CSE 431/531 Homework 3

Your Name:

Your University ID:

Problems	1	2	3	Total
Max. Score	12	14	14	40
Your Score				

Problem 1 (12 points). Let G = (V, E) be a directed acyclic graph with weight function: $w : E \to \mathbb{R}$. You may assume that $V = \{1, 2, \dots, n\}$ and for all edges $(i, j) \in E$ we have i < j. The graph is given using the adjacency-list representation. Design an O(n+m)-time algorithm to check if the shortest path from 1 to n in G is unique or not.

Problem 2 (14 points). We call a sequence X[1..m] of numbers oscillating if X[i] < X[i+1] for all even $i \le m-1$, and X[i] > X[i+1] for all odd $i \le m-1$. For example, (5, 3, 9, 7, 8, 6, 12, 11) is an oscillating sequence since 5 > 3 < 9 > 7 < 8 > 6 < 12 > 11.

Describe an $O(n^2)$ -time dynamic programming algorithm to compute the length of the longest oscillating subsequence of an array A[1..n] of integers. For example, if the input sequence is (3, 5, 1, 2, 9, 10, 8, 6, 7), then your output should be 5, since (5, 1, 10, 6, 7) is a longest oscillating subsequence of the input sequence.

Problem 3 (14 points). We can use dynamic programming to solve the shortest-path problem on directed acyclic graphs (DAGs). With an obvious modification, the algorithm works for the *longest-path* problem on DAGs.

This problem asks you to reduce the weighted interval scheduling problem to the longest-path problem on DAGs. Given a weighted interval scheduling problem $(n, (s_1, s_2, \dots, s_n), (f_1, f_2, \dots, f_n))$, you need to show how to construct a DAG G = (V, E) with edge weights $w : E \to \mathbb{R}$ and specify two vertices $s, t \in V$, such that solving the weighted interval scheduling instance is equivalent to computing the longest path from s to t in G. The graph G you constructed must have |V| = O(n).