

CSE 431/531: Analysis of Algorithms

# Approximation and Randomized Algorithms

Lecturer: Shi Li

*Department of Computer Science and Engineering  
University at Buffalo*

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

- $\text{opt}$ : cost (or value) of the optimum solution

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

- $\text{opt}$ : cost (or value) of the optimum solution
- $\text{sol}$ : cost (or value) of the solution produced by the algorithm

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

- $\text{opt}$ : cost (or value) of the optimum solution
- $\text{sol}$ : cost (or value) of the solution produced by the algorithm
- $\alpha$ : approximation ratio

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

- $\text{opt}$ : cost (or value) of the optimum solution
- $\text{sol}$ : cost (or value) of the solution produced by the algorithm
- $\alpha$ : approximation ratio
- For minimization problems:
  - $\alpha \geq 1$  and we require  $\text{sol} \leq \alpha \cdot \text{opt}$

# Approximation Algorithms

An algorithm for an optimization problem is an  **$\alpha$ -approximation algorithm**, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an  $\alpha$ -factor of the cost (or value) of the optimum solution.

- $\text{opt}$ : cost (or value) of the optimum solution
- $\text{sol}$ : cost (or value) of the solution produced by the algorithm
- $\alpha$ : approximation ratio
- For minimization problems:
  - $\alpha \geq 1$  and we require  $\text{sol} \leq \alpha \cdot \text{opt}$
- For maximization problems, there are two conventions:
  - $\alpha \leq 1$  and we require  $\text{sol} \geq \alpha \cdot \text{opt}$
  - $\alpha \geq 1$  and we require  $\text{sol} \geq \text{opt}/\alpha$

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



# Recall: Traveling Salesman Problem

- A salesman needs to visit  $n$  cities  $1, 2, 3, \dots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



## Travelling Salesman Problem (TSP)

**Input:** a graph  $G = (V, E)$ , weights  $w : E \rightarrow \mathbb{R}_{\geq 0}$

**Output:** a traveling-salesman tour with the minimum cost

# 2-Approximation Algorithm for TSP

## TSP1( $G, w$ )

- ➊  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- ➋ Output tour formed by making two copies of each edge in  $MST$ .

# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



## 2-Approximation Algorithm for TSP

### TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
  - 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

TSP1( $G, w$ )

- 1  $MST \leftarrow$  the minimum spanning tree of  $G$  w.r.t weights  $w$ , returned by either Kruskal's algorithm or Prim's algorithm.
- 2 Output tour formed by making two copies of each edge in  $MST$ .



# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

## Proof

- $\text{mst} = \text{cost of the minimum spanning tree}$

# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

## Proof

- $mst = \text{cost of the minimum spanning tree}$
- $tsp = \text{cost of the optimum travelling salesman tour}$

# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

## Proof

- $\text{mst} = \text{cost of the minimum spanning tree}$
- $\text{tsp} = \text{cost of the optimum travelling salesman tour}$
- then  $\text{mst} \leq \text{tsp}$ , since removing one edge from the optimum travelling salesman tour results in a spanning tree

# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

## Proof

- $\text{mst} = \text{cost of the minimum spanning tree}$
- $\text{tsp} = \text{cost of the optimum travelling salesman tour}$
- then  $\text{mst} \leq \text{tsp}$ , since removing one edge from the optimum travelling salesman tour results in a spanning tree
- $\text{sol} = \text{cost of tour given by algorithm TSP1}$

# 2-Approximation Algorithm for TSP

**Lemma** Algorithm TSP1 is a 2-approximation algorithm for TSP.

## Proof

- $\text{mst} = \text{cost of the minimum spanning tree}$
- $\text{tsp} = \text{cost of the optimum travelling salesman tour}$
- then  $\text{mst} \leq \text{tsp}$ , since removing one edge from the optimum travelling salesman tour results in a spanning tree
- $\text{sol} = \text{cost of tour given by algorithm TSP1}$
- $\text{sol} = 2 \cdot \text{mst} \leq 2 \cdot \text{tsp}$ .

□

## 1.5-Approximation for TSP

**Def.** Given  $G = (V, E)$ , a set  $U \subseteq V$  of even number of vertices in  $V$ , a matching  $M$  over  $U$  in  $G$  is a set of  $|U|/2$  paths in  $G$ , such that every vertex in  $U$  is one end point of some path.

**Def.** The cost of the matching  $M$ , denoted as  $\text{cost}(M)$  is the total cost of all edges in the  $|U|/2$  paths (counting multiplicities).

**Theorem** Given  $G = (V, E)$ , a set  $U \subseteq V$  of even number of vertices, the minimum cost matching over  $U$  in  $G$  can be found in polynomial time.

## 1.5-Approximation for TSP

**Lemma** Let  $T$  be a spanning tree of  $G = (V, E)$ ; let  $U$  be the set of odd-degree vertices in MST ( $|U|$  must be even, why?). Let  $M$  be a matching over  $U$ , then,  $T \uplus M$  gives a traveling salesman's tour.

### Proof.

Every vertex in  $T \uplus M$  has even degree and  $T \uplus M$  is connected (since it contains the spanning tree). Thus  $T \uplus M$  is an Eulerian graph and we can find a tour that visits every edge in  $T \uplus M$  exactly once. □

## 1.5-Approximation for TSP

**Lemma** Let  $U$  be a set of even number of vertices in  $G$ . Then the cost of the cheapest matching over  $U$  in  $G$  is at most  $\frac{1}{2}\text{tsp}$ .



Proof.

- Take the optimum TSP



# 1.5-Approximation for TSP

**Lemma** Let  $U$  be a set of even number of vertices in  $G$ . Then the cost of the cheapest matching over  $U$  in  $G$  is at most  $\frac{1}{2}\text{tsp}$ .



Proof.

- Take the optimum TSP
- Breaking into read matching and blue matching over  $U$



# 1.5-Approximation for TSP

**Lemma** Let  $U$  be a set of even number of vertices in  $G$ . Then the cost of the cheapest matching over  $U$  in  $G$  is at most  $\frac{1}{2}\text{tsp}$ .



Proof.

- Take the optimum TSP
- Breaking into read matching and blue matching over  $U$
- $\text{cost}(\text{blue matching}) + \text{cost}(\text{red matching}) = \text{tsp}$



## 1.5-Approximation for TSP

**Lemma** Let  $U$  be a set of even number of vertices in  $G$ . Then the cost of the cheapest matching over  $U$  in  $G$  is at most  $\frac{1}{2}\text{tsp}$ .



Proof.

- Take the optimum TSP
- Breaking into read matching and blue matching over  $U$
- $\text{cost}(\text{blue matching}) + \text{cost}(\text{red matching}) = \text{tsp}$
- Thus,  $\text{cost}(\text{blue matching}) \leq \frac{1}{2}\text{tsp}$  or  $\text{cost}(\text{red matching}) \leq \frac{1}{2}\text{tsp}$



## 1.5-Approximation for TSP

**Lemma** Let  $U$  be a set of even number of vertices in  $G$ . Then the cost of the cheapest matching over  $U$  in  $G$  is at most  $\frac{1}{2}\text{tsp}$ .



Proof.

- Take the optimum TSP
- Breaking into read matching and blue matching over  $U$
- $\text{cost}(\text{blue matching}) + \text{cost}(\text{red matching}) = \text{tsp}$
- Thus,  $\text{cost}(\text{blue matching}) \leq \frac{1}{2}\text{tsp}$  or  $\text{cost}(\text{red matching}) \leq \frac{1}{2}\text{tsp}$
- $\text{cost}(\text{cheapest matching}) \leq \frac{1}{2}\text{tsp}$

□

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Vertex Cover Problem

**Def.** Given a graph  $G = (V, E)$ , a **vertex cover** of  $G$  is a subset  $S \subseteq V$  such that for every  $(u, v) \in E$  then  $u \in S$  or  $v \in S$  .



# Vertex Cover Problem

**Def.** Given a graph  $G = (V, E)$ , a **vertex cover** of  $G$  is a subset  $S \subseteq V$  such that for every  $(u, v) \in E$  then  $u \in S$  or  $v \in S$ .



## Vertex-Cover Problem

**Input:**  $G = (V, E)$

**Output:** a vertex cover  $S$  with minimum  $|S|$

# First Try: Greedy Algorithm

## Greedy Algorithm for Vertex-Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $v$  be the vertex of the maximum degree in  $(V, E')$
- 4  $S \leftarrow S \cup \{v\},$
- 5 remove all edges incident to  $v$  from  $E'$
- 6 output  $S$

# First Try: Greedy Algorithm

## Greedy Algorithm for Vertex-Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $v$  be the vertex of the maximum degree in  $(V, E')$
- 4  $S \leftarrow S \cup \{v\},$
- 5 remove all edges incident to  $v$  from  $E'$
- 6 output  $S$

**Theorem** Greedy algorithm is an  $O(\lg n)$ -approximation for vertex-cover.

# First Try: Greedy Algorithm

## Greedy Algorithm for Vertex-Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $v$  be the vertex of the maximum degree in  $(V, E')$
- 4  $S \leftarrow S \cup \{v\},$
- 5 remove all edges incident to  $v$  from  $E'$
- 6 output  $S$

**Theorem** Greedy algorithm is an  $O(\lg n)$ -approximation for vertex-cover.

- We are not going to prove the theorem

# First Try: Greedy Algorithm

## Greedy Algorithm for Vertex-Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $v$  be the vertex of the maximum degree in  $(V, E')$
- 4  $S \leftarrow S \cup \{v\},$
- 5 remove all edges incident to  $v$  from  $E'$
- 6 output  $S$

**Theorem** Greedy algorithm is an  $O(\lg n)$ -approximation for vertex-cover.

- We are not going to prove the theorem
- Instead, we show that the  $O(\lg n)$ -approximation ratio is tight for the algorithm

## Bad Example for Greedy Algorithm

$$|L| = n' \quad \bullet \quad \bullet$$

- $L$ :  $n'$  vertices

# Bad Example for Greedy Algorithm



- $L$ :  $n'$  vertices
- $R_2$ :  $\lfloor n'/2 \rfloor$  vertices, each connected to 2 vertices in  $L$

# Bad Example for Greedy Algorithm

$$|L| = n'$$



- $L$ :  $n'$  vertices
- $R_2$ :  $\lfloor n'/2 \rfloor$  vertices, each connected to 2 vertices in  $L$
- $R_3$ :  $\lfloor n'/3 \rfloor$  vertices, each connected to 3 vertices in  $L$

# Bad Example for Greedy Algorithm

$$|L| = n'$$



- $L$ :  $n'$  vertices
- $R_2$ :  $\lfloor n'/2 \rfloor$  vertices, each connected to 2 vertices in  $L$
- $R_3$ :  $\lfloor n'/3 \rfloor$  vertices, each connected to 3 vertices in  $L$
- $R_4$ :  $\lfloor n'/4 \rfloor$  vertices, each connected to 4 vertices in  $L$

# Bad Example for Greedy Algorithm



- $L$ :  $n'$  vertices
- $R_2$ :  $\lfloor n'/2 \rfloor$  vertices, each connected to 2 vertices in  $L$
- $R_3$ :  $\lfloor n'/3 \rfloor$  vertices, each connected to 3 vertices in  $L$
- $R_4$ :  $\lfloor n'/4 \rfloor$  vertices, each connected to 4 vertices in  $L$
- $\dots$
- $R_{n'}$ : 1 vertex, connected to  $n'$  vertices in  $L$

# Bad Example for Greedy Algorithm



- $L$ :  $n'$  vertices
- $R_2$ :  $\lfloor n'/2 \rfloor$  vertices, each connected to 2 vertices in  $L$
- $R_3$ :  $\lfloor n'/3 \rfloor$  vertices, each connected to 3 vertices in  $L$
- $R_4$ :  $\lfloor n'/4 \rfloor$  vertices, each connected to 4 vertices in  $L$
- $\dots$
- $R_{n'}$ : 1 vertex, connected to  $n'$  vertices in  $L$
- $R = R_2 \cup R_3 \cup \dots \cup R_{n'}$

# Bad Example for Greedy Algorithm



# Bad Example for Greedy Algorithm



- Optimum solution is  $L$ , where  $|L| = n'$

# Bad Example for Greedy Algorithm



- Optimum solution is  $L$ , where  $|L| = n'$
- Greedy algorithm picks  $R_{n'}, R_{n'-1}, \dots, R_2$  in this order

# Bad Example for Greedy Algorithm



- Optimum solution is  $L$ , where  $|L| = n'$
- Greedy algorithm picks  $R_{n'}, R_{n'-1}, \dots, R_2$  in this order
- Thus, greedy algorithm outputs  $R$

# Bad Example for Greedy Algorithm



- Optimum solution is  $L$ , where  $|L| = n'$
- Greedy algorithm picks  $R_{n'}, R_{n'-1}, \dots, R_2$  in this order
- Thus, greedy algorithm outputs  $R$

$$\begin{aligned}|R| &= \sum_{i=2}^n \left\lfloor \frac{n'}{i} \right\rfloor \geq \sum_{i=1}^n \frac{n'}{i} - n' - (n' - 1) \\ &= n' H(n') - (2n' - 1) = \Omega(n' \lg n')\end{aligned}$$

# Bad Example for Greedy Algorithm



- Optimum solution is  $L$ , where  $|L| = n'$
- Greedy algorithm picks  $R_{n'}, R_{n'-1}, \dots, R_2$  in this order
- Thus, greedy algorithm outputs  $R$

$$\begin{aligned}|R| &= \sum_{i=2}^n \left\lfloor \frac{n'}{i} \right\rfloor \geq \sum_{i=1}^n \frac{n'}{i} - n' - (n' - 1) \\ &= n' H(n') - (2n' - 1) = \Omega(n' \lg n')\end{aligned}$$

- where  $H(n') = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n'} = \Theta(\lg n')$  is the  $n'$ -th number in the harmonic sequence.

# Bad Example for Greedy Algorithm



# Bad Example for Greedy Algorithm



- Let  $n = |L \cup R| = \Theta(n' \lg n')$

# Bad Example for Greedy Algorithm



- Let  $n = |L \cup R| = \Theta(n' \lg n')$
- Then  $\lg n = \Theta(\lg n')$

# Bad Example for Greedy Algorithm



- Let  $n = |L \cup R| = \Theta(n' \lg n')$
- Then  $\lg n = \Theta(\lg n')$
- $\frac{|R|}{|L|} = \frac{\Omega(n' \lg n')}{n'} = \Omega(\lg n') = \Omega(\lg n)$ .

# Bad Example for Greedy Algorithm



- Let  $n = |L \cup R| = \Theta(n' \lg n')$
- Then  $\lg n = \Theta(\lg n')$
- $\frac{|R|}{|L|} = \frac{\Omega(n' \lg n')}{n'} = \Omega(\lg n') = \Omega(\lg n)$ .
- Thus, greedy algorithm does not do better than  $O(\lg n)$ .

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good
- We now give a somewhat “counter-intuitive” algorithm,

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good
- We now give a somewhat “counter-intuitive” algorithm,
- for which we can prove a 2-approximation ratio.

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$ 
  - 3 let  $(u, v)$  be any edge in  $E'$
  - 4  $S \leftarrow S \cup \{u, v\},$
  - 5 remove all edges incident to  $u$  and  $v$  from  $E'$
  - 6 output  $S$

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- The counter-intuitive part: adding both  $u$  and  $v$  to  $S$  seems to be wasteful

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- The counter-intuitive part: adding both  $u$  and  $v$  to  $S$  seems to be wasteful
- Intuition for the 2-approximation ratio: the optimum solution must cover the edge  $(u, v)$ , using either  $u$  or  $v$ . If we select both, we are always ahead of the optimum solution. The approximation factor we lost is at most 2.

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- Let  $E^*$  be the set of edges  $(u, v)$  considered in Statement 3

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- Let  $E^*$  be the set of edges  $(u, v)$  considered in Statement 3
- Observation:  $E^*$  is a matching and  $|S| = 2|E^*|$

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- Let  $E^*$  be the set of edges  $(u, v)$  considered in Statement 3
- Observation:  $E^*$  is a matching and  $|S| = 2|E^*|$
- To cover all edges in  $E^*$ , the optimum solution needs  $|E^*|$  vertices

## 2-Approximation Algorithm for Vertex Cover

- 1  $E' \leftarrow E, S \leftarrow \emptyset$
- 2 while  $E' \neq \emptyset$
- 3 let  $(u, v)$  be any edge in  $E'$
- 4  $S \leftarrow S \cup \{u, v\},$
- 5 remove all edges incident to  $u$  and  $v$  from  $E'$
- 6 output  $S$

- Let  $E^*$  be the set of edges  $(u, v)$  considered in Statement 3
- Observation:  $E^*$  is a matching and  $|S| = 2|E^*|$
- To cover all edges in  $E^*$ , the optimum solution needs  $|E^*|$  vertices

**Theorem** The algorithm is a 2-approximation algorithm for vertex-cover.

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

## Max 3-SAT

**Input:**  $n$  boolean variables  $x_1, x_2, \dots, x_n$

$m$  clauses, each clause is a disjunction of 3 literals  
from 3 distinct variables

**Output:** an assignment so as to satisfy as many clauses as possible

### Example:

- **clauses:**  $x_2 \vee \neg x_3 \vee \neg x_4$ ,  $x_2 \vee x_3 \vee \neg x_4$ ,  
 $\neg x_1 \vee x_2 \vee x_4$ ,  $x_1 \vee \neg x_2 \vee x_3$ ,  $\neg x_1 \vee \neg x_2 \vee \neg x_4$
- We can satisfy all the 5 clauses:  $x = (1, 1, 1, 0, 1)$

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

Proof.

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

Proof.

- for each clause  $C_j$ , let  $Z_j = 1$  if  $C_j$  is satisfied and 0 otherwise

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

Proof.

- for each clause  $C_j$ , let  $Z_j = 1$  if  $C_j$  is satisfied and 0 otherwise
- $Z = \sum_{j=1}^m Z_j$  is the total number of satisfied clauses

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

Proof.

- for each clause  $C_j$ , let  $Z_j = 1$  if  $C_j$  is satisfied and 0 otherwise
- $Z = \sum_{j=1}^m Z_j$  is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$ : out of 8 possible assignments to the 3 variables in  $C_j$ , 7 of them will make  $C_j$  satisfied

# Randomized Algorithm for Max 3-SAT

- Simple idea: randomly set each variable  $x_u = 1$  with probability  $1/2$ , independent of other variables

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

Proof.

- for each clause  $C_j$ , let  $Z_j = 1$  if  $C_j$  is satisfied and 0 otherwise
- $Z = \sum_{j=1}^m Z_j$  is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$ : out of 8 possible assignments to the 3 variables in  $C_j$ , 7 of them will make  $C_j$  satisfied
- $\mathbb{E}[Z] = \mathbb{E} \left[ \sum_{j=1}^m Z_j \right] = \sum_{j=1}^m \mathbb{E}[Z_j] = \sum_{j=1}^m \frac{7}{8} = \frac{7}{8}m$ , by linearity of expectation. □

# Randomized Algorithm for Max 3-SAT

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

# Randomized Algorithm for Max 3-SAT

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

- Since the optimum solution can satisfy at most  $m$  clauses, lemma gives a randomized  $7/8$ -approximation for Max-3-SAT.

# Randomized Algorithm for Max 3-SAT

**Lemma** Let  $m$  be the number of clauses. Then, in expectation,  $\frac{7}{8}m$  number of clauses will be satisfied.

- Since the optimum solution can satisfy at most  $m$  clauses, lemma gives a randomized  $7/8$ -approximation for Max-3-SAT.

**Theorem** ([Hastad 97]) Unless  $P = NP$ , there is no  $\rho$ -approximation algorithm for MAX-3-SAT for any  $\rho > 7/8$ .

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Quicksort vs Merge-Sort

|         | <b>Merge Sort</b>     | <b>Quicksort</b>               |
|---------|-----------------------|--------------------------------|
| Divide  | Trivial               | Separate small and big numbers |
| Conquer | Recurse               | Recurse                        |
| Combine | Merge 2 sorted arrays | Trivial                        |

# Quicksort Example

**Assumption** We can choose median of an array of size  $n$  in  $O(n)$  time.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort Example

**Assumption** We can choose median of an array of size  $n$  in  $O(n)$  time.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort Example

**Assumption** We can choose median of an array of size  $n$  in  $O(n)$  time.

|    |    |    |           |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|-----------|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | <b>64</b> | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|-----------|----|----|----|----|----|----|----|----|----|----|----|

|    |    |    |    |    |    |    |           |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|-----------|----|----|----|----|----|----|----|
| 29 | 38 | 45 | 25 | 15 | 37 | 17 | <b>64</b> | 82 | 75 | 94 | 92 | 69 | 76 | 85 |
|----|----|----|----|----|----|----|-----------|----|----|----|----|----|----|----|

# Quicksort Example

**Assumption** We can choose median of an array of size  $n$  in  $O(n)$  time.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 38 | 45 | 25 | 15 | 37 | 17 | 64 | 82 | 75 | 94 | 92 | 69 | 76 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort Example

**Assumption** We can choose median of an array of size  $n$  in  $O(n)$  time.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 38 | 45 | 25 | 15 | 37 | 17 | 64 | 82 | 75 | 94 | 92 | 69 | 76 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 25 | 15 | 17 | 29 | 38 | 45 | 37 | 64 | 82 | 75 | 94 | 92 | 69 | 76 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort

$\text{quicksort}(A, n)$

- ① if  $n \leq 1$  then return  $A$
- ②  $x \leftarrow$  lower median of  $A$
- ③  $A_L \leftarrow$  elements in  $A$  that are less than  $x$       \\ Divide
- ④  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$       \\ Divide
- ⑤  $B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size})$       \\ Conquer
- ⑥  $B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size})$       \\ Conquer
- ⑦  $t \leftarrow$  number of times  $x$  appear  $A$
- ⑧ return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

# Quicksort

$\text{quicksort}(A, n)$

- ① if  $n \leq 1$  then return  $A$
- ②  $x \leftarrow$  lower median of  $A$
- ③  $A_L \leftarrow$  elements in  $A$  that are less than  $x$       \\ Divide
- ④  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$       \\ Divide
- ⑤  $B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size})$       \\ Conquer
- ⑥  $B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size})$       \\ Conquer
- ⑦  $t \leftarrow$  number of times  $x$  appear  $A$
- ⑧ return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

- Recurrence  $T(n) \leq 2T(n/2) + O(n)$

# Quicksort

**quicksort**( $A, n$ )

- ① if  $n \leq 1$  then return  $A$
- ②  $x \leftarrow$  lower median of  $A$
- ③  $A_L \leftarrow$  elements in  $A$  that are less than  $x$       \\ Divide
- ④  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$       \\ Divide
- ⑤  $B_L \leftarrow$  quicksort( $A_L, A_L.size$ )      \\ Conquer
- ⑥  $B_R \leftarrow$  quicksort( $A_R, A_R.size$ )      \\ Conquer
- ⑦  $t \leftarrow$  number of times  $x$  appear  $A$
- ⑧ return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

- Recurrence  $T(n) \leq 2T(n/2) + O(n)$
- Running time =  $O(n \lg n)$



- Each level has total running time  $O(n)$
- Number of levels  $= O(\lg n)$
- Total running time  $= O(n \lg n)$

# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.

# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 64 | 82 | 75 | 29 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



# Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” **extra** space.



- To partition the array into two parts, we only need  $O(1)$  extra space.

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Randomized Quicksort Algorithm

$\text{quicksort}(A, n)$

- ① if  $n \leq 1$  then return  $A$
- ②  $x \leftarrow$  a random element of  $A$  ( $x$  is called a pivot)
- ③  $A_L \leftarrow$  elements in  $A$  that are less than  $x$       \\ Divide
- ④  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$       \\ Divide
- ⑤  $B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size})$       \\ Conquer
- ⑥  $B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size})$       \\ Conquer
- ⑦  $t \leftarrow$  number of times  $x$  appear  $A$
- ⑧ return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

# Variant of Randomized Quicksort Algorithm

`quicksort( $A, n$ )`

- 1 if  $n \leq 1$  then return  $A$
- 2 repeat
- 3      $x \leftarrow$  a random element of  $A$  ( $x$  is called a **pivot**)
- 4      $A_L \leftarrow$  elements in  $A$  that are less than  $x$                    \| Divide
- 5      $A_R \leftarrow$  elements in  $A$  that are greater than  $x$                    \| Divide
- 6     until  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$
- 7      $B_L \leftarrow$  quicksort( $A_L, A_L.size$ )                                   \| Conquer
- 8      $B_R \leftarrow$  quicksort( $A_R, A_R.size$ )                                   \| Conquer
- 9      $t \leftarrow$  number of times  $x$  appear  $A$
- 10    return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

# Analysis of Variant

- ③  $x \leftarrow$  a random element of  $A$
- ④  $A_L \leftarrow$  elements in  $A$  that are less than  $x$
- ⑤  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$

**Q:** What is the probability that  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$ ?

# Analysis of Variant

- ③  $x \leftarrow$  a random element of  $A$
- ④  $A_L \leftarrow$  elements in  $A$  that are less than  $x$
- ⑤  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$

**Q:** What is the probability that  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$ ?

**A:** At least 1/2

# Analysis of Variant

- ② repeat
- ③  $x \leftarrow$  a random element of  $A$
- ④  $A_L \leftarrow$  elements in  $A$  that are less than  $x$
- ⑤  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$
- ⑥ until  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$

**Q:** What is the expected number of iterations the above procedure takes?

# Analysis of Variant

- ② repeat
- ③  $x \leftarrow$  a random element of  $A$
- ④  $A_L \leftarrow$  elements in  $A$  that are less than  $x$
- ⑤  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$
- ⑥ until  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$

**Q:** What is the expected number of iterations the above procedure takes?

**A:** At most 2

- Suppose an experiment succeeds with probability  $p \in (0, 1]$ , independent of all previous experiments.

- ➊ repeat
- ➋ run an experiment
- ➌ until the experiment succeeds

**Lemma** The expected number of experiments we run in the above procedure is  $1/p$ .

**Fact** For  $q \in (0, 1)$ , we have  $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$ .

**Lemma** The expected number of experiments we run in the above procedure is  $1/p$ .

## Proof

$$\begin{aligned}\text{Expectation} &= p + (1 - p)p \times 2 + (1 - p)^2 p \times 3 + (1 - p)^3 p \times 4 \\ &\quad + \cdots \\ &= p \sum_{i=1}^{\infty} (1 - p)^{i-1} i \quad = \quad p \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} (1 - p)^{i-1} \\ &= p \sum_{j=1}^{\infty} (1 - p)^{j-1} \frac{1}{1 - (1 - p)} \quad = \quad \sum_{j=1}^{\infty} (1 - p)^{j-1} \\ &= (1 - p)^0 \frac{1}{1 - (1 - p)} = 1/p\end{aligned}$$

# Variant Randomized Quicksort Algorithm

`quicksort( $A, n$ )`

- 1 if  $n \leq 1$  then return  $A$
- 2 repeat
- 3      $x \leftarrow$  a random element of  $A$  ( $x$  is called a **pivot**)
- 4      $A_L \leftarrow$  elements in  $A$  that are less than  $x$                    \| Divide
- 5      $A_R \leftarrow$  elements in  $A$  that are greater than  $x$                    \| Divide
- 6     until  $A_L.size \leq 3n/4$  and  $A_R.size \leq 3n/4$
- 7      $B_L \leftarrow$  quicksort( $A_L, A_L.size$ )                                   \| Conquer
- 8      $B_R \leftarrow$  quicksort( $A_R, A_R.size$ )                                   \| Conquer
- 9      $t \leftarrow$  number of times  $x$  appear  $A$
- 10    return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

# Analysis of Variant

- Divide and Combine: takes  $O(n)$  time
- Conquer: break an array of size  $n$  into two arrays, each has size at most  $3n/4$ . Recursively sort the 2 sub-arrays.



- Number of levels  $\leq \lg_{4/3} n = O(\lg n)$

# Randomized Quicksort Algorithm

$\text{quicksort}(A, n)$

- ① if  $n \leq 1$  then return  $A$
- ②  $x \leftarrow$  a random element of  $A$  ( $x$  is called a pivot)
- ③  $A_L \leftarrow$  elements in  $A$  that are less than  $x$       \\ Divide
- ④  $A_R \leftarrow$  elements in  $A$  that are greater than  $x$       \\ Divide
- ⑤  $B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size})$       \\ Conquer
- ⑥  $B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size})$       \\ Conquer
- ⑦  $t \leftarrow$  number of times  $x$  appear  $A$
- ⑧ return the array obtained by concatenating  $B_L$ , the array containing  $t$  copies of  $x$ , and  $B_R$

- Intuition: the quicksort algorithm should be better than the variant.

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$
- The right sub-instance has size at most  $n - i$

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$
- The right sub-instance has size at most  $n - i$
- Thus, the expected running time in this case is  
$$(T(i - 1) + T(n - i)) + O(n)$$

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$
- The right sub-instance has size at most  $n - i$
- Thus, the expected running time in this case is  $(T(i - 1) + T(n - i)) + O(n)$
- Overall, we have

$$T(n) = \frac{1}{n} \sum_{i=1}^n (T(i - 1) + T(n - i)) + O(n)$$

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$
- The right sub-instance has size at most  $n - i$
- Thus, the expected running time in this case is  $(T(i - 1) + T(n - i)) + O(n)$
- Overall, we have

$$\begin{aligned} T(n) &= \frac{1}{n} \sum_{i=1}^n (T(i - 1) + T(n - i)) + O(n) \\ &= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n) \end{aligned}$$

# Analysis of Randomized Quicksort Algorithm

- $T(n)$ : an upper bound on the **expected** running time of the randomized quicksort algorithm on  $n$  elements
- Assuming we choose the element of rank  $i$  as the pivot.
- The left sub-instance has size at most  $i - 1$
- The right sub-instance has size at most  $n - i$
- Thus, the expected running time in this case is  $(T(i - 1) + T(n - i)) + O(n)$
- Overall, we have

$$\begin{aligned} T(n) &= \frac{1}{n} \sum_{i=1}^n (T(i - 1) + T(n - i)) + O(n) \\ &= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n) \end{aligned}$$

- Can prove  $T(n) \leq c(n \lg n)$  for some constant  $c$  by reduction

# Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

$$\begin{aligned} T(n) &\leq \frac{2}{n} \sum_{i=0}^{n-1} T(i) + c'n \leq \frac{2}{n} \sum_{i=0}^{n-1} ci \lg i + c'n \\ &\leq \frac{2c}{n} \left( \sum_{i=0}^{\lfloor n/2 \rfloor - 1} i \lg \frac{n}{2} + \sum_{i=\lfloor n/2 \rfloor}^{n-1} i \lg n \right) + c'n \\ &\leq \frac{2c}{n} \left( \frac{n^2}{8} \lg \frac{n}{2} + \frac{3n^2}{8} \lg n \right) + c'n \\ &= c \left( \frac{n}{4} \lg n - \frac{n}{4} + \frac{3n}{4} \lg n \right) + c'n \\ &= cn \lg n - \frac{cn}{4} + c'n \leq cn \lg n \quad \text{if } c \geq 4c' \end{aligned}$$

## Exercise: Coupon Collector

### Coupon Collector

Each box of cereal contains a coupon. There are  $n$  different types of coupons. Assuming all boxes are equally likely to contain each coupon, in expectation, how many boxes before you have all coupon types?

- Break into  $n$  stages  $1, 2, 3, \dots, n$
- Stage  $i$  terminates when we have collected  $i$  coupon types
- $X_i$ : number of coupons collected in stage  $i$
- $X = \sum_{i=1}^n X_i$ : total number of coupons collected

## Exercise: Coupon Collector

- $X_i$ : number of coupons collected in stage  $i$
- $X = \sum_{i=1}^n X_i$ : total number of coupons collected
- In stage  $i$ : with probability  $\frac{n-(i-1)}{n}$ , a random coupon has type different from the  $i-1$  types already seen
- Thus,  $\mathbb{E}[X_i] = \frac{n}{n-(i-1)}$ .
- By linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^n \frac{n}{n-(i-1)} = \sum_{i=1}^n \frac{n}{i} = nH(n),$$

where  $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\lg n)$  is called the  $n$ -th Harmonic number.

- $\mathbb{E}[X] = \Theta(n \lg n)$ .

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

# Example of Linear Programming

$$\begin{array}{lll} \min & 4x_1 + 5x_2 & \text{s.t.} \\ & 2x_1 + x_2 \geq 6 \\ & x_1 + 2x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$



# Example of Linear Programming

$$\begin{array}{lll} \min & 4x_1 + 5x_2 & \text{s.t.} \\ & 2x_1 + x_2 \geq 6 \\ & x_1 + 2x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$



# Example of Linear Programming

$$\begin{array}{lll} \min & 4x_1 + 5x_2 & \text{s.t.} \\ & 2x_1 + x_2 \geq 6 \\ & x_1 + 2x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$



# Example of Linear Programming

$$\begin{array}{lll} \min & 4x_1 + 5x_2 & \text{s.t.} \\ & 2x_1 + x_2 \geq 6 \\ & x_1 + 2x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$



# Example of Linear Programming

$$\begin{array}{ll} \min & 4x_1 + 5x_2 \\ \text{s.t.} & \\ & 2x_1 + x_2 \geq 6 \\ & x_1 + 2x_2 \geq 4 \\ & x_1, x_2 \geq 0 \end{array}$$



# Example of Linear Programming

$$\min \quad 4x_1 + 5x_2 \quad \text{s.t.}$$

$$2x_1 + x_2 \geq 6$$

$$x_1 + 2x_2 \geq 4$$

$$x_1, x_2 \geq 0$$

- optimum point:  $x_1 = \frac{8}{3}, x_2 = \frac{2}{3}$



# Example of Linear Programming

$$\min \quad 4x_1 + 5x_2 \quad \text{s.t.}$$

$$2x_1 + x_2 \geq 6$$

$$x_1 + 2x_2 \geq 4$$

$$x_1, x_2 \geq 0$$

- optimum point:  $x_1 = \frac{8}{3}, x_2 = \frac{2}{3}$
- value =  $4 \times \frac{8}{3} + 5 \times \frac{2}{3} = 14$



# Standard Form of Linear Programming

$$\min \quad c_1x_1 + c_2x_2 + \cdots + c_nx_n \quad \text{s.t.}$$

$$\sum A_{1,1}x_1 + A_{1,2}x_2 + \cdots + A_{1,n}x_n \geq b_1$$

$$\sum A_{2,1}x_1 + A_{2,2}x_2 + \cdots + A_{2,n}x_n \geq b_2$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\sum A_{m,1}x_1 + A_{m,2}x_2 + \cdots + A_{m,n}x_n \geq b_m$$

$$x_1, x_2, \cdots, x_n \geq 0$$

# Standard Form of Linear Programming

Let  $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ ,  $c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ ,

$A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}$ ,  $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ .

Then, LP becomes

$$\begin{array}{lll} \min & c^T x & \text{s.t.} \\ & Ax \geq b \\ & x \geq 0 \end{array}$$

- $\geq$  means coordinate-wise greater than or equal to

- Linear programmings can be solved in polynomial time

### Algorithms for Solving LPs

- Simplex method: exponential time in theory, but works well in practice
- Ellipsoid method: polynomial time in theory, but slow in practice
- Internal point method: polynomial time in theory, works well in practice

# Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4  $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
  - Recap of Quicksort
  - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
  - Linear Programming
  - 2-Approximation for Weighted Vertex Cover

**Def.** Given a graph  $G = (V, E)$ , a **vertex cover** of  $G$  is a subset  $S \subseteq V$  such that for every  $(u, v) \in E$  then  $u \in S$  or  $v \in S$  .



**Def.** Given a graph  $G = (V, E)$ , a **vertex cover** of  $G$  is a subset  $S \subseteq V$  such that for every  $(u, v) \in E$  then  $u \in S$  or  $v \in S$  .



**Def.** Given a graph  $G = (V, E)$ , a **vertex cover** of  $G$  is a subset  $S \subseteq V$  such that for every  $(u, v) \in E$  then  $u \in S$  or  $v \in S$ .



### Weighted Vertex-Cover Problem

**Input:**  $G = (V, E)$  with vertex weights  $\{w_v\}_{v \in V}$

**Output:** a vertex cover  $S$  with minimum  $\sum_{v \in S} w_v$

# Integer Programming for Weighted Vertex Cover

- For every  $v \in V$ , let  $x_v \in \{0, 1\}$  indicate whether we select  $v$  in the vertex cover  $S$
- The integer programming for weighted vertex cover:

$$\begin{aligned} (\text{IP}_{\text{wvc}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\ & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ & x_v \in \{0, 1\} \quad \forall v \in V \end{aligned}$$

- $(\text{IP}_{\text{wvc}}) \Leftrightarrow$  weighted vertex cover
- Thus it is NP-hard to solve integer programmings in general

- Integer programming for WVC:

$$\begin{aligned} (\text{IP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\ & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ & x_v \in \{0, 1\} \quad \forall v \in V \end{aligned}$$

- Integer programming for WVC:

$$\begin{aligned}
 (\text{IP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in \{0, 1\} \quad \forall v \in V
 \end{aligned}$$

- Linear programming relaxation for WVC:

$$\begin{aligned}
 (\text{LP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in [0, 1] \quad \forall v \in V
 \end{aligned}$$

- Integer programming for WVC:

$$\begin{aligned}
 (\text{IP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in \{0, 1\} \quad \forall v \in V
 \end{aligned}$$

- Linear programming relaxation for WVC:

$$\begin{aligned}
 (\text{LP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in [0, 1] \quad \forall v \in V
 \end{aligned}$$

- let IP = value of  $(\text{IP}_{\text{WVC}})$ , LP = value of  $(\text{LP}_{\text{WVC}})$

- Integer programming for WVC:

$$\begin{aligned}
 (\text{IP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in \{0, 1\} \quad \forall v \in V
 \end{aligned}$$

- Linear programming relaxation for WVC:

$$\begin{aligned}
 (\text{LP}_{\text{WVC}}) \quad \min \quad & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\
 & x_u + x_v \geq 1 \quad \forall (u, v) \in E \\
 & x_v \in [0, 1] \quad \forall v \in V
 \end{aligned}$$

- let  $\text{IP} = \text{value of } (\text{IP}_{\text{WVC}})$ ,  $\text{LP} = \text{value of } (\text{LP}_{\text{WVC}})$
- Then,  $\text{LP} \leq \text{IP}$

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- 1 Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- 2
- 3

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

Proof.

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

Proof.

- Consider any edge  $(u, v) \in E$ : we have  $x_u^* + x_v^* \geq 1$

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

Proof.

- Consider any edge  $(u, v) \in E$ : we have  $x_u^* + x_v^* \geq 1$
- Thus, either  $x_u^* \geq 1/2$  or  $x_v^* \geq 1/2$

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

Proof.

- Consider any edge  $(u, v) \in E$ : we have  $x_u^* + x_v^* \geq 1$
- Thus, either  $x_u^* \geq 1/2$  or  $x_v^* \geq 1/2$
- Thus, either  $u \in S$  or  $v \in S$ . □

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ➊ Solving  $(\text{LPwvc})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ➋ Thus,  $\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}$
- ➌ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ➊ Solving  $(\text{LPwvc})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ➋ Thus,  $\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}$
- ➌ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

**Lemma**  $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}$ .

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(\text{LPwvc})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $\text{LP} = \sum_{u \in V} w_u x_u^* \leq \text{IP}$
- ③ Let  $S = \{u \in V : x_u \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

**Lemma**  $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \text{LP}$ .

Proof.

$$\begin{aligned}\text{cost}(S) &= \sum_{u \in S} w_u \leq \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^* \\ &\leq 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot \text{LP}.\end{aligned}$$

□

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u^* \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

**Lemma**  $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP$ .

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u^* \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

**Lemma**  $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP$ .

**Theorem** Algorithm is a 2-approximation algorithm for WVC.

# Algorithm for Weighted Vertex Cover

## Algorithm for Weighted Vertex Cover

- ① Solving  $(LP_{WVC})$  to obtain a solution  $\{x_u^*\}_{u \in V}$
- ② Thus,  $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- ③ Let  $S = \{u \in V : x_u^* \geq 1/2\}$  and output  $S$

**Lemma**  $S$  is a vertex cover of  $G$ .

**Lemma**  $\text{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot LP$ .

**Theorem** Algorithm is a 2-approximation algorithm for WVC.

Proof.

$$\text{cost}(S) \leq 2 \cdot LP \leq 2 \cdot IP = 2 \cdot \text{cost(best vertex cover)}.$$

□