CSE 431/531: Analysis of Algorithms Approximation and Randomized Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Approximation Algorithms

- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution. An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

• opt: cost (or value) of the optimum solution

An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

- opt: cost (or value) of the optimum solution
- sol: cost (or value) of the solution produced by the algorithm

An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

- opt: cost (or value) of the optimum solution
- sol: cost (or value) of the solution produced by the algorithm
- α : approximation ratio

An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

- opt: cost (or value) of the optimum solution
- sol: cost (or value) of the solution produced by the algorithm
- α : approximation ratio
- For minimization problems:
 - $\alpha \geq 1$ and we require sol $\leq \alpha \cdot \operatorname{opt}$

An algorithm for an optimization problem is an α -approximation algorithm, if it runs in polynomial time, and for any instance to the problem, it outputs a solution whose cost (or value) is within an α -factor of the cost (or value) of the optimum solution.

- opt: cost (or value) of the optimum solution
- sol: cost (or value) of the solution produced by the algorithm
- α : approximation ratio
- For minimization problems:
 - $\alpha \geq 1$ and we require sol $\leq \alpha \cdot \operatorname{opt}$
- For maximization problems, there are two conventions:
 - $\alpha \leq 1$ and we require sol $\geq \alpha \cdot \operatorname{opt}$
 - $\bullet \ \alpha \geq 1$ and we require sol $\geq \mathsf{opt}/\alpha$

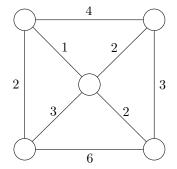
Outline

Approximation Algorithms

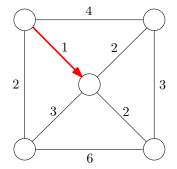
2 Approximation Algorithms for Traveling Salesman Problem

- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

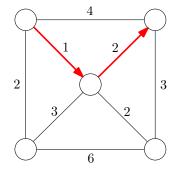
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



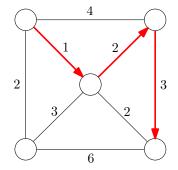
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



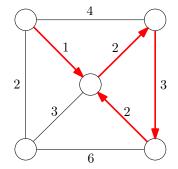
- A salesman needs to visit n cities $1, 2, 3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



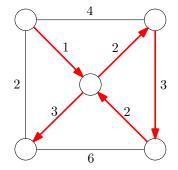
- A salesman needs to visit n cities $1, 2, 3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



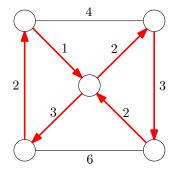
- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



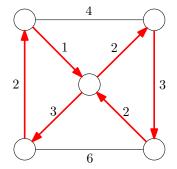
- A salesman needs to visit n cities $1, 2, 3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



- A salesman needs to visit n cities $1,2,3,\cdots,n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



- A salesman needs to visit n cities $1, 2, 3, \cdots, n$
- He needs to start from and return to city 1
- Goal: find a tour with the minimum cost



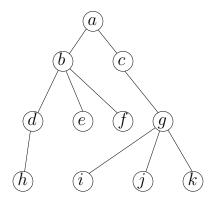
Travelling Salesman Problem (TSP)

Input: a graph G = (V, E), weights $w : E \to \mathbb{R}_{\geq 0}$

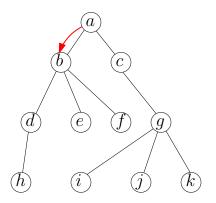
Output: a traveling-salesman tour with the minimum cost

- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.

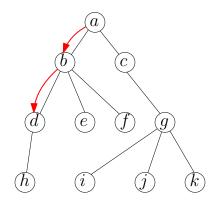
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



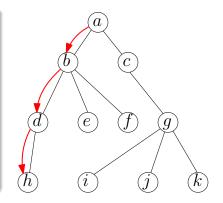
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



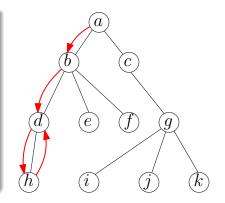
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



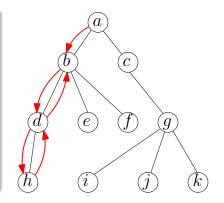
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



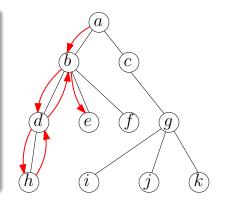
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



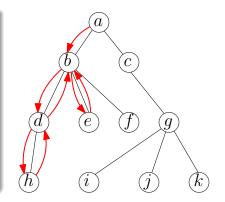
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



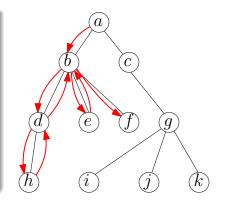
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



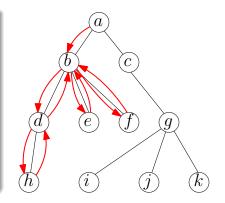
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



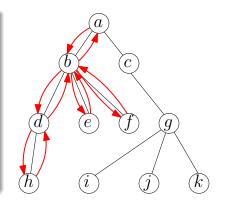
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



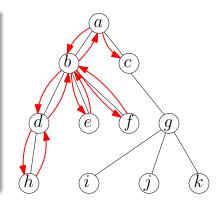
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



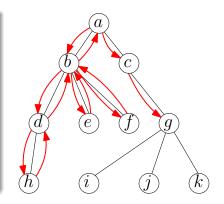
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



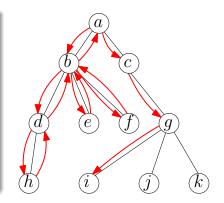
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



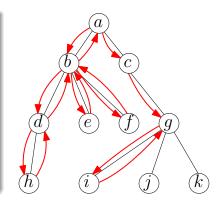
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



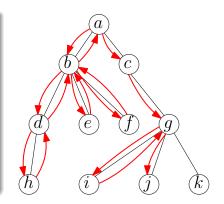
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



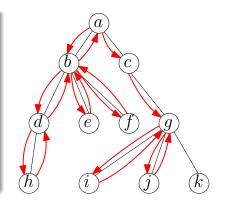
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



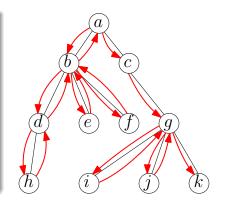
- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.

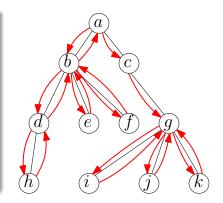


- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



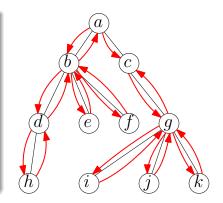
$\mathsf{TSP1}(G, w)$

- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



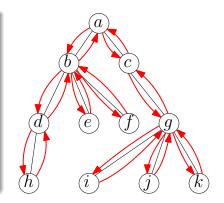
$\mathsf{TSP1}(G, w)$

- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



$\mathsf{TSP1}(G, w)$

- MST ← the minimum spanning tree of G w.r.t weights w, returned by either Kruskal's algorithm or Prim's algorithm.
- Output tour formed by making two copies of each edge in MST.



Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

Proof

• mst = cost of the minimum spanning tree

Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour

Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour
- then mst \leq tsp, since removing one edge from the optimum travelling salesman tour results in a spanning tree

Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour
- \bullet then mst \leq tsp, since removing one edge from the optimum travelling salesman tour results in a spanning tree
- sol = cost of tour given by algorithm TSP1

Lemma Algorithm TSP1 is a 2-approximation algorithm for TSP.

- mst = cost of the minimum spanning tree
- tsp = cost of the optimum travelling salesman tour
- \bullet then mst \leq tsp, since removing one edge from the optimum travelling salesman tour results in a spanning tree
- sol = cost of tour given by algorithm TSP1
- sol = $2 \cdot \text{mst} \leq 2 \cdot \text{tsp.}$

Def. Given G = (V, E), a set $U \subseteq V$ of even number of vertices in V, a matching M over U in G is a set of |U|/2 paths in G, such that every vertex in U is one end point of some path.

Def. The cost of the matching M, denoted as cost(M) is the total cost of all edges in the |U|/2 paths (counting multiplicities).

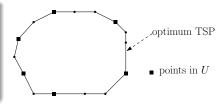
Theorem Given G = (V, E), a set $U \subseteq V$ of even number of verticies, the minimum cost matching over U in G can be found in polynomial time.

Lemma Let T be a spanning tree of G = (V, E); let U be the set of odd-degree vertices in MST (|U| must be even, why?). Let M be a matching over U, then, $T \uplus M$ gives a traveling salesman's tour.

Proof.

Every vertex in $T \uplus M$ has even degree and $T \uplus M$ is connected (since it contains the spanning tree). Thus $T \uplus M$ is an Eulerian graph and we can find a tour that visits every edge in $T \uplus M$ exactly once.

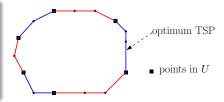
Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.



Proof.

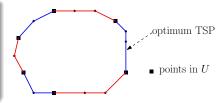
• Take the optimum TSP

Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.



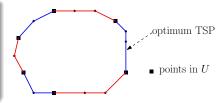
- Take the optimum TSP
- $\bullet\,$ Breaking into read matching and blue matching over U

Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.



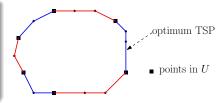
- Take the optimum TSP
- $\bullet\,$ Breaking into read matching and blue matching over U
- cost(blue matching) + cost(red matching) = tsp

Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.



- Take the optimum TSP
- $\bullet\,$ Breaking into read matching and blue matching over U
- cost(blue matching) + cost(red matching) = tsp
- Thus, cost(blue matching) $\leq \frac{1}{2}$ tsp or cost(red matching) $\leq \frac{1}{2}$ tsp

Lemma Let U be a set of even number of vertices in G. Then the cost of the cheapest matching over U in G is at most $\frac{1}{2}$ tsp.



Proof.

- Take the optimum TSP
- $\bullet\,$ Breaking into read matching and blue matching over U
- cost(blue matching) + cost(red matching) = tsp
- Thus, cost(blue matching) $\leq \frac{1}{2}$ tsp or cost(red matching) $\leq \frac{1}{2}$ tsp

• $cost(cheapeast matching) \le \frac{1}{2}tsp$

Outline

Approximation Algorithms

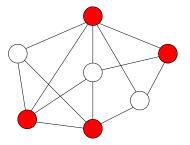
2 Approximation Algorithms for Traveling Salesman Problem

3 2-Approximation Algorithm for Vertex Cover

- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

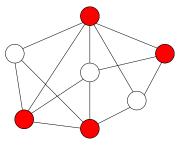
Vertex Cover Problem

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex Cover Problem

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Vertex-Cover Problem Input: G = (V, E)Output: a vertex cover S with minimum |S|

Greedy Algorithm for Vertex-Cover

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- $② \ \text{while} \ E' \neq \emptyset$
- It v be the vertex of the maximum degree in (V, E')
- Some remove all edges incident to v from E'
- ${\small \textcircled{0}} \quad {\rm output} \ S$

Greedy Algorithm for Vertex-Cover

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- $② \ \text{while} \ E' \neq \emptyset$
- It v be the vertex of the maximum degree in (V, E')
- Some remove all edges incident to v from E'
- ${\small \textcircled{0}} \quad {\rm output} \ S$

Theorem Greedy algorithm is an $O(\lg n)$ -approximation for vertex-cover.

Greedy Algorithm for Vertex-Cover

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- **2** while $E' \neq \emptyset$
- It v be the vertex of the maximum degree in (V, E')
- Some remove all edges incident to v from E'
- ${f 0}$ output S

Theorem Greedy algorithm is an $O(\lg n)$ -approximation for vertex-cover.

• We are not going to prove the theorem

Greedy Algorithm for Vertex-Cover

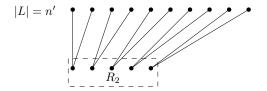
- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- $② \ \text{while} \ E' \neq \emptyset$
- It v be the vertex of the maximum degree in (V, E')
- Some remove all edges incident to v from E'
- \bullet output S

Theorem Greedy algorithm is an $O(\lg n)$ -approximation for vertex-cover.

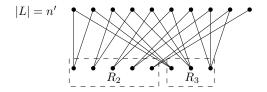
- We are not going to prove the theorem
- $\bullet\,$ Instead, we show that the $O(\lg n)\mbox{-approximation}$ ratio is tight for the algorithm

 $|L|=n' \quad \bullet \quad \bullet$

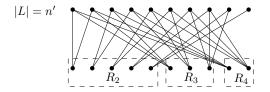
• L: n' vertices



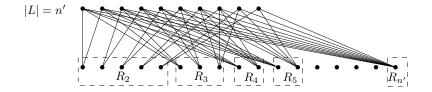
- L: n' vertices
- R_2 : $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L



- L: n' vertices
- R_2 : $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L
- R_3 : $\lfloor n'/3 \rfloor$ vertices, each connected to 3 vertices in L



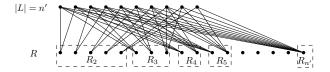
- L: n' vertices
- R_2 : $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L
- R_3 : $\lfloor n'/3 \rfloor$ vertices, each connected to 3 vertices in L
- R_4 : $\lfloor n'/4 \rfloor$ vertices, each connected to 4 vertices in L

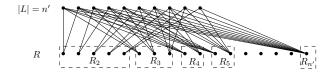


- L: n' vertices
- R_2 : $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L
- R_3 : $\lfloor n'/3 \rfloor$ vertices, each connected to 3 vertices in L
- R_4 : $\lfloor n'/4 \rfloor$ vertices, each connected to 4 vertices in L
- • •
- $R_{n'}$: 1 vertex, connected to n' vertices in L

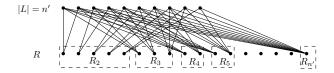


- L: n' vertices
- R_2 : $\lfloor n'/2 \rfloor$ vertices, each connected to 2 vertices in L
- R_3 : $\lfloor n'/3 \rfloor$ vertices, each connected to 3 vertices in L
- R_4 : $\lfloor n'/4 \rfloor$ vertices, each connected to 4 vertices in L
- • •
- $R_{n'}$: 1 vertex, connected to n' vertices in L
- $R = R_2 \cup R_3 \cup \cdots \cup R_{n'}$

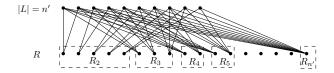




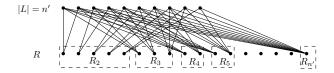
• Optimum solution is L, where |L| = n'



- Optimum solution is L, where |L| = n'
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order

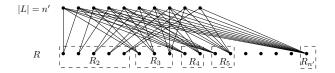


- Optimum solution is L, where |L| = n'
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order
- $\bullet\,$ Thus, greedy algorithm outputs R



- Optimum solution is L, where |L| = n'
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order
- Thus, greedy algorithm outputs R

$$|R| = \sum_{i=2}^{n} \left\lfloor \frac{n'}{i} \right\rfloor \ge \sum_{i=1}^{n} \frac{n'}{i} - n' - (n'-1)$$
$$= n'H(n') - (2n'-1) = \Omega(n'\lg n')$$

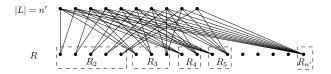


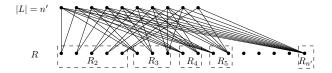
- Optimum solution is L, where |L| = n'
- Greedy algorithm picks $R_{n'}, R_{n'-1}, \cdots, R_2$ in this order
- Thus, greedy algorithm outputs R

$$R| = \sum_{i=2}^{n} \left\lfloor \frac{n'}{i} \right\rfloor \ge \sum_{i=1}^{n} \frac{n'}{i} - n' - (n'-1)$$
$$= n'H(n') - (2n'-1) = \Omega(n'\lg n')$$

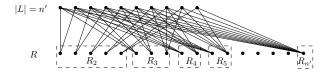
• where $H(n') = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n'} = \Theta(\lg n')$ is the n'-th number in the harmonic sequence.

15/58

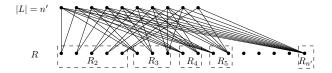




• Let $n = |L \cup R| = \Theta(n' \lg n')$



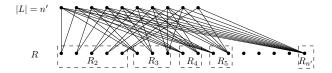
- Let $n = |L \cup R| = \Theta(n' \lg n')$
- Then $\lg n = \Theta(\lg n')$



• Let
$$n = |L \cup R| = \Theta(n' \lg n')$$

• Then
$$\lg n = \Theta(\lg n')$$

• $\frac{|R|}{|L|} = \frac{\Omega(n' \lg n')}{n'} = \Omega(\lg n') = \Omega(\lg n).$



• Let
$$n = |L \cup R| = \Theta(n' \lg n')$$

• Then
$$\lg n = \Theta(\lg n')$$

•
$$\frac{|R|}{|L|} = \frac{\Omega(n' \lg n')}{n'} = \Omega(\lg n') = \Omega(\lg n).$$

• Thus, greedy algorithm does not do better than $O(\lg n)$.

• Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good
- We now give a somewhat "counter-intuitive" algorithm,

- Greedy algorithm is a very natural algorithm, which might be the first algorithm some one can come up with
- However, the approximation ratio is not so good
- We now give a somewhat "counter-intuitive" algorithm,
- for which we can prove a 2-approximation ratio.

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- **2** while $E' \neq \emptyset$

- remove all edges incident to u and v from E'
- ${\small \small {\small \small 0}} {\small \quad output } S$

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- **2** while $E' \neq \emptyset$
- It (u, v) be any edge in E'
- Some remove all edges incident to u and v from E'
- output S
 - \bullet The counter-intuitive part: adding both u and v to S seems to be wasteful

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- **2** while $E' \neq \emptyset$

- Some remove all edges incident to u and v from E'
- output S
 - \bullet The counter-intuitive part: adding both u and v to S seems to be wasteful
 - Intuition for the 2-approximation ratio: the optimum solution must cover the edge (u, v), using either u or v. If we select both, we are always ahead of the optimum solution. The approximation factor we lost is at most 2.

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- **2** while $E' \neq \emptyset$
- let (u, v) be any edge in E'
- Solution remove all edges incident to u and v from E'
- $\bullet \quad \text{output } S$

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- 2 while $E' \neq \emptyset$
- It (u, v) be any edge in E'
- remove all edges incident to u and v from E'
- \bullet output S
 - \bullet Let E^* be the set of edges (u,v) considered in Statement ${\it (3)}$

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- 2 while $E' \neq \emptyset$
- It (u, v) be any edge in E'
- Solution remove all edges incident to u and v from E'
- $\bullet \quad \text{output } S$
 - Let E^{\ast} be the set of edges (u,v) considered in Statement (3)
 - \bullet Observation: E^* is a matching and $|S|=2|E^*|$

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- 2 while $E' \neq \emptyset$
- It (u, v) be any edge in E'
- remove all edges incident to u and v from E'
- \bullet output S
 - \bullet Let E^* be the set of edges (u,v) considered in Statement (3)
 - \bullet Observation: E^* is a matching and $|S|=2|E^*|$
 - $\bullet\,$ To cover all edges in $E^*,$ the optimum solution needs $|E^*|$ vertices

- $\bullet E' \leftarrow E, S \leftarrow \emptyset$
- 2 while $E' \neq \emptyset$
- It (u, v) be any edge in E'
- remove all edges incident to u and v from E'
- $\bullet \quad \text{output } S$
 - \bullet Let E^* be the set of edges (u,v) considered in Statement (3)
 - \bullet Observation: E^* is a matching and $|S|=2|E^*|$
 - $\bullet\,$ To cover all edges in $E^*,$ the optimum solution needs $|E^*|$ vertices

Theorem The algorithm is a 2-approximation algorithm for vertex-cover.

Outline

- Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
 - 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

Max 3-SAT Input: n boolean variables x_1, x_2, \dots, x_n m clauses, each clause is a disjunction of 3 literals from 3 distinct variables Output: an assignment so as to satisfy as many clauses as possible

Example:

- clauses: $x_2 \lor \neg x_3 \lor \neg x_4$, $x_2 \lor x_3 \lor \neg x_4$, $\neg x_1 \lor x_2 \lor x_4$, $x_1 \lor \neg x_2 \lor x_3$, $\neg x_1 \lor \neg x_2 \lor \neg x_4$
- We can satisfy all the 5 clauses: x = (1, 1, 1, 0, 1)

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Proof.

• for each clause C_j , let $Z_j = 1$ if C_j is satisfied and 0 otherwise

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

- for each clause C_j , let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

- for each clause C_j , let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- $Z = \sum_{j=1}^{m} Z_j$ is the total number of satisfied clauses
- $\mathbb{E}[Z_j] = 7/8$: out of 8 possible assignments to the 3 variables in C_j , 7 of them will make C_j satisfied

• Simple idea: randomly set each variable $x_u = 1$ with probability 1/2, independent of other variables

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

- for each clause C_j , let $Z_j = 1$ if C_j is satisfied and 0 otherwise
- Z = ∑_{j=1}^m Z_j is the total number of satisfied clauses
 𝔼[Z_j] = 7/8: out of 8 possible assignments to the 3 variables in C_j, 7 of them will make C_j satisfied

•
$$\mathbb{E}[Z] = \mathbb{E}\left[\sum_{j=1}^{m} Z_j\right] = \sum_{j=1}^{m} \mathbb{E}[Z_j] = \sum_{j=1}^{m} \frac{7}{8} = \frac{7}{8}m$$
, by linearity of expectation.

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

• Since the optimum solution can satisfy at most m clauses, lemma gives a randomized 7/8-approximation for Max-3-SAT.

Lemma Let m be the number of clauses. Then, in expectation, $\frac{7}{8}m$ number of clauses will be satisfied.

• Since the optimum solution can satisfy at most *m* clauses, lemma gives a randomized 7/8-approximation for Max-3-SAT.

Theorem ([Hastad 97]) Unless P = NP, there is no ρ -approximation algorithm for MAX-3-SAT for any $\rho > 7/8$.

Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT

Randomized Quicksort

- Recap of Quicksort
- Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
 - Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

	29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
[
	29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85

29	38	45	25	15	37	17	64	82	75	94	92	69	76	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort(A, n)

- $2 x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Quicksort

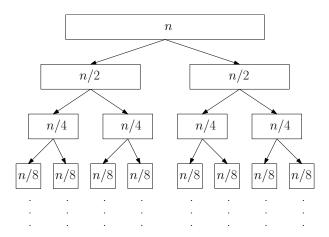
quicksort(A, n)

- $2 x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \leq 2T(n/2) + O(n)$

Quicksort

quicksort(A, n)

- $2 \ x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \leq 2T(n/2) + O(n)$
 - Running time = $O(n \lg n)$



- Each level has total running time ${\cal O}(n)$
- Number of levels $= O(\lg n)$
- Total running time = $O(n \lg n)$

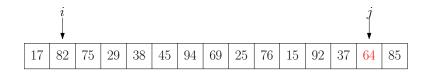
29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

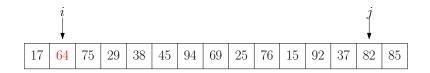
64 82 75 29 38 45 94 69 25 76 15	92 37 17 85
--	-------------

$\overset{i}{\downarrow}$														j ↓
64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

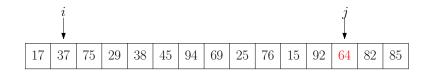
										j 					
(64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

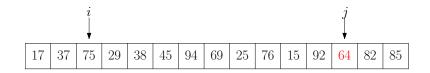
$\overset{i}{\downarrow}$													j ↓	
17	82	75	29	38	45	94	69	25	76	15	92	37	64	85

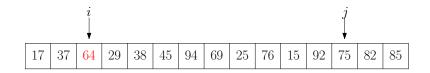


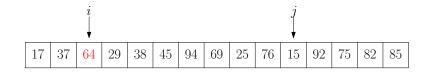


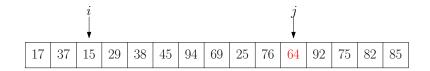


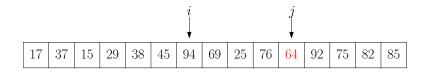


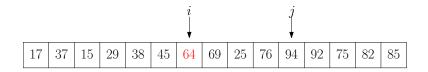


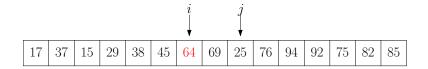


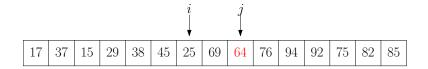


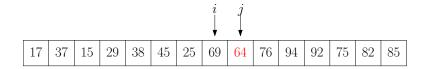


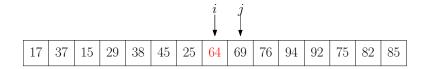


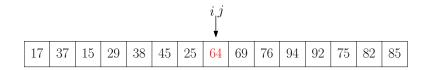




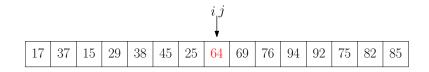








• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.



• To partition the array into two parts, we only need O(1) extra space.

Outline

- Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT

Randomized Quicksort

- Recap of Quicksort
- Randomized Quicksort Algorithm
- 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

Randomized Quicksort Algorithm

quicksort(A, n)

- $\ \, {\rm If} \ n\leq 1 \ {\rm then} \ {\rm return} \ A \\$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $A_L \leftarrow \text{ elements in } A \text{ that are less than } x$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow$ number of times x appear A
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Variant of Randomized Quicksort Algorithm

quicksort(A, n)

- $\ \, {\rm \ \, of} \ \, n\leq 1 \ \, {\rm then} \ \, {\rm return} \ \, A$
- 2 repeat
- $x \leftarrow a \text{ random element of } A (x \text{ is called a pivot})$
- $A_L \leftarrow$ elements in A that are less than $x \land \land$ Divide
- $\begin{tabular}{ll} \bullet \end{tabular} & \mbox{unitl} \ A_L.{\mbox{size}} \leq 3n/4 \ \mbox{and} \ A_R.{\mbox{size}} \leq 3n/4 \ \end{tabular} \end{tabular}$
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $\ \, {\bf 0} \ t \leftarrow \text{number of times } x \text{ appear } A$
- 0 return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

\\ Divide

\\ Conquer

\\ Conquer

- $\textcircled{O} x \leftarrow \texttt{a random element of } A$
- $A_L \leftarrow$ elements in A that are less than x
- $A_R \leftarrow$ elements in A that are greater than x

Q: What is the probability that A_L .size $\leq 3n/4$ and A_R .size $\leq 3n/4$?

- $\textcircled{O} x \leftarrow \texttt{a random element of } A$
- $A_L \leftarrow$ elements in A that are less than x
- $A_R \leftarrow$ elements in A that are greater than x

Q: What is the probability that A_L .size $\leq 3n/4$ and A_R .size $\leq 3n/4$?

A: At least 1/2

Interpret 2 repeat

- $\ \, \bullet \quad x \leftarrow \text{ a random element of } A$
- $A_L \leftarrow$ elements in A that are less than x
- unitl A_L .size $\leq 3n/4$ and A_R .size $\leq 3n/4$

Q: What is the expected number of iterations the above procedure takes?

Interpret 2 repeat

- $\ \, \bullet \ \, x \leftarrow \text{a random element of } A$
- $A_L \leftarrow$ elements in A that are less than x
- unitl A_L .size $\leq 3n/4$ and A_R .size $\leq 3n/4$

Q: What is the expected number of iterations the above procedure takes?

A: At most 2

- Suppose an experiment succeeds with probability $p \in (0, 1]$, independent of all previous experiments.
- repeat
- In an experiment
- Intil the experiment succeeds

Lemma The expected number of experiments we run in the above procedure is 1/p.

Fact For $q \in (0,1)$, we have $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$.

Lemma The expected number of experiments we run in the above procedure is 1/p.

Proof

Expectation = $p + (1 - p)p \times 2 + (1 - p)^2 p \times 3 + (1 - p)^3 p \times 4$ $+ \cdots$ $=p\sum_{i=1}^{\infty}(1-p)^{i-1}i = p\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(1-p)^{i-1}i$ i=1 i=i $= p \sum_{i=1}^{\infty} (1-p)^{j-1} \frac{1}{1-(1-p)} = \sum_{i=1}^{\infty} (1-p)^{j-1}$ $= (1-p)^{0} \frac{1}{1-(1-p)} = 1/p$

Variant Randomized Quicksort Algorithm

$\mathsf{quicksort}(A,n)$

- $\bullet \quad \text{if } n \leq 1 \text{ then return } A$
- 2 repeat
- $x \leftarrow a \text{ random element of } A (x \text{ is called a pivot})$
- $A_L \leftarrow$ elements in A that are less than $x \land \land$ Divide
- $\begin{tabular}{ll} \bullet \end{tabular} & \mbox{unitl} \ A_L.{\mbox{size}} \leq 3n/4 \ \mbox{and} \ A_R.{\mbox{size}} \leq 3n/4 \ \end{tabular} \end{tabular}$
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $\ \, {\bf 0} \ t \leftarrow \text{number of times } x \text{ appear } A$
- 0 return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

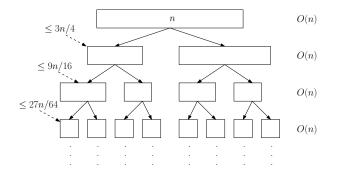
\\ Divide

\\ Conquer

\\ Conquer

Analysis of Variant

- Divide and Combine: takes O(n) time
- Conquer: break an array of size n into two arrays, each has size at most 3n/4. Recursively sort the 2 sub-arrays.



• Number of levels $\leq \lg_{4/3} n = O(\lg n)$

Randomized Quicksort Algorithm

quicksort(A, n)

- $\ \, {\rm \ \, of} \ \, n\leq 1 \ \, {\rm then} \ \, {\rm return} \ \, A$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Intuition: the quicksort algorithm should be better than the variant.

\\ Divide

\\ Divide

\\ Conquer

\\ Conquer

• *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most i-1

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most i-1
- $\bullet\,$ The right sub-instance has size at most n-i

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- $\bullet\,$ The left sub-instance has size at most i-1
- The right sub-instance has size at most n-i
- Thus, the expected running time in this case is $\left(T(i-1)+T(n-i)\right)+O(n)$

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most i-1
- The right sub-instance has size at most n-i
- Thus, the expected running time in this case is $\left(T(i-1)+T(n-i)\right)+O(n)$
- Overall, we have

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- The left sub-instance has size at most i-1
- The right sub-instance has size at most n-i
- Thus, the expected running time in this case is $\left(T(i-1)+T(n-i)\right)+O(n)$
- Overall, we have

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n)$$

- *T*(*n*): an upper bound on the expected running time of the randomized quicksort algorithm on *n* elements
- Assuming we choose the element of rank i as the pivot.
- $\bullet\,$ The left sub-instance has size at most i-1
- The right sub-instance has size at most n-i
- Thus, the expected running time in this case is $\left(T(i-1)+T(n-i)\right)+O(n)$
- Overall, we have

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} \left(T(i-1) + T(n-i) \right) + O(n)$$
$$= \frac{2}{n} \sum_{i=0}^{n-1} T(i) + O(n)$$

• Can prove $T(n) \le c(n \lg n)$ for some constant c by reduction_{42/58}

The induction step of the proof:

$$T(n) \leq \frac{2}{n} \sum_{i=0}^{n-1} T(i) + c'n \leq \frac{2}{n} \sum_{i=0}^{n-1} ci \lg i + c'n$$

$$\leq \frac{2c}{n} \left(\sum_{i=0}^{\lfloor n/2 \rfloor - 1} i \lg \frac{n}{2} + \sum_{i=\lfloor n/2 \rfloor}^{n-1} i \lg n \right) + c'n$$

$$\leq \frac{2c}{n} \left(\frac{n^2}{8} \lg \frac{n}{2} + \frac{3n^2}{8} \lg n \right) + c'n$$

$$= c \left(\frac{n}{4} \lg n - \frac{n}{4} + \frac{3n}{4} \lg n \right) + c'n$$

$$= cn \lg n - \frac{cn}{4} + c'n \leq cn \lg n \quad \text{if } c \geq 4c'$$

Coupon Collector

Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, in expectation, how many boxes before you have all coupon types?

- Break into n stages $1, 2, 3, \cdots, n$
- Stage i terminates when we have collected i coupon types
- X_i : number of coupons collected in stage i
- $X = \sum_{i=1}^{n} X_i$: total number of coupons collected

Exercise: Coupon Collector

- X_i : number of coupons collected in stage i
- $X = \sum_{i=1}^{n} X_i$: total number of coupons collected
- In stage i: with probability $\frac{n-(i-1)}{n}$, a random coupon has type different from the i-1 types already seen
- Thus, $\mathbb{E}[X_i] = \frac{n}{n-(i-1)}$.
- By linearity of expectation:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \frac{n}{n - (i-1)} = \sum_{i=1}^{n} \frac{n}{i} = nH(n),$$

where $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\lg n)$ is called the *n*-th Harmonic number.

• $\mathbb{E}[X] = \Theta(n \lg n).$

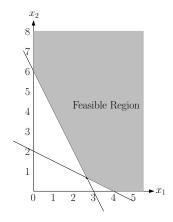
45/58

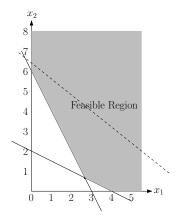
Outline

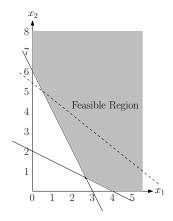
- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

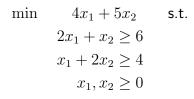
Outline

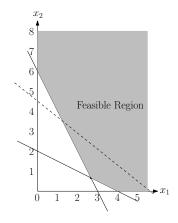
- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

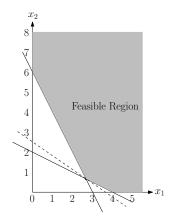


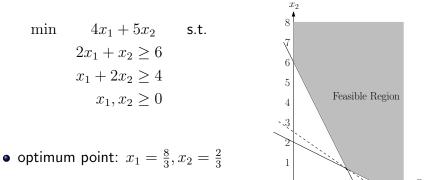










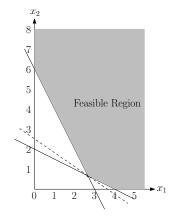


2

0

• optimum point:
$$x_1 = \frac{8}{3}, x_2 = \frac{2}{3}$$

• value =
$$4 \times \frac{8}{3} + 5 \times \frac{2}{3} = 14$$



Standard Form of Linear Programming

 $\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n \quad \text{s.t.} \\ \sum A_{1,1} x_1 + A_{1,2} x_2 + \dots + A_{1,n} x_n \ge b_1 \\ \sum A_{2,1} x_1 + A_{2,2} x_2 + \dots + A_{2,n} x_n \ge b_2 \\ \vdots \quad \vdots \quad \vdots \quad \vdots \\ \sum A_{m,1} x_1 + A_{m,2} x_2 + \dots + A_{m,n} x_n \ge b_m \\ x_1, x_2, \dots, x_n \ge 0$

Standard Form of Linear Programming

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, $c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$,
 $A = \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$.
Then, LP becomes min $c^{\mathrm{T}}x$ s.t.
 $Ax \ge b$
 $x \ge 0$

50/58

ullet \geq means coordinate-wise greater than or equal to

• Linear programmings can be solved in polynomial time

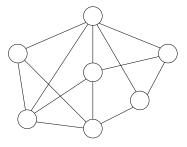
Algorithms for Solving LPs

- Simplex method: exponential time in theory, but works well in practice
- Ellipsoid method: polynomial time in theory, but slow in practice
- Internal point method: polynomial time in theory, works well in practice

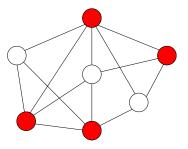
Outline

- 1 Approximation Algorithms
- 2 Approximation Algorithms for Traveling Salesman Problem
- 3 2-Approximation Algorithm for Vertex Cover
- 4 $\frac{7}{8}$ -Approximation Algorithm for Max 3-SAT
- 5 Randomized Quicksort
 - Recap of Quicksort
 - Randomized Quicksort Algorithm
- 6 2-Approximation Algorithm for (Weighted) Vertex Cover Via Linear Programming
 - Linear Programming
 - 2-Approximation for Weighted Vertex Cover

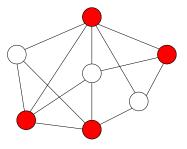
Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

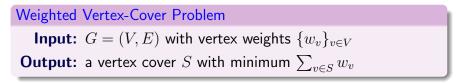


Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.



Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.





Integer Programming for Weighted Vertex Cover

- For every $v \in V$, let $x_v \in \{0,1\}$ indicate whether we select v in the vertex cover S
- The integer programming for weighted vertex cover:

$$(\mathsf{IP}_{\mathsf{WVC}}) \qquad \min \sum_{\substack{v \in V \\ x_u + x_v \ge 1 \\ x_v \in \{0, 1\}}} w_v x_v \quad \text{s.t.} \\ \forall (u, v) \in E \\ \forall v \in V \end{cases}$$

- $\bullet \ (\mathsf{IP}_{\mathsf{WVC}}) \Leftrightarrow \mathsf{weighted} \ \mathsf{vertex} \ \mathsf{cover}$
- Thus it is NP-hard to solve integer programmings in general

$$(\mathsf{IP}_{\mathsf{WVC}}) \qquad \min \qquad \sum_{v \in V} w_v x_v \qquad \text{s.t.}$$
$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$
$$x_v \in \{0, 1\} \qquad \forall v \in V$$

$$\begin{array}{ll} (\mathsf{IP}_{\mathsf{WVC}}) & \min & \sum_{v \in V} w_v x_v \quad \text{s.t.} \\ & x_u + x_v \geq 1 & \forall (u,v) \in E \\ & x_v \in \{0,1\} & \forall v \in V \end{array}$$

• Linear programming relaxation for WVC:

$$(\mathsf{LP}_{\mathsf{WVC}}) \qquad \min \qquad \sum_{v \in V} w_v x_v \quad \mathsf{s.t.}$$
$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$
$$x_v \in [0, 1] \qquad \forall v \in V$$

$$(\mathsf{IP}_{\mathsf{WVC}}) \qquad \min \qquad \sum_{v \in V} w_v x_v \qquad \text{s.t.}$$
$$x_u + x_v \ge 1 \qquad \forall (u, v) \in E$$
$$x_v \in \{0, 1\} \qquad \forall v \in V$$

• Linear programming relaxation for WVC:

(LP_{WVC}) min
$$\sum_{v \in V} w_v x_v$$
 s.t.
 $x_u + x_v \ge 1$ $\forall (u, v) \in E$
 $x_v \in [0, 1]$ $\forall v \in V$

 $\bullet~$ let IP = value of (IP_WVC), LP = value of (LP_WVC)

$$\begin{array}{ll} (\mathsf{IP}_{\mathsf{WVC}}) & \min & \sum_{v \in V} w_v x_v \quad \text{ s.t.} \\ & x_u + x_v \geq 1 & \forall (u,v) \in E \\ & x_v \in \{0,1\} & \forall v \in V \end{array}$$

• Linear programming relaxation for WVC:

(LP_{WVC}) min
$$\sum_{v \in V} w_v x_v$$
 s.t.
 $x_u + x_v \ge 1$ $\forall (u, v) \in E$
 $x_v \in [0, 1]$ $\forall v \in V$

• let IP = value of (IP_{WVC}), LP = value of (LP_{WVC}) • Then, LP < IP

Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

- Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2
- 3

Algorithm for Weighted Vertex Cover

O Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

56/58

2 Thus,
$$LP = \sum_{u \in V} w_u x_u^* \leq IP$$

3

Algorithm for Weighted Vertex Cover

- Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$
- 2 Thus, $LP = \sum_{u \in V} w_u x_u^* \leq IP$
- Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

Proof.

• Consider any edge $(u, v) \in E$: we have $x_u^* + x_v^* \ge 1$

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

- Consider any edge $(u, v) \in E$: we have $x_u^* + x_v^* \ge 1$
- Thus, either $x_u^* \ge 1/2$ or $x_v^* \ge 1/2$

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

- Consider any edge $(u, v) \in E$: we have $x_u^* + x_v^* \ge 1$
- Thus, either $x^*_u \ge 1/2$ or $x^*_v \ge 1/2$
- Thus, either $u \in S$ or $v \in S$.

Algorithm for Weighted Vertex Cover

• Solving
$$(LP_{WVC})$$
 to obtain a solution $\{x_u^*\}_{u \in V}$

2 Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Algorithm for Weighted Vertex Cover

• Solving
$$(LP_{WVC})$$
 to obtain a solution $\{x_u^*\}_{u \in V}$

2 Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

• Let $S = \{u \in V : x_u \ge 1/2\}$ and output S

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

$$\operatorname{cost}(S) = \sum_{u \in S} w_u \le \sum_{u \in S} w_u \cdot 2x_u^* = 2 \sum_{u \in S} w_u \cdot x_u^*$$
$$\le 2 \sum_{u \in V} w_u \cdot x_u^* = 2 \cdot \mathsf{LP}.$$

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

 $\bullet \ \ \, {\rm Let} \ S=\{u\in V: x^*_u\geq 1/2\} \ {\rm and} \ {\rm output} \ S$

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

 $\bullet \quad \text{Let } S = \{ u \in V : x_u^* \geq 1/2 \} \text{ and output } S$

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \leq 2 \cdot \mathsf{LP}.$$

Theorem Algorithm is a 2-approximation algorithm for WVC.

Algorithm for Weighted Vertex Cover

• Solving (LP_{WVC}) to obtain a solution $\{x_u^*\}_{u \in V}$

② Thus,
$$\mathsf{LP} = \sum_{u \in V} w_u x_u^* \leq \mathsf{IP}$$

 $\bullet \ \ \, {\rm Let} \ S=\{u\in V: x^*_u\geq 1/2\} \ {\rm and} \ {\rm output} \ S$

Lemma S is a vertex cover of G.

Lemma
$$\operatorname{cost}(S) := \sum_{u \in S} w_u \le 2 \cdot \mathsf{LP}.$$

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

 $cost(S) \le 2 \cdot LP \le 2 \cdot IP = 2 \cdot cost(best vertex cover).$