
CSE 431/531: Analysis of Algorithms

Approximation and Randomized Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt

For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

3/58

Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α

4/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

5/58

Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

6/58

2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

7/58

2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �

8/58

1.5-Approximation for TSP

Def. Given G = (V,E), a set U ⊆ V of even number of
vertices in V , a matching M over U in G is a set of |U |/2 paths
in G, such that every vertex in U is one end point of some path.

Def. The cost of the matching M , denoted as cost(M) is the
total cost of all edges in the |U |/2 paths (counting
multiplicities).

Theorem Given G = (V,E), a set U ⊆ V of even number of
verticies, the minimum cost matching over U in G can be found
in polynomial time.

9/58

1.5-Approximation for TSP

Lemma Let T be a spanning tree of G = (V,E); let U be the
set of odd-degree vertices in MST (|U | must be even, why?). Let
M be a matching over U , then, T]M gives a traveling
salesman’s tour.

Proof.

Every vertex in T]M has even degree and T]M is connected
(since it contains the spanning tree). Thus T]M is an Eulerian
graph and we can find a tour that visits every edge in T]M
exactly once.

10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp

10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp

10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp

10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp

10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp

11/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

12/58

Vertex Cover Problem

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem

Input: G = (V,E)

Output: a vertex cover S with minimum |S|

12/58

Vertex Cover Problem

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem

Input: G = (V,E)

Output: a vertex cover S with minimum |S|

13/58

First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let v be the vertex of the maximum degree in (V,E ′)

4 S ← S ∪ {v},
5 remove all edges incident to v from E ′

6 output S

Theorem Greedy algorithm is an O(lg n)-approximation for
vertex-cover.

We are not going to prove the theorem

Instead, we show that the O(lg n)-approximation ratio is
tight for the algorithm

13/58

First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let v be the vertex of the maximum degree in (V,E ′)

4 S ← S ∪ {v},
5 remove all edges incident to v from E ′

6 output S

Theorem Greedy algorithm is an O(lg n)-approximation for
vertex-cover.

We are not going to prove the theorem

Instead, we show that the O(lg n)-approximation ratio is
tight for the algorithm

13/58

First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let v be the vertex of the maximum degree in (V,E ′)

4 S ← S ∪ {v},
5 remove all edges incident to v from E ′

6 output S

Theorem Greedy algorithm is an O(lg n)-approximation for
vertex-cover.

We are not going to prove the theorem

Instead, we show that the O(lg n)-approximation ratio is
tight for the algorithm

13/58

First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let v be the vertex of the maximum degree in (V,E ′)

4 S ← S ∪ {v},
5 remove all edges incident to v from E ′

6 output S

Theorem Greedy algorithm is an O(lg n)-approximation for
vertex-cover.

We are not going to prove the theorem

Instead, we show that the O(lg n)-approximation ratio is
tight for the algorithm

14/58

Bad Example for Greedy Algorithm

|L| = n′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

14/58

Bad Example for Greedy Algorithm

R2

|L| = n′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

14/58

Bad Example for Greedy Algorithm

R2 R3

|L| = n′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

14/58

Bad Example for Greedy Algorithm

R2 R3 R4

|L| = n′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

14/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

Rn′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

14/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

15/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.

16/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)
|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).

16/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)
|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).

16/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)

|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).

16/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)
|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).

16/58

Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)
|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).

17/58

Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

However, the approximation ratio is not so good

We now give a somewhat “counter-intuitive” algorithm,

for which we can prove a 2-approximation ratio.

17/58

Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

However, the approximation ratio is not so good

We now give a somewhat “counter-intuitive” algorithm,

for which we can prove a 2-approximation ratio.

17/58

Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

However, the approximation ratio is not so good

We now give a somewhat “counter-intuitive” algorithm,

for which we can prove a 2-approximation ratio.

17/58

Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

However, the approximation ratio is not so good

We now give a somewhat “counter-intuitive” algorithm,

for which we can prove a 2-approximation ratio.

18/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

The counter-intuitive part: adding both u and v to S seems
to be wasteful

Intuition for the 2-approximation ratio: the optimum solution
must cover the edge (u, v), using either u or v. If we select
both, we are always ahead of the optimum solution. The
approximation factor we lost is at most 2.

18/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

The counter-intuitive part: adding both u and v to S seems
to be wasteful

Intuition for the 2-approximation ratio: the optimum solution
must cover the edge (u, v), using either u or v. If we select
both, we are always ahead of the optimum solution. The
approximation factor we lost is at most 2.

18/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

The counter-intuitive part: adding both u and v to S seems
to be wasteful

Intuition for the 2-approximation ratio: the optimum solution
must cover the edge (u, v), using either u or v. If we select
both, we are always ahead of the optimum solution. The
approximation factor we lost is at most 2.

19/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|
To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

19/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|
To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

19/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|

To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

19/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|
To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

19/58

2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|
To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

20/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

21/58

Max 3-SAT

Input: n boolean variables x1, x2, · · · , xn
m clauses, each clause is a disjunction of 3 literals
from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as
possible

Example:

clauses: x2 ∨ ¬x3 ∨ ¬x4, x2 ∨ x3 ∨ ¬x4,
¬x1 ∨ x2 ∨ x4, x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ ¬x4

We can satisfy all the 5 clauses: x = (1, 1, 1, 0, 1)

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

22/58

Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.

23/58

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.

23/58

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.

23/58

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.

24/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

25/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

26/58

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers

Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial

27/58

Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 85

27/58

Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

27/58

Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 8564

27/58

Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

27/58

Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429

28/58

Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)

28/58

Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)

28/58

Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)

29/58

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level has total running time O(n)

Number of levels = O(lg n)

Total running time = O(n lg n)

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 29 17

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17 1764

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

8264

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

37 64

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

7564

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

15 64

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

9464

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

25 64

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

64 69

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1)
extra space.

30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1)
extra space.

31/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

32/58

Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

33/58

Variant of Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 repeat

3 x← a random element of A (x is called a pivot)

4 AL ← elements in A that are less than x \\ Divide

5 AR ← elements in A that are greater than x \\ Divide

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

7 BL ← quicksort(AL, AL.size) \\ Conquer

8 BR ← quicksort(AR, AR.size) \\ Conquer

9 t← number of times x appear A

10 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

34/58

Analysis of Variant

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

Q: What is the probability that AL.size ≤ 3n/4 and
AR.size ≤ 3n/4?

A: At least 1/2

34/58

Analysis of Variant

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

Q: What is the probability that AL.size ≤ 3n/4 and
AR.size ≤ 3n/4?

A: At least 1/2

35/58

Analysis of Variant

2 repeat

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

Q: What is the expected number of iterations the above
procedure takes?

A: At most 2

35/58

Analysis of Variant

2 repeat

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

Q: What is the expected number of iterations the above
procedure takes?

A: At most 2

36/58

Suppose an experiment succeeds with probability p ∈ (0, 1],
independent of all previous experiments.

1 repeat

2 run an experiment

3 until the experiment succeeds

Lemma The expected number of experiments we run in the
above procedure is 1/p.

37/58

Fact For q ∈ (0, 1), we have
∑∞

i=0 q
i = 1

1−q .

38/58

Lemma The expected number of experiments we run in the
above procedure is 1/p.

Proof

Expectation = p+ (1− p)p× 2 + (1− p)2p× 3 + (1− p)3p× 4

+ · · ·

= p
∞∑
i=1

(1− p)i−1i = p
∞∑
j=1

∞∑
i=j

(1− p)i−1

= p
∞∑
j=1

(1− p)j−1 1

1− (1− p) =
∞∑
j=1

(1− p)j−1

= (1− p)0 1

1− (1− p) = 1/p

39/58

Variant Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 repeat

3 x← a random element of A (x is called a pivot)

4 AL ← elements in A that are less than x \\ Divide

5 AR ← elements in A that are greater than x \\ Divide

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

7 BL ← quicksort(AL, AL.size) \\ Conquer

8 BR ← quicksort(AR, AR.size) \\ Conquer

9 t← number of times x appear A

10 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

40/58

Analysis of Variant

Divide and Combine: takes O(n) time

Conquer: break an array of size n into two arrays, each has
size at most 3n/4. Recursively sort the 2 sub-arrays.

n
≤ 3n/4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

O(n)

O(n)

O(n)

O(n)

≤ 9n/16

≤ 27n/64

Number of levels ≤ lg4/3 n = O(lg n)

41/58

Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Intuition: the quicksort algorithm should be better than the
variant.

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i

Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

42/58

Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction

43/58

Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

T (n) ≤ 2

n

n−1∑
i=0

T (i) + c′n ≤ 2

n

n−1∑
i=0

ci lg i+ c′n

≤ 2c

n

bn/2c−1∑
i=0

i lg
n

2
+

n−1∑
i=bn/2c

i lg n

+ c′n

≤ 2c

n

(
n2

8
lg
n

2
+

3n2

8
lg n

)
+ c′n

= c

(
n

4
lg n− n

4
+

3n

4
lg n

)
+ c′n

= cn lg n− cn

4
+ c′n ≤ cn lg n if c ≥ 4c′

44/58

Exercise: Coupon Collector

Coupon Collector

Each box of cereal contains a coupon. There are n different
types of coupons. Assuming all boxes are equally likely to contain
each coupon, in expectation, how many boxes before you have all
coupon types?

Break into n stages 1, 2, 3, · · · , n
Stage i terminates when we have collected i coupon types

Xi: number of coupons collected in stage i

X =
∑n

i=1Xi: total number of coupons collected

45/58

Exercise: Coupon Collector

Xi: number of coupons collected in stage i

X =
∑n

i=1Xi: total number of coupons collected

In stage i: with probability n−(i−1)
n

, a random coupon has
type different from the i− 1 types already seen

Thus, E[Xi] = n
n−(i−1)

.

By linearity of expectation:

E[X] =
n∑

i=1

n

n− (i− 1)
=

n∑
i=1

n

i
= nH(n),

where H(n) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

= Θ(lg n) is called the
n-th Harmonic number.

E[X] = Θ(n lg n).

46/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

47/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

48/58

Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14
0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region

49/58

Standard Form of Linear Programming

min c1x1 + c2x2 + · · ·+ cnxn s.t.∑
A1,1x1 + A1,2x2 + · · ·+ A1,nxn ≥ b1∑
A2,1x1 + A2,2x2 + · · ·+ A2,nxn ≥ b2

...
...

...
...∑

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0

50/58

Standard Form of Linear Programming

Let x =

x1

x2
...
xn

 , c =

c1

c2
...
cn

 ,

A =

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

...
Am,1 Am,2 · · · Am,n

 , b =

b1

b2
...
bm

 .

Then, LP becomes min cTx s.t.

Ax ≥ b

x ≥ 0

≥ means coordinate-wise greater than or equal to

51/58

Linear programmings can be solved in polynomial time

Algorithms for Solving LPs

Simplex method: exponential time in theory, but works well
in practice

Ellipsoid method: polynomial time in theory, but slow in
practice

Internal point method: polynomial time in theory, works well
in practice

52/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover

53/58

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv

53/58

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv

53/58

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv

54/58

Integer Programming for Weighted Vertex Cover

For every v ∈ V , let xv ∈ {0, 1} indicate whether we select v
in the vertex cover S

The integer programming for weighted vertex cover:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

(IPWVC) ⇔ weighted vertex cover

Thus it is NP-hard to solve integer programmings in general

55/58

Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP

55/58

Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP

55/58

Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP

55/58

Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2

Thus, LP =
∑

u∈V wux
∗
u ≤ IP

3

Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3

Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

56/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.

57/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗u = 2
∑
u∈S

wu · x∗u

≤ 2
∑
u∈V

wu · x∗u = 2 · LP.

57/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗u = 2
∑
u∈S

wu · x∗u

≤ 2
∑
u∈V

wu · x∗u = 2 · LP.

57/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗u = 2
∑
u∈S

wu · x∗u

≤ 2
∑
u∈V

wu · x∗u = 2 · LP.

58/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : x∗u ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · cost(best vertex cover).

58/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : x∗u ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · cost(best vertex cover).

58/58

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : x∗u ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · cost(best vertex cover).

	Approximation Algorithms
	Approximation Algorithms for Traveling Salesman Problem
	2-Approximation Algorithm for Vertex Cover
	78-Approximation Algorithm for Max 3-SAT
	Randomized Quicksort
	Recap of Quicksort
	Randomized Quicksort Algorithm

	2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
	Linear Programming
	2-Approximation for Weighted Vertex Cover

