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Approximation Algorithms

An algorithm for an optimization problem is an α-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an α-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution

sol: cost (or value) of the solution produced by the algorithm

α: approximation ratio

For minimization problems:

α ≥ 1 and we require sol ≤ α · opt
For maximization problems, there are two conventions:

α ≤ 1 and we require sol ≥ α · opt
α ≥ 1 and we require sol ≥ opt/α
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Recall: Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0

Output: a traveling-salesman tour with the minimum cost
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2-Approximation Algorithm for TSP

TSP1(G,w)

1 MST ← the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal’s algorithm or
Prim’s algorithm.

2 Output tour formed by
making two copies of each
edge in MST .

a

b

d

h

e

i

c

f g

j k
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2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof

mst = cost of the minimum spanning tree

tsp = cost of the optimum travelling salesman tour

then mst ≤ tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

sol = cost of tour given by algorithm TSP1

sol = 2 ·mst ≤ 2 · tsp. �
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1.5-Approximation for TSP

Def. Given G = (V,E), a set U ⊆ V of even number of
vertices in V , a matching M over U in G is a set of |U |/2 paths
in G, such that every vertex in U is one end point of some path.

Def. The cost of the matching M , denoted as cost(M) is the
total cost of all edges in the |U |/2 paths (counting
multiplicities).

Theorem Given G = (V,E), a set U ⊆ V of even number of
verticies, the minimum cost matching over U in G can be found
in polynomial time.
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1.5-Approximation for TSP

Lemma Let T be a spanning tree of G = (V,E); let U be the
set of odd-degree vertices in MST (|U | must be even, why?). Let
M be a matching over U , then, T ]M gives a traveling
salesman’s tour.

Proof.

Every vertex in T ]M has even degree and T ]M is connected
(since it contains the spanning tree). Thus T ]M is an Eulerian
graph and we can find a tour that visits every edge in T ]M
exactly once.



10/58

1.5-Approximation for TSP

Lemma Let U be a set of even
number of vertices in G. Then
the cost of the cheapest
matching over U in G is at most
1
2
tsp.

points in U

optimum TSP

Proof.

Take the optimum TSP

Breaking into read matching and blue matching over U

cost(blue matching)+ cost(red matching) = tsp

Thus, cost(blue matching) ≤ 1
2
tsp or

cost(red matching) ≤ 1
2
tsp

cost(cheapeast matching) ≤ 1
2
tsp
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Vertex Cover Problem

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem

Input: G = (V,E)

Output: a vertex cover S with minimum |S|
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First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let v be the vertex of the maximum degree in (V,E ′)

4 S ← S ∪ {v},
5 remove all edges incident to v from E ′

6 output S

Theorem Greedy algorithm is an O(lg n)-approximation for
vertex-cover.

We are not going to prove the theorem

Instead, we show that the O(lg n)-approximation ratio is
tight for the algorithm
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Bad Example for Greedy Algorithm

|L| = n′

L: n′ vertices

R2: bn′/2c vertices, each connected to 2 vertices in L

R3: bn′/3c vertices, each connected to 3 vertices in L

R4: bn′/4c vertices, each connected to 4 vertices in L

· · ·
Rn′ : 1 vertex, connected to n′ vertices in L

R = R2 ∪R3 ∪ · · · ∪Rn′
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Bad Example for Greedy Algorithm

R2 R3

|L| = n′
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Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

Rn′

L: n′ vertices
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Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Optimum solution is L, where |L| = n′

Greedy algorithm picks Rn′ , Rn′−1, · · · , R2 in this order

Thus, greedy algorithm outputs R

|R| =
n∑

i=2

⌊
n′

i

⌋
≥

n∑
i=1

n′

i
− n′ − (n′ − 1)

= n′H(n′)− (2n′ − 1) = Ω(n′ lg n′)

where H(n′) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n′ = Θ(lg n′) is the n′-th

number in the harmonic sequence.
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Bad Example for Greedy Algorithm

R2 R3 R4 R5

|L| = n′

R
Rn′

Let n = |L ∪R| = Θ(n′ lg n′)

Then lg n = Θ(lg n′)
|R|
|L| = Ω(n′ lgn′)

n′ = Ω(lg n′) = Ω(lg n).

Thus, greedy algorithm does not do better than O(lg n).
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Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

However, the approximation ratio is not so good

We now give a somewhat “counter-intuitive” algorithm,

for which we can prove a 2-approximation ratio.
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2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

The counter-intuitive part: adding both u and v to S seems
to be wasteful

Intuition for the 2-approximation ratio: the optimum solution
must cover the edge (u, v), using either u or v. If we select
both, we are always ahead of the optimum solution. The
approximation factor we lost is at most 2.
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2-Approximation Algorithm for Vertex Cover

1 E ′ ← E, S ← ∅
2 while E ′ 6= ∅
3 let (u, v) be any edge in E ′

4 S ← S ∪ {u, v},
5 remove all edges incident to u and v from E ′

6 output S

Let E∗ be the set of edges (u, v) considered in Statement 3

Observation: E∗ is a matching and |S| = 2|E∗|
To cover all edges in E∗, the optimum solution needs |E∗|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.
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Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover
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Max 3-SAT

Input: n boolean variables x1, x2, · · · , xn
m clauses, each clause is a disjunction of 3 literals
from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as
possible

Example:

clauses: x2 ∨ ¬x3 ∨ ¬x4, x2 ∨ x3 ∨ ¬x4,
¬x1 ∨ x2 ∨ x4, x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ ¬x4

We can satisfy all the 5 clauses: x = (1, 1, 1, 0, 1)
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Randomized Algorithm for Max 3-SAT

Simple idea: randomly set each variable xu = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Proof.

for each clause Cj, let Zj = 1 if Cj is satisfied and 0
otherwise

Z =
∑m

j=1 Zj is the total number of satisfied clauses

E[Zj] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make Cj satisfied

E[Z] = E
[∑m

j=1 Zj

]
=
∑m

j=1 E[Zj] =
∑m

j=1
7
8

= 7
8
m, by

linearity of expectation.
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Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.



23/58

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.



23/58

Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,
7
8
m number of clauses will be satisfied.

Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
ρ-approximation algorithm for MAX-3-SAT for any ρ > 7/8.



24/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover



25/58

Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover



26/58

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers

Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial
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Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 85
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Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429
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Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)
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n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level has total running time O(n)

Number of levels = O(lg n)

Total running time = O(n lg n)
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1)
extra space.
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In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.
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To partition the array into two parts, we only need O(1)
extra space.



30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

To partition the array into two parts, we only need O(1)
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

25 64

To partition the array into two parts, we only need O(1)
extra space.
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

To partition the array into two parts, we only need O(1)
extra space.



30/58

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

64 69

To partition the array into two parts, we only need O(1)
extra space.
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69
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To partition the array into two parts, we only need O(1)
extra space.
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Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover
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Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Variant of Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 repeat

3 x← a random element of A (x is called a pivot)

4 AL ← elements in A that are less than x \\ Divide

5 AR ← elements in A that are greater than x \\ Divide

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

7 BL ← quicksort(AL, AL.size) \\ Conquer

8 BR ← quicksort(AR, AR.size) \\ Conquer

9 t← number of times x appear A

10 return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Analysis of Variant

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

Q: What is the probability that AL.size ≤ 3n/4 and
AR.size ≤ 3n/4?

A: At least 1/2
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Analysis of Variant

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

Q: What is the probability that AL.size ≤ 3n/4 and
AR.size ≤ 3n/4?

A: At least 1/2
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Analysis of Variant

2 repeat

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

Q: What is the expected number of iterations the above
procedure takes?

A: At most 2
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Analysis of Variant

2 repeat

3 x← a random element of A

4 AL ← elements in A that are less than x

5 AR ← elements in A that are greater than x

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

Q: What is the expected number of iterations the above
procedure takes?

A: At most 2
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Suppose an experiment succeeds with probability p ∈ (0, 1],
independent of all previous experiments.

1 repeat

2 run an experiment

3 until the experiment succeeds

Lemma The expected number of experiments we run in the
above procedure is 1/p.
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Fact For q ∈ (0, 1), we have
∑∞

i=0 q
i = 1

1−q .
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Lemma The expected number of experiments we run in the
above procedure is 1/p.

Proof

Expectation = p+ (1− p)p× 2 + (1− p)2p× 3 + (1− p)3p× 4

+ · · ·

= p
∞∑
i=1

(1− p)i−1i = p
∞∑
j=1

∞∑
i=j

(1− p)i−1

= p
∞∑
j=1

(1− p)j−1 1

1− (1− p) =
∞∑
j=1

(1− p)j−1

= (1− p)0 1

1− (1− p) = 1/p
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Variant Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 repeat

3 x← a random element of A (x is called a pivot)

4 AL ← elements in A that are less than x \\ Divide

5 AR ← elements in A that are greater than x \\ Divide

6 unitl AL.size ≤ 3n/4 and AR.size ≤ 3n/4

7 BL ← quicksort(AL, AL.size) \\ Conquer

8 BR ← quicksort(AR, AR.size) \\ Conquer

9 t← number of times x appear A

10 return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Analysis of Variant

Divide and Combine: takes O(n) time

Conquer: break an array of size n into two arrays, each has
size at most 3n/4. Recursively sort the 2 sub-arrays.

n
≤ 3n/4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

O(n)

O(n)

O(n)

O(n)

≤ 9n/16

≤ 27n/64

Number of levels ≤ lg4/3 n = O(lg n)
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Randomized Quicksort Algorithm

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Intuition: the quicksort algorithm should be better than the
variant.
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Analysis of Randomized Quicksort Algorithm

T (n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.

The left sub-instance has size at most i− 1

The right sub-instance has size at most n− i
Thus, the expected running time in this case is(
T (i− 1) + T (n− i)

)
+O(n)

Overall, we have

T (n) =
1

n

n∑
i=1

(
T (i− 1) + T (n− i)

)
+O(n)

=
2

n

n−1∑
i=0

T (i) +O(n)

Can prove T (n) ≤ c(n lg n) for some constant c by reduction
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Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

T (n) ≤ 2

n

n−1∑
i=0

T (i) + c′n ≤ 2

n

n−1∑
i=0

ci lg i+ c′n

≤ 2c

n

bn/2c−1∑
i=0

i lg
n

2
+

n−1∑
i=bn/2c

i lg n

+ c′n

≤ 2c

n

(
n2

8
lg
n

2
+

3n2

8
lg n

)
+ c′n

= c

(
n

4
lg n− n

4
+

3n

4
lg n

)
+ c′n

= cn lg n− cn

4
+ c′n ≤ cn lg n if c ≥ 4c′
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Exercise: Coupon Collector

Coupon Collector

Each box of cereal contains a coupon. There are n different
types of coupons. Assuming all boxes are equally likely to contain
each coupon, in expectation, how many boxes before you have all
coupon types?

Break into n stages 1, 2, 3, · · · , n
Stage i terminates when we have collected i coupon types

Xi: number of coupons collected in stage i

X =
∑n

i=1Xi: total number of coupons collected
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Exercise: Coupon Collector

Xi: number of coupons collected in stage i

X =
∑n

i=1Xi: total number of coupons collected

In stage i: with probability n−(i−1)
n

, a random coupon has
type different from the i− 1 types already seen

Thus, E[Xi] = n
n−(i−1)

.

By linearity of expectation:

E[X] =
n∑

i=1

n

n− (i− 1)
=

n∑
i=1

n

i
= nH(n),

where H(n) = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

= Θ(lg n) is called the
n-th Harmonic number.

E[X] = Θ(n lg n).
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Outline

1 Approximation Algorithms

2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

4 7
8
-Approximation Algorithm for Max 3-SAT

5 Randomized Quicksort
Recap of Quicksort
Randomized Quicksort Algorithm

6 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

Linear Programming
2-Approximation for Weighted Vertex Cover
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Example of Linear Programming

min 4x1 + 5x2 s.t.

2x1 + x2 ≥ 6

x1 + 2x2 ≥ 4

x1, x2 ≥ 0

optimum point: x1 = 8
3
, x2 = 2

3

value = 4× 8
3

+ 5× 2
3

= 14

0 1 2 3 4

1

2

3

4

5

6

x1

x2

7

8

5

Feasible Region
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Standard Form of Linear Programming

min c1x1 + c2x2 + · · ·+ cnxn s.t.∑
A1,1x1 + A1,2x2 + · · ·+ A1,nxn ≥ b1∑
A2,1x1 + A2,2x2 + · · ·+ A2,nxn ≥ b2

...
...

...
...∑

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0
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Standard Form of Linear Programming

Let x =


x1

x2
...
xn

 , c =


c1

c2
...
cn

 ,

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

...
Am,1 Am,2 · · · Am,n

 , b =


b1

b2
...
bm

 .

Then, LP becomes min cTx s.t.

Ax ≥ b

x ≥ 0

≥ means coordinate-wise greater than or equal to
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Linear programmings can be solved in polynomial time

Algorithms for Solving LPs

Simplex method: exponential time in theory, but works well
in practice

Ellipsoid method: polynomial time in theory, but slow in
practice

Internal point method: polynomial time in theory, works well
in practice
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Outline
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Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv
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Integer Programming for Weighted Vertex Cover

For every v ∈ V , let xv ∈ {0, 1} indicate whether we select v
in the vertex cover S

The integer programming for weighted vertex cover:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

(IPWVC) ⇔ weighted vertex cover

Thus it is NP-hard to solve integer programmings in general
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Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2

Thus, LP =
∑

u∈V wux
∗
u ≤ IP

3

Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.
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Algorithm for Weighted Vertex Cover
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2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗u = 2
∑
u∈S

wu · x∗u

≤ 2
∑
u∈V

wu · x∗u = 2 · LP.
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : x∗u ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · cost(best vertex cover).
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