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Approximation Algorithms

An algorithm for an optimization problem is an a-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an a-factor of the cost (or value) of the optimum solution.
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Approximation Algorithms

An algorithm for an optimization problem is an a-approximation
algorithm, if it runs in polynomial time, and for any instance to
the problem, it outputs a solution whose cost (or value) is within
an a-factor of the cost (or value) of the optimum solution.

opt: cost (or value) of the optimum solution
sol: cost (or value) of the solution produced by the algorithm

«: approximation ratio

For minimization problems:
e «a > 1 and we require sol < « - opt
@ For maximization problems, there are two conventions:

e a <1 and we require sol > « - opt
e « > 1 and we require sol > opt/«
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Recall: Traveling Salesman Problem

@ A salesman needs to visit n cities
1,2,3,---,n

@ He needs to start from and return
to city 1

@ Goal: find a tour with the
minimum cost

Travelling Salesman Problem (TSP)
Input: a graph G = (V, E), weights w : £ — Ry

Output: a traveling-salesman tour with the minimum cost




2-Approximation Algorithm for TSP

TSP1(G, w)

Q@ MST < the minimum
spanning tree of G w.r.t
weights w, returned by
either Kruskal's algorithm or
Prim's algorithm.

@ Output tour formed by
making two copies of each
edge in MST.
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2-Approximation Algorithm for TSP

Lemma Algorithm TSP1 is a 2-approximation algorithm for
TSP.

Proof
@ mst = cost of the minimum spanning tree
@ tsp = cost of the optimum travelling salesman tour

@ then mst < tsp, since removing one edge from the optimum
travelling salesman tour results in a spanning tree

@ sol = cost of tour given by algorithm TSP1
@ sol =2-mst < 2-tsp. 0




1.5-Approximation for TSP

Def. Given G = (V, E), aset U C V of even number of
vertices in V', a matching M over U in G is a set of |U|/2 paths
in G, such that every vertex in U is one end point of some path.

Def. The cost of the matching M, denoted as cost(M) is the
total cost of all edges in the |U|/2 paths (counting
multiplicities).

Theorem Given G = (V, E), aset U C V of even number of
verticies, the minimum cost matching over U in GG can be found
in polynomial time.



1.5-Approximation for TSP

Lemma Let 7" be a spanning tree of G = (V, E); let U be the
set of odd-degree vertices in MST (|U| must be even, why?). Let
M be a matching over U, then, T'W M gives a traveling
salesman’s tour.

Proof.

Every vertex in T'W M has even degree and 1" M is connected
(since it contains the spanning tree). Thus 7'W M is an Eulerian
graph and we can find a tour that visits every edge in T'w M

exactly once. O
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Lemma Let U be a set of even

number of vertices in GG. Then _optimum TSP
the cost of the cheapest L

matching over U in GG is at most » points in U
1

5tsp.

Proof.

@ Take the optimum TSP

@ Breaking into read matching and blue matching over U
@ cost(blue matching)+ cost(red matching) = tsp
°

Thus, cost(blue matching) < 1tsp or
cost(red matching) < 1tsp

@ cost(cheapeast matching) < %tsp m
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € E thenu € Sorv e S . J

Vertex-Cover Problem
Input: G = (V, E)

Output: a vertex cover S with minimum |S|




First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

Q@ F+ E S+

@ while E' £ ()

@ let v be the vertex of the maximum degree in (V, E')
Q@ S+ Su{v}

© remove all edges incident to v from E’

Q output S




First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

Q@ F+ E S+

@ while E' £ ()

@ let v be the vertex of the maximum degree in (V, E')
Q@ S+ Su{v},

© remove all edges incident to v from E’

Q output S

Theorem Greedy algorithm is an O(lgn)-approximation for
vertex-cover.




First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

Q@ F+ E S+

@ while E' £ ()

@ let v be the vertex of the maximum degree in (V, E')
Q@ S+ Su{v},

© remove all edges incident to v from E’

Q output S

Theorem Greedy algorithm is an O(lgn)-approximation for
vertex-cover.

@ We are not going to prove the theorem



First Try: Greedy Algorithm

Greedy Algorithm for Vertex-Cover

Q@ F+ E S+

@ while E' £ ()

@ let v be the vertex of the maximum degree in (V, E')
Q@ S+ Su{v},

© remove all edges incident to v from E’

Q output S

Theorem Greedy algorithm is an O(lgn)-approximation for
vertex-cover.

@ We are not going to prove the theorem

@ Instead, we show that the O(lgn)-approximation ratio is
tight for the algorithm



e L: n' vertices
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each connected to 3 vertices in L

vertices,

n'/3]

I

e Ry |n'/4]

ORg:
@ ---
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vertices

1 vertex, connected to n' vertices in L

RyUR3U---
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Bad Example for Greedy Algorithm

e Optimum solution is L, where |L| =n’
o Greedy algorithm picks R/, R, _1,--- , Ry in this order
@ Thus, greedy algorithm outputs R

m=3 H = DL
=n'H(n')—(2n —1) =Q(n'1gn’)

o where H(n') =143+ +---+ = = O(Ign/) is the n-th
number in the harmonic sequence.
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=0O(n'lgn’)

@ Let n=|LUR)|
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@ Then lgn = O(lgn’)

° % = —Q(n/nl,gn,) =Q(lgn’) = Qgn).



Bad Example for Greedy Algorithm

@ Then lgn = O(lgn')
o [ =2 — o(ign) = Q1gn).
@ Thus, greedy algorithm does not do better than O(Ign).



@ Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with



@ Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

@ However, the approximation ratio is not so good



@ Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

@ However, the approximation ratio is not so good

@ We now give a somewhat “counter-intuitive” algorithm,



@ Greedy algorithm is a very natural algorithm, which might be
the first algorithm some one can come up with

@ However, the approximation ratio is not so good

@ We now give a somewhat “counter-intuitive” algorithm,

o for which we can prove a 2-approximation ratio.



2-Approximation Algorithm for Vertex Cover

Q@ EF«+ E S+

@ while £/ #£ ()

© let (u,v) be any edge in F’

Q@ S+ Su{u,v},

© remove all edges incident to u and v from E’
Q output S
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2-Approximation Algorithm for Vertex Cover

Q@ L+ E S+

@ while £/ #£ ()

© let (u,v) be any edge in F’

Q@ S+ Su{u,v},

© remove all edges incident to u and v from E’
Q output S

@ The counter-intuitive part: adding both u and v to S seems
to be wasteful

@ Intuition for the 2-approximation ratio: the optimum solution
must cover the edge (u,v), using either u or v. If we select
both, we are always ahead of the optimum solution. The
approximation factor we lost is at most 2.



2-Approximation Algorithm for Vertex Cover

Q@ F«+ E, S+

@ while E" #£ ()

© let (u,v) be any edge in E’

Q@ S+ Su{u,v},

© remove all edges incident to v and v from E’
Q output S
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2-Approximation Algorithm for Vertex Cover

Q@ L+ E S+

@ while £/ # ()

© let (u,v) be any edge in E’

Q@ S+ Su{u,v},

© remove all edges incident to v and v from E’
Q output S

@ Let E* be the set of edges (u,v) considered in Statement @

@ Observation: E* is a matching and |S| = 2|E¥|

@ To cover all edges in E*, the optimum solution needs |E*|
vertices

Theorem The algorithm is a 2-approximation algorithm for
vertex-cover.

J
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Max 3-SAT
Input: n boolean variables 1, x5, -+ , 2,

m clauses, each clause is a disjunction of 3 literals
from 3 distinct variables

Output: an assignment so as to satisfy as many clauses as
possible

Example:

@ clauses: x5 V w3V iy, X9V X3V Xy,
=21 VT Vg, VTV, X1V xeV oy
@ We can satisfy all the 5 clauses: z = (1,1,1,0,1)
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probability 1/2, independent of other variables
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Randomized Algorithm for Max 3-SAT

@ Simple idea: randomly set each variable z, = 1 with
probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation,

Im number of clauses will be satisfied.

Proof.

@ for each clause C, let Z; = 1 if C} is satisfied and 0
otherwise

o /= Z;’ll Zj is the total number of satisfied clauses

e E[Z;] = 7/8: out of 8 possible assignments to the 3 variables
in Cj, 7 of them will make C; satisfied

° E[Z] =E |7, Z;] = L7 BlZ] = Ty § = Fmi by

linearity of expectation. O
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%m number of clauses will be satisfied.
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Randomized Algorithm for Max 3-SAT

Lemma Let m be the number of clauses. Then, in expectation,

%m number of clauses will be satisfied.

@ Since the optimum solution can satisfy at most m clauses,
lemma gives a randomized 7/8-approximation for
Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no
p-approximation algorithm for MAX-3-SAT for any p > 7/8.




@ Approximation Algorithms

© Approximation Algorithms for Traveling Salesman Problem
© 2-Approximation Algorithm for Vertex Cover

(%] %—Approximation Algorithm for Max 3-SAT

e Randomized Quicksort
@ Recap of Quicksort
@ Randomized Quicksort Algorithm

© 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
@ Linear Programming
@ 2-Approximation for Weighted Vertex Cover
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@ Approximation Algorithms

© Approximation Algorithms for Traveling Salesman Problem
© 2-Approximation Algorithm for Vertex Cover

(% ) %—Approximation Algorithm for Max 3-SAT

e Randomized Quicksort
@ Recap of Quicksort
@ Randomized Quicksort Algorithm

@ 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
@ Linear Programming
@ 2-Approximation for Weighted Vertex Cover
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Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine | Merge 2 sorted arrays Trivial




Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.
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Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

291827564 38[45(94|69 25|76 1592|3717 |85

291381452515 |37 |17 |64 |8 75|94 19269 |76 |8

25|15 | 17129 |38 |45 |37 |64 82| 75|194|92|69 |76 |8




Quicksort

quicksort(A, n)
@ ifn <1 then return A
@ 2 < lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer

@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array
containing t copies of x, and Bg
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quicksort(A, n)
@ ifn <1 then return A
@ 2 < lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer
@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array

containing t copies of x, and Bg

@ Recurrence T'(n) < 27 (n/2) 4+ O(n)



Quicksort

quicksort(A, n)
@ ifn <1 then return A
@ 2 < lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer
@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array

containing t copies of x, and Bg

Recurrence T'(n) < 2T (n/2) + O(n)
@ Running time = O(nlgn)



n

/\

n/2 n/2
n/4 n/4 n/4 n/4
RSNV ANGVAN
n/8| n/8| |n/8 n/8 n/8| |n/8| |n/8| |n/8

@ Each level has total running time O(n)

@ Number of levels = O(lgn)

e Total running time = O(nlgn)




@ In-Place Sorting Algorithm: an algorithm that only uses J

“small” extra space.
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Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.
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Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

iJ

17137115129 |38|45|25 |64 |69 | 76|94 ]92|75|82|85

e To partition the array into two parts, we only need O(1)
extra space.



@ Approximation Algorithms

© Approximation Algorithms for Traveling Salesman Problem
© 2-Approximation Algorithm for Vertex Cover

(% ) %—Approximation Algorithm for Max 3-SAT

e Randomized Quicksort
@ Recap of Quicksort
@ Randomized Quicksort Algorithm

@ 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
@ Linear Programming
@ 2-Approximation for Weighted Vertex Cover
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Randomized Quicksort Algorithm

quicksort(A, n)
@ ifn <1 then return A

@ z + arandom element of A (z is called a pivot)

© A, < elements in A that are less than x \\ Divide
Q@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer

@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array
containing t copies of x, and Bg




Variant of Randomized Quicksort Algorithm

quicksort(A, n)

@ ifn <1 then return A

© repeat

© <+ arandom element of A (z is called a pivot)

Q@ A, < elements in A that are less than x \\ Divide
©@ Ap < elements in A that are greater than x  \\ Divide
@ unitl Ay .size < 3n/4 and Ag.size < 3n/4

@ DB + quicksort(Ay, Ay .size) \\\ Conquer
@ Bpg < quicksort(Ag, Ag.size) \\ Conquer

©Q ¢ < number of times x appear A

@ return the array obtained by concatenating By, the array
containing t copies of x, and Bg




Analysis of Variant

© 1 + arandom element of A
Q@ A; < elements in A that are less than x
Q@ Apr < elements in A that are greater than x

Q: What is the probability that Ay .size < 3n/4 and
Ap.size < 3n/47?




Analysis of Variant

© 1 + arandom element of A
Q@ A; < elements in A that are less than x
Q@ Apr < elements in A that are greater than x

Q: What is the probability that Ay .size < 3n/4 and
Ap.size < 3n/47?

A: At least 1/2
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Analysis of Variant

© repeat

© 1 < arandom element of A

Q@ A; « elements in A that are less than =

©@ Ap < elements in A that are greater than z
@ unitl Ay .size < 3n/4 and Ag.size < 3n/4

Q: What is the expected number of iterations the above
procedure takes?




Analysis of Variant

© repeat

© 1 < arandom element of A

Q@ A; « elements in A that are less than =

©@ Ap < elements in A that are greater than z
@ unitl Ay .size < 3n/4 and Ag.size < 3n/4

Q: What is the expected number of iterations the above
procedure takes?

A: At most 2




@ Suppose an experiment succeeds with probability p € (0, 1],
independent of all previous experiments.

© repeat
© run an experiment

© until the experiment succeeds

Lemma The expected number of experiments we run in the
above procedure is 1/p.




Fact For g € (0,1), we have Y 2 ¢" = fq- J
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Lemma The expected number of experiments we run in the
above procedure is 1/p.

Proof
Expectation =p+ (1 —p)p x 2+ (1 —p)*p x 3+ (1 —p)°p x 4
_|_
—pY (1—-p) % = p) > (1-p"
=1 Jj=1 1i=j
00 1 00
=p 1-p J=1 — 1 —p) 1
1
=(1-p)° =1/p




Variant Randomized Quicksort Algorithm

quicksort(A, n)

@ ifn <1 then return A

© repeat

© <+ arandom element of A (z is called a pivot)

Q@ A, < elements in A that are less than x \\ Divide
©@ Ap < elements in A that are greater than x  \\ Divide
@ unitl Ay .size < 3n/4 and Ag.size < 3n/4

@ DB + quicksort(Ay, Ay .size) \\\ Conquer
@ Bpg < quicksort(Ag, Ag.size) \\ Conquer

©Q ¢ < number of times x appear A

@ return the array obtained by concatenating By, the array
containing t copies of x, and Bg




Analysis of Variant

@ Divide and Combine: takes O(n) time

e Conquer: break an array of size n into two arrays, each has
size at most 3n/4. Recursively sort the 2 sub-arrays.

‘ O(n)

< 3n\/\-’1 ‘ /\

| | | om

< 9n/16 ~_ T
S e e O e B e
< :(L\/\()\Jt

@ Number of levels <1g, 3n = O(lgn)



Randomized Quicksort Algorithm

quicksort(A, n)
@ ifn <1 then return A

@ z + arandom element of A (z is called a pivot)

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer
@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array

containing t copies of x, and Bg

@ Intuition: the quicksort algorithm should be better than the
variant.




Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements



Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements
@ Assuming we choose the element of rank i as the pivot.



Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

@ Assuming we choose the element of rank i as the pivot.

@ The left sub-instance has size at most ¢« — 1



Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

@ Assuming we choose the element of rank i as the pivot.

@ The left sub-instance has size at most ¢« — 1

@ The right sub-instance has size at most n — ¢



Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

@ Assuming we choose the element of rank i as the pivot.

@ The left sub-instance has size at most ¢« — 1

@ The right sub-instance has size at most n — ¢

@ Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)



Analysis of Randomized Quicksort Algorithm

T(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements
Assuming we choose the element of rank i as the pivot.
The left sub-instance has size at most ¢ — 1
The right sub-instance has size at most n — ¢
Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)
Overall, we have

T(n) = = 5" (T(i = 1) + T(n — 1)) + O(n)

n <
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Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements
Assuming we choose the element of rank i as the pivot.
The left sub-instance has size at most ¢ — 1
The right sub-instance has size at most n — ¢
Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)
@ Overall, we have

T(n) = = 5" (T(i = 1) + T(n — 1)) + O(n)

n <
=1

=23 16) + o)



Analysis of Randomized Quicksort Algorithm

@ 7'(n): an upper bound on the expected running time of the
randomized quicksort algorithm on n elements

Assuming we choose the element of rank i as the pivot.
The left sub-instance has size at most ¢ — 1
The right sub-instance has size at most n — ¢

Thus, the expected running time in this case is
(T(i—1)+T(n—1)) +O0(n)
@ Overall, we have
1 n
T(n)=—=> (T(i—1)+T(n—1))+O(n)

n <
=1

_ % Z_:T(z’) +0()

e Can prove T'(n) < ¢(nlgn) for some constant ¢ by reduction



Analysis of Randomized Quicksort Algorithm

The induction step of the proof:

2 « 2
T <_ T . ! <_ .1 . /
(n) < Z (z)—l—cn_anz gi+cn

n <
o fln/21

<_ /

< Z zlg + Z tlgn | +c¢n

1=0 i=|n/2]

<2 n21 n+3 21 .
—(=lg=+—1gn cn

= \s®2" 8 "

B nl n_l_?ml Iy
=c 4gn 1 1 gn cn

cn .
:cnlgn—z—i-c’ngcnlgn if ¢ >4¢



Exercise: Coupon Collector

Coupon Collector

Each box of cereal contains a coupon. There are n different
types of coupons. Assuming all boxes are equally likely to contain
each coupon, in expectation, how many boxes before you have all
coupon types?

@ Break into n stages 1,2,3,--- ., n

@ Stage ¢ terminates when we have collected i coupon types
@ X;: number of coupons collected in stage ¢

e X =5"" X;: total number of coupons collected



Exercise: Coupon Collector

@ X;: number of coupons collected in stage @

e X =>"" X, total number of coupons collected

@ In stage 7: with probability % a random coupon has
type different from the i — 1 types already seen

(] ThUS, E[XZ] = ﬁ

@ By linearity of expectation:

n n

E[X] = Zﬁ - Z; = nH(n),

=1 =1

where H(n) =1+ 143 +---+ 1 =0O(Ign) is called the
n-th Harmonic number.
e E[X]=0(nlgn).



Outline

© 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
@ Linear Programming
@ 2-Approximation for Weighted Vertex Cover



@ Approximation Algorithms

© Approximation Algorithms for Traveling Salesman Problem
© 2-Approximation Algorithm for Vertex Cover

(%] %—Approximation Algorithm for Max 3-SAT

Q Randomized Quicksort
@ Recap of Quicksort
@ Randomized Quicksort Algorithm

© 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming
@ Linear Programming
@ 2-Approximation for Weighted Vertex Cover
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min

g
4.’L’1 + 51’2 s.t.
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T+ 21}2 2 4

1,22 >0
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min 41 + dxo s.t.
21‘1 + 29 Z 6
T =+ 21}2 2 4

1,22 >0

; . 8 _
@ optimum point: r; = 3,72 =

T2

48,58



T2

min 41 + dxo s.t.
201 + 29> 6
r1+ 229 >4
T1,29 > 0
e optimum point: z; = 5,25 = 2

ovalue:4><§+5><— 14

48,58



Standard Form of Linear Programming

min C1T1 + CoTo + -+ - 4+ cpy, s.t.

Z Az + Arpxg + -+ Ay, 2> by
Z Ag1x1 + Ag oy + -+ + Ay, > by

Z Am,lxl + Am,2x2 +-+ Am,nxn Z bm

T1,To, " ,Tnp ZO



Standard Form of Linear Programming

T
Let z = 2 , c=
Tn
Aig A 0 Ag,
B T
Ani Ana - A
Then, LP becomes min et
Ax > b
0

@ > means coordinate-wise greater than or equal to



@ Linear programmings can be solved in polynomial time

Algorithms for Solving LPs

@ Simplex method: exponential time in theory, but works well
in practice

@ Ellipsoid method: polynomial time in theory, but slow in
practice

@ Internal point method: polynomial time in theory, works well
in practice




Outline

© 2-Approximation Algorithm for (Weighted) Vertex Cover Via
Linear Programming

@ 2-Approximation for Weighted Vertex Cover
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S C V such that for every (u,v) € Ethenu € Sorve S . J




Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € Ethenu € Sorve S . J
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Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € Ethenu € Sorve S . J

Weighted Vertex-Cover Problem
Input: G = (V, F) with vertex weights {w, },cv

Output: a vertex cover S with minimum . w,




Integer Programming for Weighted Vertex Cover

@ Foreveryv eV, let z, € {0,1} indicate whether we select v
in the vertex cover S

@ The integer programming for weighted vertex cover:
(IPwvc) min Z Wy Ly s.t.

veV
Ty + 1y >1 V(u,v) € £

z, € {0,1} YoeV
@ (IPwvc) < weighted vertex cover

@ Thus it is NP-hard to solve integer programmings in general



@ Integer programming for WVC:
(IPwyvc) min Z Wy Ty s.t.

veV
Ty + Ty > 1 V(u,v) € E
z, € {0,1} YoeV



@ Integer programming for WVC:
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@ Integer programming for WVC:
(IPwyvc) min Z Wy Ty s.t.

veV
Tyt T, > 1 V(u,v) € E
z, € {0,1} YoeV

@ Linear programming relaxation for WVC:

(LPwvc) min Z Wy T s.t.

veV
Ty + 2y 21 V<U,’U>€E
x, € [0,1] YvoeV

@ let IP = value of (IPywyc), LP = value of (LPwyc)
@ Then, LP < IP



Algorithm for Weighted Vertex Cover
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@ Solving (LPwyc) to obtain a solution {z},cv
o

o
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

© Let S={ueV:x,>1/2} and output S
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

© Let S={ueV:x,>1/2} and output S

Lemma S is a vertex cover of G.
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

Q@ Let S={ueV:z, >1/2} and output S

Lemma S is a vertex cover of G. )

Proof.
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

Q@ Let S={ueV:z, >1/2} and output S

Lemma S is a vertex cover of G.

Proof.
e Consider any edge (u,v) € E: we have z +x} > 1




Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

Q@ Let S={ueV:z, >1/2} and output S

Lemma S is a vertex cover of G.

Proof.
e Consider any edge (u,v) € E: we have z +x} > 1
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cost(S) :Zwu < Zwu-2x;:22wu-x;

u€es u€eS ueS

<2 w,-a,=2-LP.
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Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z },cv
Q@ Thus, LP =" , w,a) <IP

©Q Let S={uecV:z:>1/2} and output S

Lemma S is a vertex cover of G. J

Lemma cost(S) := ) cqw, <2-LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.
cost(S) <2-LP < 2-IP =2 cost(best vertex cover). O
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