhance the statistical probabil-
ity of a particular anatomic localization, a particular
pathogenetic category, or a specific disease while
decreasing the probability of competing alternatives.
Successful diagnostic analysis provides a basis for
rational therapy.

PREVIOUS WORK ON COMPUTERIZED
NEUROLOGICAL DIAGNOSIS

Previous work on computerized neurological diag-
nosis, ranging from simple programs to DESs, can
be classified by the reasoning mechanism used to
reach diagnostic conclusions and the modeling
scheme (either analogical or propositional) used to
represent neuroanatomy.

Approaches Based on Branching Logic

The most natural and straightforward way to utilize
digital computers to aid diagnosis is to encode the
relevant information by certain numerical data struc-
tures (eg, arrays) and the diagnostic decision-making
processes by branching-logic algorithms. This ap-
proach is well supported by conventional program-
ming languages, including FORTRAN, and by soft-
ware designs including top-down programming and
stepwise refinement (the process of dividing a com-
plex task into several well-defined subtasks and
solving each subtask in the same manner until primi-
tive tasks, whose answers are known, are reached).
There are two basic methods with which to handle
the “solution space” (the collection of all possible
solutions). One is elimination of the solution space,
and the other is evaluation of the solution space.
Elimination of the solution space consists of a step-
by-step reduction in alternatives as critical (“clinch-
ing"”) data are collected. The diagnosis remaining at
the end of the clinical inquiry is, by exclusion, the
most likely one. Each step can be implemented by
branching into the part of the program correspond-
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ing to the remaining solution space. Freemon'? and
Vastola and associates™ have developed simple pro-
grams using this technique, without incorporating
anatomic models, to classify patients according to
their answers to a set of prearranged questions.
Others have used the approach to guide the collec-
tion of clinical data in a systematic manner (eg, to
produce case reports' and to record a simplified
neurologic examination of patients in an intensive
care unit'®).

Evaluation of the solution space arrives at a diag-
nosis by accumulating supporting data for each pos-
sible answer. The cognitive significance of clinical
data is quantified by arbitrary weights or points, the
diagnosis with the greatest support at the end of the
inquiry being the most likely one. This approach
simulates the way people confirm or dismiss all
possible choices by surveying every bit of available
information.

Meyer and Weissman' have combined evaluation
of the solution space with a rough analogical model
of the brain stem, that portion of the CNS connecting
the forebrain with the spinal cord, to localize lesions.
This program maintains a representational array of
ten transverse sections of the brain stem, each of
which is divided by a 10 x 10 grid to produce a total
of 1,000 volume units. Each unit has a malfunction
factor, M, which indicates the number of involve-
ments of the unit in malfunctioning pathways
(analogous to axial neurosystems and functional
structures limited to one transverse segment), and
a function factor, F, which indicates the number of
involvements of the unit in normally functioning
pathways. Initially, each M and F is zero. The out-
come of each clinical neurological test is used to in-
crease the M and/or F of each unit involved. Finally,
a modified net malfunction factor (equal to M — F
if M — F>0o0r0if M — F = 0)is calculated for
each unit. The unit with the highest modified net
malfunction factor is most likely to contain an ana-
tomic lesion.

Francis and associates” adopted a similar ap-
proach, without encoding an anatomic model, to
diagnose the cause of headaches on the basis of an-
swers to two sets of questions, one set answered by
the patient and the other by the physician. A positive
response adds a predetermined number of points to
one or more of 255 different types of headaches. If
a requisite threshold level of points is reached for
one type of headache, it is considered to be the diag-
nosis.

In general, there are two problems with ap-
proaches based on branching logic. First, their
diagnostic capabilities are limited, because the diag-
nostic tasks to be fulfilled are poorly defined (“ill-
structured”®), making it impossible for relatively
simple-minded branching-logic algorithms to cap-
ture the expertise needed for the tasks. Second,
numerical data structure and manipulation do not
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provide appropriate levels of abstraction for complex
physical and logical modeling.

Approaches Based on Statistics

Statistics-based approaches try to arrive at a diag-
nosis by comparing data on an individual patient
with data on a pertinent population (ie, obtained
from large numbers of case records) that have been
summarized numerically in a format suitable for cal-
culating probabilities. These approaches are securely
based on mathematical concepts and work well in
small, established domains. Statistics-based ap-
proaches usually do not incorporate functional
anatomic models or attempt to simulate the rational
diagnostic strategies used by expert clinicians. In-
stead, on the basis of all Sxs, Pxs, and Lxs, they
generally evaluate all possibilities by statistical
methods and produce a rank order of the most likely
diagnoses—a feature superficially resembling
branching-logic evaluations of solution space.

Drawbacks of statistics-based approaches are that
the computations involved may be extensive, be-
cause the searches are not focused, and that the
amount of objective data required may be impossible
to obtain. Because no cause-and-effect relationships
are examined on the way to diagnostic conclusions,
explanations take the form of “it is the case because
it was the case.” Conventional programming lan-
guages and statistics libraries can be used for statis-
tics-based approaches to diagnosis.

Some investigators use statistical measurements
of similarity. For example, a method designed to
predict the site and type of intracerebral mass le-
sions™ compares a new clinical database with 120
sets of data (Sxs, Pxs, radiologic findings, and his-
topathologically classified parenchymal lesions)
from previous cases in order to calculate three levels
of similarity indices. In essence, this is a form of
statistical-pattern recognition in which the program
tries to match a new patient’s profile with templates
(te, patterns) of past cases, the best-matching tem-
plate (according to certain criteria) providing the
most likely diagnosis.

In one of its many medical applications, the fa-
mous Bayes’s theorem™ has been used to calculate
the probability that a patient has a particular disease
if he has a particular set of symptoms. According to
the theorem, the probability of a disease, defined as
its a posteriori probability, is proportional to the a
priori probability of the disease (ie, the prevalence
of the disease in the general population) multiplied
by the probability of the symptoms (given the dis-
ease), defined as their likelihood (ie, the frequency
with which the symptoms are associated with the
disease). For likelihood of the symptoms, it is pos-
sible to substitute the product of the probability of
each symptom, assuming that the symptoms are
statistically independent of each other. The formula-
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tions used by many systems are more or less variants
of the Bayesian inference scheme.** Symptom inde-
pendence, nonconcurrence of diseases, and the need
for vast amounts of statistical data about a general
population are obstacles to the use of Bayes’s
theorem in computerized diagnosis. Interesting
attempts to resolve the criticisms have been pro-
posed.® In general, successful use of Bayes’s
theorem requires restriction of the characteristics of
the patient population under study, thereby limiting
the applicability of the results.

Broadly applicable epidemiologic data about a dis-
ease are difficult to obtain and are often unreliable.
For thgse reasons, some investigators use the “maxi-
mum likelihoad” method to quantify the relationship
between a disease and a set of clinical data using
frequency rates derived from a relatively small
number of patients, thereby avoiding the pitfalls of
population statistics. With these figures, the investi-
gators identify that disease that maximizes the like-
lihood of the observed clinical database.” For
example, in a program using brain scans for the
differential diagnosis of brain lesions,” abnormal
findings are analyzed in terms of 86 independent
parameters; 240 proved cases are used to provide
statistical data for the calculation of a diagnosis.

Approach Based on Techniques
of Artificial Intelligence

Many early programs depended exclusively on
branching logic or statistics, thus exemplifying the
two extremes of the diagnostic decision-making
spectrum®—categorical reasoning (eg, elimination of
solution space) and probabilistic reasoning (eg,
evaluation of solution space and statistical methods).
There are strengths and weaknesses at both ex-
tremes. Categorical reasoning, which is particularly
suitable when the logic of reasoning is well under-
stood,** is efficient in problem solving. However,
it is too rigid to handle complicated medical problems
on which clinical data are incomplete or unreliable
and for which clinching facts cannot be obtained.
Probabilistic reasoning is useful when decisions
must be made by carefully weighing all the evidence
available, but it is practical only under certain as-
sumptions and with a restricted solution space.
Every day, a physician faces a gamut of medical
problems ranging from the extremely simple to the
extremely complex. Problems at each extreme often
require repetitive, sequential interplay between data
acquisition and generation or confirmation of hy-
potheses to reach a diagnosis. The ideal diagnostic
program must therefore be flexible and broadly
applicable, and its diagnostic strategies must include
both types of reasoning, regardless of the specialty
involved. Conclusions such as these spawned a new
generation of diagnostic programs, DESs.
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The newer diagnostic systems employ some tech-
niques of artificial intelligence, the most common
being symbolic representation and pattern-directed
inference, combined categorical and probabilistic
reasoning, heuristic searching of the solution space,
and generation and testing of hypotheses. These re-
flect the major investigative emphasis—computer
simulation of intelligent human behavior—of artifi-
cial intelligence. Implementation of such systems re-
lies heavily on LISP, the representative of symbolic
processing programming languages.

Analogical Modeling

*Neurologist*, a DES dedicated to CNS diseases,®
consists of four modules (*Input*, *Loc*, *Hgen*,
and *Htest*) corresponding to the four sequential
diagnostic steps: gathering the initial history and
results of the physical examination, localizing the
neurologic lesion, generating diagnostic hypotheses,
and evaluating hypotheses. *Neurologist* maintains
an analogical model of the parenchymal CNS that
consists of 20 cross sections, five devoted to the
spinal cord and the remainder to the brain stem and
cerebral hemispheres. The cross sections are rough
diagrammatic representations constructed from
polylines (sequentially connected straight lines out-
lining boundaries) and convex polygons (each a
polyline-enclosed figure in which a straight line be-
tween any two points falls entirely inside the figure).
There are cross sections for about 100 nervous tracts
(equivalent to axial neurosystems and transverse
segment-limited structures in our terminology).
The system elicits patient information by means
of predetermined “menus” displayed on a cathode
ray tube and uses the answers to determine the
status of nervous tracts according to simple logical
criteria. Before it performs anatomic localization, the
program matches and scores about 20 template de-
scriptions against patterns of malfunction. Anatomic
localization then consists of (a) attempts to find one
Or more cross sections permitting all the malfunction-
ing tracts to be included in a convex envelope® inter-
secting no more than one of the intact tracts and (b)
the scoring of envelopes individually and jointly for
adjacent cross section.** The most promising tem-
plate or anatomic lesion, explaining over 80% of the
findings, is used to localize the case; otherwise, the
case is classified as nonlocalizable. Generation of
differential diagnostic hypotheses from a table of 20
classes and a total of 120 “diseases” (in fact, a mixture
of pathophysiological, pathogenetic, and disease-
specific categories) is based primarily on the type of
onset the illness exhibits and the localization. Each
disease in the differential diagnosis is scored, and
additional information is requested (using a hier-
archical disease-attribute knowledge base).
*Neurologist* tries to mimic the diagnostic strategy
of human experts (ie, rapid focus on a relatively
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small and promising part of the solution space for
careful investigation), but it lacks the clinician’s abil-
ity to shift attention when new data indicate possible
causes outside the current considerations in differen-
tial diagnosis. Many other medical diagnostic sys-
tems, such as INTERNIST-1 and PIP, have paid great
attention to this problem. Subtle balance of these
seemingly contradictory actions is at the crux of a
robust and efficient system.

The serial geometric cross-sectional representation
of the CNS is a universal scheme used to model a
three-dimensional complex. The larger the number
of cross sections and the smaller the distance be-
tween adjacent cross sections, the more precise the
model is. On the other hand, given the tasks the
model is supposed to support, appropriate approx-
imations can dramatically reduce the amount of data
and the complexity of computation. Modeling the
CNS by convex polygons allows, with relatively low
computational complexity, geometric algorithms to
be used as schemes for spatial reasoning. This
modeling is an oversimplification, however, because
the nervous tracts and anatomic lesions in each cross
section usually need at least an arbitrary polygon
(convex and concave) representation. Moreover,
many anatomic concepts, including focality, seem
to be captured better by topological propositions (eg,
if all the malfunctioning tracts are adjacent to each
other in a cross section then there may be a focal
lesion in that cross section).®

Banks and Weimer* use the voxel approach to
provide an anatomic knowledge base (SCAN) for
neuroanatomic reasoning. They represent the
human body as being embedded within a large cube.
This cube is divided into 27 (3 x 3 x 3) small cubes,
each of which is similarly subdivided into 27 smaller
units. The process continues until the smallest cubes
(currently 3 mm on each side) are reached. The re-
sulting model is a hierarchy of nested cubes. The
neuroanatomic components are represented by
another hierarchy of “objects,” each of which is
mutually associated with its physical correspon-
dent(s) in the cube hierarchy. While it is uniform
and mathematically elegant, this approach is cogni-
tively unnatural. The integrity of objects is not well
preserved: an object represented by a single cube
may also be represented by eight cubes of the same
size, each of which involves part of the object merely
because it is not aligned with the grid, thereby in-
creasing the complexity of reasoning,

Propositional Modeling

First and associates® developed LOCALIZE, a sys-
tem for identifying the sites of lesions in the PNS.
It models the PNS in a propositional network in
which muscles and spinal nerve roots are rep-
resented as terminal nodes, nerve segments as inter-
nal nodes, and anatomic connectivity relations as
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edges. Given a set of weak muscles on a scale from
0 (total paralysis) to 5 (normal strength), LOCALIZE
traces the fibers that supply each affected muscle
proximally toward the spinal cord and highlights the
pathways. Any lesion or group of lesions including
at least one highlighted segment from each traced
pathway can hypothetically account for all deficits.
Starting with the most distal set of lesions, the pro-
gram generates alternative solutions by replacing
lesion set elements with more proximal lesion sites
from the highlighted pathways. The program tries
to reduce the number of lesion sites hypothesized
at each convergence point for as long as the consis-
tency checks can be satisfied (ie, all muscles that the
program expects to be weak because of a lesion at
the convergence point are found to be affected, and
normal muscles are not involved).

Goldberg and Kastner* have published a program
designed to localize single, circumscribed (focal)
lesions in the visual pathways. The program contains
propositional, functional, and physical representa-
tions of the pathway and the adjacency relations
between arbitrarily designated zones in each of 20
anatomically important cross sections through which
nerve bundles pass from the retina to the cerebral
cortex. Given a focal lesion, the program predicts
the resulting defect in the visual field. Or, given
information on a defect in the visual field, the system
tries to identify a cross section in which a spatially
continuous defect will encompass all involved bun-
dles but none of the unaffected bundles. The reason-
ing depends on five heuristic, topological constraints
intended to enforce the localizing principle of adja-
cency of damaged fibers. The program does not pro-
vide for the possibility of multiple lesions in the same
or in different areas and neglects problems arising
intrinsically in the central portions of a section—both
common occurrences in neurologic disease.

These and other examples¥* demonstrate the
power and usefulness of symbolic representation.
The knowledge base captures effectively the most
important structural information on underlying
neuroanatomy, especially when the anatomic struc-
ture under consideration is no more than moderately
complex—as is the case of the visual pathways. The
knowledge base also provides for an association be-
tween structure and function on the one hand and
spatially oriented reasoning on the other.

Rule-Based Architecture
with No Explicit Anatomic Modeling

Rule-based DESs, the most elegant and successful
developed thus far, have many medical and non-
medical applications. These DESs capture the human
expert’s tendency to employ judgmental knowledge
to make decisions and, at the same time, satisfy such
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basic principles of software engineering as generality
and modularity. MYCIN?* s typical of a rule-based
DES.

The basic representation of judgmental knowledge
is simple and uniform: if premise then consequent
with confidence. A rule in this format can be used
for “forward chaining” and for “backward chaining”
inference. In forward chaining inference, the prem-
ise tests the value of one set of parameters and the
consequent contains conclusions about the value of
another set of parameters. In backward chaining in-
ference, the consequent matches the hypothesized
value of one set of parameters while the premise
verifies the value of another set of parameters. The
application of one rule may trigger the application
of other rules to form an inference chain. The confi-
dence associated with each rule is used for “reason-
ing under uncertainty” (integrating categorical and
probabilistic reasoning). Rules are stored in a “rule
base,” an independent component of the system.

The “inference engine,” the control mechanism of
this type of system, supervises the whole reasoning
process. It initiates the inference activity, chooses
the right rules, interprets the rules, and propagates
the confidence information in a systematic manner
(eg, using a modified Bayesian model,* the certainty
factor theory exemplified by MYCIN, the theory of
fuzzy sets,®* or the Dempster-Shafer theory of
evidence).**

From the point of view of reasoning, a rule-based
system controls its attention by intermediate conclu-
sions resulting from rules activated by current
input—a natural match with the sequential nature
of diagnosis. MYCIN uses a goal-directed, depth-
first, backward-chaining control strategy in its infer-
ence engine to keep its focus during diagnosis. VM*
employs a data-driven, forward-chaining strategy
for cyclic reasoning in which previous observations
and status-dependent expectations help direct pro-
gression from the clinical data to diagnostic and
therapeutic decisions.

Creation of the rule base is the most important
task in the construction of this type of DES, because
the modular structure of rule-based architecture
separates general reasoning mechanisms from
domain-specific judgmental knowledge. Modifica-
tion and expansion of the rule base are relatively
easy. The explanation of a diagnosis can be obtained
by keeping track of the rules used in the reasoning
process. Dedicated tools supporting the develop-
ment of such systems* include EMYCIN, EXPERT,
OPS,* and PROLOG.Y

Shortcomings of rule-based expert systems in-
clude the following: the need, when the rule base is
very large, to introduce heuristic methods to index
the most promising rules in any given context; an
explanation capability which, in practical terms, is
limited to dumping rules; and a lack of methodol-
ogies to integrate forward and backward inferences.
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A DES for localizing CNS lesions in unconscious
patients® has a rule-based architecture but lacks an
explicit neuroanatomic model. Its rules map clinical
findings tolesions at intracranial sites, and calculated
values of certainty are used to differentiate the
anatomic localization of clinically similar syndromes.
The major drawback of this approach is that the
system recognizes only encoded clinical patterns.
Because it does not “understand” how the neuro-
logic system is physically and functionally or-
ganized, this DES cannot reason anatomically when
faced with unrecognized (unmatched) patterns.®
This DES must therefore have access to an exhaustive
list of rules covering anatomic interpretations for
every conceivable combination of neurologic Sxs and
Pxs—an impractical and unnatural requirement.

Comments

We conclude that little investigative attention has
been devoted to the design of a knowledge represen-
tation effectively supporting a physical as well as a
functional model of the entire neurologic system in
the context of diagnostic reasoning. Perricone” and
Reggia*® discuss the importance of incorporating
modeling schemes and reasoning mechanisms into
DESs. To date, most of the proposed methods lack
generality and do not support flexible reasoning
mechanisms or a suitable interactive environment
for the user.

We believe representational methods should ac-
commodate both analogical and propositional infor-
mation about neuroanatomy, support an association
between structure and function, facilitate different
levels of modeling, provide for diagnostic reasoning,
and, finally, allow a variety of interfaces with the
user.

NEUREX: TOWARD AN INTEGRATION
OF MODELING AND REASONING

We turn now to our neurological DES, dubbed
NEUREX (neurologic expert), which is evolving and
experimental. After describing a general modeling
scheme using a semantic network, we present details
on our conceptual organization of the knowledge of
neuroanatomic structure and function used to
localize lesions and, finally, details on the represen-
tation of neuroanatomy.

Semantic Network Representation
of Structure and Function

Cognitive knowledge is generally organized in the
form of concepts and their relations to each other.
A physical entity, each of its physical-spatial proper-
ties, and its function are all independent concepts
that relate to each other when, in combination, they
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describe the entity. One can decompose a complex
system into sets of entities, each corresponding to a
different logical structure. The resulting sets of en-
tities may or may not interweave with each other.
The relations between entities (eg, spatial or func-
tional connections) also are specific concepts.

A semantic network is a representation in which
each concept (including each relationship between
concepts) is represented by a specific “node” linked
to other nodes by predefined “arcs.”** Figure 4
shows the general organization of a semantic net-
work representing spatial structure and function.

Others have used semantic network representa-
tions to implement expert systems. In PROSPEC-
TOR, a geological analysis system,* knowledge is
represented by partitioned semantic networks con-
sisting of production rules and subset and element
taxonomic information.

DESs in which reasoning is based on spatial struc-
ture and function gain several implementational ad-
vantages from a semantic network representation:

1. Analogical, propositional, and functional
knowledge are integrated in a single network re-
flecting different levels of abstraction. Each physi-
cal entity is “surrounded” by its geometric and
topological descriptions (if any), other spatially
and/or functionally related entities, and its func-
tion. Thus a locally limited search of the network
can provide allinformation relevant to the entity.

2. Rule-based inference is supported. A typical
rule consists of two parts—antecedents and con-
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categoryl category?2
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Figure 4. General organization of a semantic network
representing spatial structure and function. Each concep-
tually significant entity is represented by a unique node,
such as “entityl” or “entity2.” The node with an “ent”
arc pointing to entityl and a “fun” arc pointing to “func-
tionl” asserts that entityl has a function specified by
functionl. Analogical information about entityl is
asserted by the node with an “ana” arc pointing to “coor-
dinates” and an “ent” arc pointing to entityl. Relations
between entities, such as topological connections, are rep-
resented by nodes and arcs (eg, the nodes with “rel” and
“ent” arcs). (Published originally in Xiang Z, Srihari SN,
Shapiro SC, Chutkow JG. A modeling scheme for diag-
nosis. In: Karna KN, ed. Expert systems in government.
Washington, DC: IEEE Computer Society, 1985:538-547.
© 1985 IEEE.)
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sequents—both of which may contain variables.
To check whether the antecedent is satisfied, the
program searches for the required nodes in the
network. Consequents cause new nodes to be
built. Complex control strategies can be superim-
posed on the basic network processing system.
3. Easy expansion and modification provide flex-
ibility. Knowledge is added or removed by the
fundamental operations of adding concepts to or
removing them from the network. Analogical data
(coordinates) can be changed independently with-
out changing any propositional information, pro-
vided that the relevant spatial relations continue
to hold true.

4. Procedural knowledge is encoded in function
nodes. For example, spatial reasoning often in-
volves the application of algorithms from com-
putational geometry using analogical data in the
network.

5. Interactive graphics can be used for data entry
and interpretive output. Analogical data can be
used to generate relevant drawings, which, by
means of locator or pick devices, can be used to
enter data. Explanation capability also is greatly
enhanced by the generation of appropriate draw-
ings and pictures from analogical data.

6. New knowledge can be generated (and stored)
from existing knowledge. For example, well-
defined topological relations between physical en-
tities can be computed systematically from existing
analogical information and added to the network.
7. Computer vision techniques** can be sup-
ported. Both geometric and relational structures
(derived from geometric descriptions and from
topological relations embedded in the network),
together with other relevant information, can be
used to guide image segmentation and labeling
and the interpretation of pictures.

8. A natural language interface between the diag-
nostic system and its users can be supported. The
importance of semantic network representations
in computational linguistics is well established.™*

In summary, a semantic network is suitable for
use in a model-based DES. Knowledge embedded
in the network provides an understanding of how
the subject is structured, how it works, and how it
may fail.

Representation of Basic Knowledge
in NEUREX

Knowledge concerning the spatial structure and
function of neuroanatomy in NEUREX is organized
as a semantic network according to the rationale pre-
sented in the preceding section. Representation is
implemented in the FRANZ LISP system (a LISP
dialect developed at the University of California at
Berkeley)® and the Semantic Network Processing
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System (SNePS)” on a VAX-11/750 computer under
the 4.2 BSD UNIX operating system. This LISP sys-
tem and SNePS are completely compatible and mu-
tually callable. SNePS allows effective searches of
the network knowledge base and the incorporation
of both procedural attachments (function nodes) and
inference rules.

The model described in the following pages is
being used to study problems in the design and
implementation of our approach. At present, we
have encoded information about the entire spinal
cord and the arms, along with relevant graphic
reconstructions.

The anatomic knowledge base contains informa-
tion about neuroanatomy and general anatomy. The
CNS is divided into its major transverse segments:
telencephalon, diencephalon, brain stem (mesen-
cephalon, pons, and medulla), and spinal cord,
through which neurologic data are transmitted along
multiple axial neurosystems and in which these data
are analyzed, integrated, relayed, and supple-
mented or removed. Each major transverse segment
is subdivided into smaller, naturally occurring or
arbitrarily defined segments and regions within seg-
ments, to facilitate precise localization. If appro-
priate, a transverse segment connects on its right
and left sides with the PNS via PNS nerve roots or
their equivalents (ie, cranial nerves attached to the
brain stem). A PNS root is not identified by the CNS
segment to which it is attached. Each root network
(CNS-PNS) innervates (transmits multiple types of
encoded sensory information from and/or motor di-
rectives to) specific regions or structures of the body.
Except for the side of origin and peripheral distribu-
tion, homologous right and left CNS-PNSs are ana-
tomically identical and innervate corresponding
areas of the body. Each CNS-PNS passes through a
system of conduits or peripheral nerves to reach its
termini. As they extend from the CNS, peripheral
nerves assume a branch-tree structure that segments
them “transversely,” first into spinal or cranial
nerves and then into as many additional subunits
as are needed to reach the final nerve segments.
Thus the human neurologic system consists of many
axial neurosystems, each of which has a CNS com-
ponent. Some are limited to the CNS; others (eg,
the somatic motor and sensory neurosystems) also
extend into the PNS. Therefore, the latter neuro-
systems have three general patterns of innervation:
one corresponding to CNS pathways; the second,
to CNS-PNSs; and the third, to peripheral nerves.

The major functional axial neurosystems trans-
mitting information up or down the neurologic sys-
tem are made up of smaller axial units. Each of these
mini-neurosystems is identified uniquely by (1) the
specific areas it occupies as it passes through each
transverse segment of the CNS or the CNS and PNS;
(2) the transverse segment of the CNS in which it
originates, terminates, and/or connects with the
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PNS; (3) the direction in which it carries data; and
(4) a clinically verifiable function. A functional mini-
neurosystem represents a large number of individual
nerve fibers relaying the same information in parallel
and in series. The point at which one set of its fibers
connects with the next is indicated in the model,
even though the transferred function does not
change. ’

We are currently working on CNS, CNS-PNS, and
peripheral nerve representations of the axial somatic
sensory/somatesthetic and somatic motor neuro-
systems, particularly as they relate to the spinal cord.
Both neurosystems have central and peripheral com-
ponents. The mini-neurosystems responsible for
somatesthetic information destined to reach con-
sciousness transmit from the lowest segments of the
spinal cord to higher segments of the brain (“up-
ward”). The major volitional motor mini-neurosys-
tems transmit directives caudally (“downward”). Re-
gardless of the direction in which they conduct (and
with exceptions related to intersegmental reflexes),
the number of mini-neurosystems in the major axial
pathways decreases in a rostral-to-caudal direction
in relation to other segment-limited structures or to
peripheral nerves. (Sensory mini-neurosystems
enter from the peripheral nerves and ascend pre-
dominantly, while motor mini-neurosystems orig-
inating rostrally descend to terminate in succeeding
transverse segments.) Therefore, at any given point
along the central neuraxis, a CNS pattern of motor
or sensory innervation will depend on the number
of mini-neurosystems in the axial pathway; the pat-
tern involves the entire field of innervation to the
half of the body supplied by the remaining mini-
neurosystems. CNS-PNS (“cranial nerve,” and
“spinal root” or “segmental”) patterns correspond
to the peripheral special sensory, somatosensory,
and motor innervation of the cranial nerve or spinal
root. The following discussion is limited to CNS—
PNSs related to the spinal cord.

With rare exception, each spinal CNS-PNS carries
several somatic sensory and two types of somatic
motor mini-neurosystems. A peripheral nerve sen-
sory or motor pattern may or may not be identical
to that of a single CNS-PNS. Those related to the
limbs are complex. Several adjacent CNS-PNSs com-
bine in a complicated manner at specific junctional
points (plexi) and then partially dissociate at more
distal branch points. Therefore, a proximal
peripheral nerve may involve sensory and/or motor
mini-neurosystems (and innervation fields) from
two or more CNS-PNSs. The composition of its more
distal segments will be the same or less complex,
depending on partial dissociation of the mini-neuro-
systems atany succeeding branch point. Conversely,
a CNS-PNS may traverse many or relatively few
peripheral nerves. Despite the complexity of the
CNS, CNS-PNS, and peripheral nerve patterns, the
anatomic pathways involved are unique from origin
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to final destination and very consistent from one
individual to the next.

In the knowledge base, the body is divided into
its major regions (eg, head, arms, torso) and sub-
regions (eg, upper, middle, and lower third of the
right brachium; shoulder, elbow, wrist, inter-
phalangeal joints). The subregions serve as anatomic
reference points, helping to locate the components
of the neurologic system, supporting maps of the
cutaneous distribution of sensation, and organizing
skeletal muscle function.

Structural features of the components of the ner-
vous system are attached to their corresponding con-
cepts in different ways, according to the significance
of the features: coordinates of the polyline and poly-
gon representation are used for cross sections, re-
gions, and projected views of body parts; connectiv-
ity relationships are used for nerves and branches
of nerves. All the data are accommodated in a single
information base.

Representing the CNS, CNS-PNSs, Peripheral
Nerves, and Their Functional Distribution

The CNS can be described geometrically by cross
sections through transverse segments. Every cross
section and every region in the section is an anatomic
concept that, among other properties, has a geo-
metric description (ie, unique coordinates in a com-
mon coordinate system). More abstract relations,
such as the adjacency of two regions, can be asserted
between the corresponding concepts. Meanwhile,
each axial or transverse neuroanatomic pathway is
a concept defined further by a set of otherwise in-
dependent concepts (for example, assignment to
an axial neurosystem, spatial characteristics, ana-
tomic locations, specific function, evidence of mal-
function). This is shown in Figure 5, a computer-
generated, schematic reconstruction of the clinically
significant axial neurosystems and segment-limited
structures in the fifth cervical segment of the spinal
cord.

The CNS-PNSs and peripheral nerves are rep-
resented topologically as a network in which each
transverse segment is an anatomic concept. Connec-
tivity of segments is asserted between corresponding
concepts. When a particular axial mini-neurosystem
travels through the network, its pathway is specified
by assertions relating the mini-neurosystem to the
segments through which it passes. Each mini-neuro-
system is identified by its parent neurosystem, its
specific function(s), and its peripheral innervation
field.

To represent patterns of CNS-PNS and peripheral
nerve innervation, we consider each region or struc-
ture of the body to be an anatomic concept, each
with a geometric description outlining a correspond-
ing region in a display (Figure 6). Information such
as the transverse nerve segments or CNS-PNS sup-
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plying an area is attached by assertions.

Therefore, we intend to represent the structural
and functional knowledge necessary for neurologic
diagnosis in a semantic network in which anatomic
concepts are fundamental entities.

Figure 5. Schematic of clinically significant axial neuro-
systems and segment-limited structures in the fifth cervi-
cal segment of the spinal cord. Each labeled area repre-
sents an anatomic region through which fibers of one or
more axial neurosystems pass as they intersect the trans-
verse section. The right fasciculus gracilis, carrying sev-
eral types of sensory neurosystem/somatesthetic fibers,
intersects the fifth cervical segment in regions r1, r2, and
r3. (Published originally in Xiang Z, Srihari SN, Shapiro
SC, Chutkow JG. A modeling scheme for diagnosis. In:
Karna KN, ed. Expert systems in government. Washing-
ton, DC: IEEE Computer Society, 1985:538-547. © 1985
IEEE.)

Figure 6. Two patterns of cutaneous sensory innervation:
distribution of peripheral nerves (left) and distribution
of transverse segments of the spinal cord and their
attached peripheral root systems (CNS-PNS pattern)
(right).
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Detailed Representation of Neuroanatomy

The first set of anatomic concepts (cross sections and
regions in each cross section in the CNS, each CNS-
PNS, each peripheral nerve, and regions in the dis-
tribution of peripheral nerves and CNS-PNSs) is rep-
resented by atomic nodes. Each atomic node may
have a geometric description—a sequence of coordi-
nates that can be linked to form polylines or polygons
in a given coordinate system. Abstract spatial rela-
tions are asserted between nodes.

For example, the fifth cervical segment of the spi-
nal cord in Figure 5 is represented by atomic node
C5 in Figure 7. Node C5 has a geometric description
carrying the coordinates of its boundary. Each region
in the cross section is represented by an atomic node
(eg, rl in Figure 5 is represented by node r1C5 in
Figure 7). Node r1C5 has a geometric description
carrying the coordinates of its boundary. Thatrl and
r2 are adjacent to each other in C5 is asserted by the
node with “r” arcs pointing to r1C5 and r2C5 and a
“rel” arc pointing to “adjacent” in Figure 7. Other
relations, such as overlap, also can be asserted.

Another set of concepts covers the major axial
neurosystems (“tracts” or “pathways”) in the CNS.
Each tract is represented by an atomic node. For
example, node 7R in Figure 7 represents the right
fasciculus gracilis. The physical location of the tract
in C5 is specified by an assertion indicating the cor-
responding regions by “path” arcs.

Anatomically significant components of the CNS-
PNS and transverse nerve segments of the PNS are
represented by unique atomic nodes, and the con-
nectivity relations are specified by nodes with proxi-

nervous
tract

7FRTid \ name

is path Right
fasciculus

gracilis

id
rics
is iad is r
in

cross— Cs region co adjacent
section cs . l {...)
in is r
é r2C5
(..} id «

is co

id
(o3

cs,
co

.

Figure 7. A semantic network partially representing the
fifth cervical transverse segment of the spinal cord (C5).
Spatial relations and coordinates encoded in atomicnodes
and arcs translate graphically into polylines and poly-
gons. (Published originally in Xiang Z, Srihari SN,
Shapiro SC, Chutkow JG. A modeling scheme for diag-
nosis. In: Karna KN, ed. Expert systems in government.
Washington, DC: IEEE Computer Society, 1985:538-547.
© 1985 IEEE.)



Z. XIANG ET AL.

mal and distal arcs. Figure 8 illustrates representa-
tion of the simple CNS-PNS system shown in Fig-
ure 3. The pathway of a particular mini-neurosystem
can be traced by a sequence of nerve segments and
branches linked by p and d arcs from its origin to its
destination. ' :

In the neuroanatomic model built thus far, addi-
tional information concerning anatomy and function
will be represented as concepts and inserted into the
network according to the same principle. The so-
matic motor neurosystem, for instance, is responsi-
ble for movement of joints. The movement of a joint
is controlled by several muscles, and muscles may
be supplied by motor mini-neurosystems related to
one or, as in the case of the limbs, more than one
CNS-PNS. If more than one CNS-PNS innervates a
muscle, the motor mini-neurosystem carried by each
CNS-PNS contributes a certain percentage to the
total innervation of the muscle and, therefore, to
regulating the force of the muscle’s contraction.
Furthermore, because a particular movement at a
joint may require the synchronous contraction of
several muscles, a muscle may be responsible for all
or only a fraction of the force of a movement. Mus-
cles, joints, different types of movement, the con-
tributions of each muscle to a movement, and the
contributions of each peripheral nerve and each
CNS-PNS to the innervation of a muscle are all rep-
resented by atomic nodes between which functional
relations are asserted.

For example, the shoulder joint (movement of the
humerus in relation to the scapula) has eight differ-
ent types of movement: flexion (forward), extension
(backward), abduction 0 to 15 degrees, abduction 15
to 90 degrees, adduction, external (lateral) rotation,
internal (medial) rotation, and rotator cuff. Flexion
is controlled by the following muscles: deltoid (40%),
pectoralis major—clavicular head (45%), coraco-
brachialis (10%), and biceps brachii (5%); extension
by deltoid (30%), teres major (20%), and latissimus
dorsi (50%); abduction 0 to 15 degrees by. supra-
spinatus (90%) and biceps brachii (10%); and abduc-
tion 15 to 90 degrees by deltoid (100%). The per-
centage in each set of parentheses is an arbitrary
approximation of the contribution of the particular
muscle to the total strength of the movement. Figure
9 illustrates the representation of this information.

Motor mini-neurosystems from each CNS-PNS in-
nervating the muscle are treated in a similar manner.
The complete pathway of a mini-neurosystem pass-
ing through the CNS and PNS is represented by
other nodes, specifying its peripheral nerve pathway
and the anatomic regions of each transverse CNS
segment through which it travels. The anatomy of
the PNS is not depicted in graphics comparable to
those used for the CNS, because the level of abstrac-
tion we are using for the PNS favors anatomic locali-
zation reasoning but does not provide geometric de-
tails for graphics display.
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Additional Details and Examples

The following details and examples demonstrate
each of the advantages of semantic network rep-
resentation stated above:

1. A request for the location of a particular mini-
neurosystem in a cross section of the CNS pro-
duces a locally limited search of the network, gen-
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Figure 8. A semantic network partially representing the
single peripheral spinal root system shown in Figure 3.
(Published originally in Xiang Z, Srihari SN, Shapiro SC,
Chutkow JG. A modeling scheme for diagnosis. In: Karna
KN, ed. Expert systems in government. Washington, DC:
IEEE Computer Society, 1985:538-547. © 1985 IEEE.)
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Figure 9. A semantic network partially representing func-
tional muscular anatomy of the shoulder joint. The nodes
and arcs can describe the eight cardinal movements of
the joint, the muscles involved, and the contribution of
each muscle to each movement. (Published originally in
Xiang Z, Srihari SN, Shapiro SC, Chutkow ]JG. A model-
ing scheme for diagnosis. In: Karna KN, ed. Expert sys-
tems in government. Washington, DC: IEEE Computer
Society, 1985:538-547. © 1985 IEEE.)
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erates a picture such as Figure 5 on the screen,
and in the picture highlights the region and lists
all other mini-neurosystems passing through the
same area (along with their function, the major
axial neurosystem to which each belongs, their
origins and terminations, the direction in which
they conduct information, and sp on).

Figure 9 shows the use of the uniform network-
searching function in SNePS. To find out which
muscles are involved in flexion of the shoulder
joint, we issue the request (find (mu- cn) (find jt
shoulder-joint mv flexion)), which returns a list
containing the names of the four muscles in-
volved. To find out how much the deltoid contrib-
utes to the strength of shoulder flexion, we issue
the request (find pr- (find mu deltoid cn (find jt
shoulder-joint mv flexion))) and the program re-
turns: (40). To find out how paralysis of the deltoid
affects shoulder movement, we issue the request
(find mv- (find jt shoulder-joint (cn- mu) deltoid))
and the program returns: (flexion extension abduc-
tion 15-90).

2. A rule might be stated as follows: if a particular
mini-neurosystem carried by a certain peripheral-
nerve segment is malfunctioning, then other mini-
neurosystems in the same segment must be
examined for malfunction. This rule is displayed
graphically in Figure 10. Rules can include prob-
abilistic data, such as certainty factors, and we can
perform the necessary computations by pro-
cedural attachment.

3. The information base can be revised without
difficulty or disruption of other relationships in
the network. If, for instance, research discloses
that a mini-neurosystem passes through a region
in a cross section of the CNS different from that
currently specified in the network, a new node

examine

Figure 10. A rule for neuroanatomic localization rep-
resented in a semantic network. The rule states that if a
mini-neurosystem carried by a specific peripheral-nerve
segment is malfunctioning, then other mini-neurosys-
tems in the same segment must be examined for malfunc-
tion. (Published originally in Xiang Z, Srihari SN,
Shapiro SC, Chutkow JG. A modeling scheme for diag-
nosis. In: Karna KN, ed. Expert systems in government.
Washington, DC: IEEE Computer Society, 1985:538-547.
© 1985 IEEE.)
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specifying the relation between the new region
and the mini-neurosystem can be added, and the
old node relating the original region and the mini-
neurosystem can be removed.

4. SNePS supports diagnostic reasoning about
anatomy (neuroanatomic localization). 5xs, Pxs,
and Lxs are mapped to specific axial neurosystems
in a given transverse segment; a closed curve en-
compassing all the malfunctioning mini-neurosys-
tems and no normally functioning structure in the
area is defined. Or, as another example, because
several adjacent or overlapping abnormal regions
in the same cross section tend to be affected by a
single lesion, the task of determining the mini-
mum ‘number of lesions, given a set of abnormal
regions, is, in fact, the task of determining the
number of spanning trees in an undirected graph
in which a vertex represents a region and an edge
represents an adjacency or overlap relation.

5. SNePS supports graphics. The geometric infor-
mation about CNS-PNS and peripheral-nerve pat-
terns is used to display pictures such as Figures 1
and 6 on the screen. By means of a stylus or similar
device, the extent of a sensory Sx or Px can be
indicated on the picture. Localization begins by
storing the picture in an image array, counting the
number of pixels involved in different regions,
and comparing these to the appropriate patterns
of CNS-PNS and peripheral-nerve innervation to
establish which of the latter most closely approx-
imates the extent of the lesion. The results are
stored as new nodes for further reasoning.

For example, the lesion might involve complete
loss (100%) of light touch in the area about the
chin and lower lip, as shown in Figure 1 (right).
If one asks which CNS, CNS-PNS, or peripheral-
nerve pattern best describes the lesion, the system
returns the name of the peripheral nerve to the
chin, rejecting all other possibilities as unlikely.
On the other hand, if the left side of the body is
involved from the level of the nipple downward,
the system returns the name and a drawing of the
most rostral (transverse) segment of the spinal
cord containing all the somatesthetic-light touch
mini-neurosystems involved and none of those
uninvolved, along with an outline of the lesion.
If the lesion extends through several transverse
segments, the geometric information can be used
to construct a three-dimensional picture on the
screen. The directive can also be reversed, for
example, by drawing a lesion on the display of a
particular transverse segment of the CNS and ask-
ing the system to outline the expected sensory loss
on the appropriate graphic display of the body.
Although somatic sensory neurosystems were
used to demonstrate some features of localization,
the same principles can be demonstrated just as
well with somatic motor neurosystems, the input
or output being the weakness of muscles.
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6. Drawings such as those in Figures 1, 5, and 6
can be created with a geometric graph editor.*
The adjacency relationship is inserted into the
knowledge base by a system-construction function
that asserts, for every cross section, an adjacency
relation between each pair of regions sharing a
common boundary. -

7. For computer-assisted tomography of the CNS,
geometric information in the knowledge base can
be increased to provide realistic, age-dependent,
geometric structures corrected statistically for nor-
mal variation. The system could then be expanded
to interface with scanners (roentgenographic and
nuclear magnetic resonance) to relate tomographic
output to functional neuroanatomy.

8. A natural language interface for literal transac-
tions (eg, patient data entry and explanation of
diagnosis) can be developed.

CONCLUSIONS

The construction of expert systems is a branch of
computer science that relies on philosophical and
psychological concepts to support or refute its vari-
ous experimental approaches to the simulation of
intelligent human behavior. The history of com-
puterized neurological diagnosis outlined in this
paper exemplifies the development of DESs in gen-
eral. Time and effort devoted to this area of research
will probably enhance our insight into human cogni-
tion and lead to the development of more general
methodologies and implementational tools applica-
ble to other domain-specific systems.

As we try to integrate modeling and reasoning,
we confront many fundamental issues, ranging from
the representation of knowledge to the mechanisms
of reasoning. The central task of “knowledge en-
gineers” is to find the point at which machines per-
form intelligently as well as or better than humans—
a point at which the knowledge needed to perform
the task is represented adequately and econoniically,
the reasoning with computers simulates or conceiv-
ably improves upon the human approach, and the
tools needed for implementation are practical and
user-friendly.®** As a general method in which to
embed the fundamental expertise of model-based
DESs, semantic networks are flexible enough to
handle different kinds of information, to support
diagnostic reasoning, to allow for natural interfaces
with the user, and to permit learning. Semantic net-
works are also sufficiently simple and uniform to
facilitate the development of processing tools.
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