CSE 431/531: Analysis of Algorithms Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- $oxed{8}$ Computing n-th Fibonacci Number

- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms

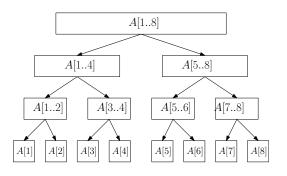
Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

$\mathsf{merge}\text{-}\mathsf{sort}(A,n)$

- \bullet if n=1 then
- else
- $\bullet \quad B \leftarrow \mathsf{merge-sort}\Big(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\Big)$
- $\qquad \qquad C \leftarrow \mathsf{merge\text{-}sort}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], \lceil n/2 \rceil \Big)$
- return merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
 - Divide: trivial
 - Conquer: **4**, **5**
 - Combine: 6

Running Time for Merge-Sort



- Each level takes running time O(n)
- ullet There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort

Running Time for Merge-Sort Using Recurrence

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{} + O(n) & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

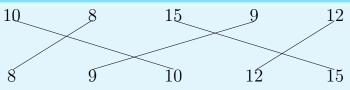
Def. Given an array A of n integers, an inversion in A is a pair (i,j) of indices such that i < j and A[i] > A[j].

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:



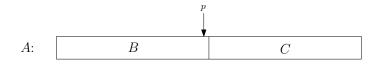
• 4 inversions (for convenience, using numbers, not indices): (10,8), (10,9), (15,9), (15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

- $c \leftarrow 0$
- ② for every $i \leftarrow 1$ to n-1
- if A[i] > A[j] then $c \leftarrow c + 1$
- lacktriangledown return c

Divide-and-Conquer



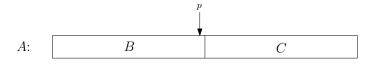
- $p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- #invs(A) = #invs(B) + #invs(C) + m $m = \left| \left\{ (i,j) : B[i] > C[j] \right\} \right|$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

ullet Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer



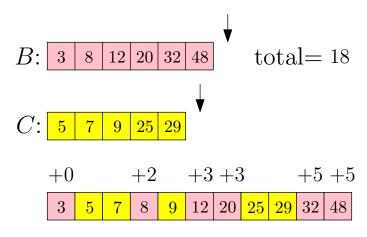
•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

• $\# invs(A) = \# invs(B) + \# invs(C) + m$
 $m = |\{(i,j) : B[i] > C[j]\}|$

Lemma If both B and C are sorted, then we can compute m in O(n) time!

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:



Count Inversions between B and C

ullet Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
 \bullet count \leftarrow 0:
 \bullet A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 \bullet while i < n_1 or j < n_2
        if j > n_2 or (i \le n_1 \text{ and } B[i] \le C[j]) then
           append B[i] to A; i \leftarrow i+1
 5
 6
           count \leftarrow count + (j-1)
        else
           append C[j] to A; j \leftarrow j+1
   return (A, count)
```

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count(A, n)

    Divide: trivial

 \bullet if n=1 then
                                                      • Conquer: 4, 5
        return (A,0)
                                                      • Combine: 6, 7
 else
         (B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)
         (C, m_2) \leftarrow \mathsf{sort}\text{-and-count}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], \lceil n/2 \rceil\Big)
         (A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
         return (A, m_1 + m_2 + m_3)
```

sort-and-count(A, n)

- \bullet if n=1 then
- \bullet return (A,0)
- else
- $(B, m_1) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[1..\lfloor n/2\rfloor\big], \lfloor n/2\rfloor\Big)$
- $(C, m_2) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[\lfloor n/2\rfloor + 1..n\big], \lceil n/2\rceil\Big)$
- $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- return $(A, m_1 + m_2 + m_3)$
 - Recurrence for the running time: T(n) = 2T(n/2) + O(n)
 - Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- $oxed{8}$ Computing n-th Fibonacci Number

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Quicksort vs Merge-Sort

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

Quicksort Example

Assumption We can choose median of an array of size n in O(n) time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort(A, n)

- if n < 1 then return A
- $2 x \leftarrow \text{lower median of } A$
- \bullet $A_R \leftarrow$ elements in A that are greater than $x \qquad \quad \setminus \setminus$ Divide
- $\bullet B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size}) \qquad \qquad \backslash \backslash \mathsf{Conquer}$
- **⑤** B_R ← quicksort(A_R , A_R .size)
- lacktriangledown return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \le 2T(n/2) + O(n)$
 - Running time = $O(n \lg n)$

 $\backslash \backslash$ Conquer

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

- ① There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

```
\mathsf{quicksort}(A,n)
```

- if $n \leq 1$ then return A
- $x \leftarrow a$ random element of A(x) is called a pivot
- **③** A_L ← elements in A that are less than x \\ Divide
- \bullet $A_R \leftarrow$ elements in A that are greater than $x \qquad \quad \setminus \setminus$ Divide
- $\bullet B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size}) \qquad \qquad \backslash \backslash \mathsf{Conquer}$
- 0 $t \leftarrow$ number of times x appear A
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: make the assumption

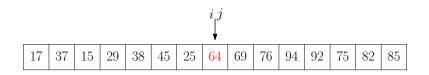
Quicksort Using A Random Pivot

quicksort(A, n)

- if $n \leq 1$ then return A
- $x \leftarrow a$ random element of A (x is called a pivot)
- **③** A_L ← elements in A that are less than x \\ Divide
- $A_R \leftarrow$ elements in A that are greater than $x \rightarrow \$ Divide
- **⑤** $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$ \\ Conquer
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$ \\ Conquer
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is $O(n \lg n)$.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.



 \bullet To partition the array into two parts, we only need ${\cal O}(1)$ extra space.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

$\mathsf{partition}(A,\ell,r)$

- $\ \ \, \textbf{ and } \, A[p] \, \, \textbf{and} \, \, A[\ell]$
- $i \leftarrow \ell, j \leftarrow r$
- lacktriangledown while i < j do
- lacksquare while i < j and $A[i] \leq A[j]$ do $j \leftarrow j-1$
- \bullet swap A[i] and A[j]
- while i < j and $A[i] \le A[j]$ do $i \leftarrow i + 1$
- $oldsymbol{\circ}$ swap A[i] and A[j]
- \odot return i

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

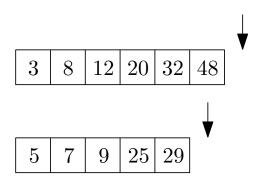
$quicksort(A, \ell, r)$

- if $\ell > r$ return
- 2 $p \leftarrow \mathsf{patition}(A, \ell, r)$
- **3** $q \leftarrow p-1$; while A[q] = A[p] and $q \ge \ell$ do: $q \leftarrow q-1$
- quicksort (A, ℓ, q)
- **5** $q \leftarrow p+1$; while A[q] = A[p] and $q \le r$ do: $q \leftarrow q+1$
- \bullet quicksort(A, q, r)
 - To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

• To merge two arrays, we need a third array with size equaling the total size of two arrays



3 | 5 | 7 | 8 | 9 | 12 | 20 | 25 | 29 | 32 | 48

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- $oxed{8}$ Computing n-th Fibonacci Number

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

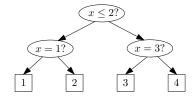
- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.



Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log_2 n! = \Theta(n \lg n)$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log_2 n! = \Theta(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- if n < 1 then return A
- $x \leftarrow$ lower median of A

- $0 t \leftarrow \text{number of times } x \text{ appear } A$
- lacktriangledown return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Selection Algorithm with Median Finder

selection(A, n, i)

- if n=1 then return A
- $2 x \leftarrow \text{lower median of } A$
- **3** A_L ← elements in A that are less than x \\ Divide
- $A_R \leftarrow$ elements in A that are greater than $x \rightarrow \$ Divide
- if $i \leq A_L$.size then
- return selection $(A_L, A_L.size, i)$ \\ Conquer
- elseif $i > n A_R$.size then
- lacktriangledown return select $(A_R,A_R.\mathsf{size},i-(n-A_R.\mathsf{size}))$ \\ Conquer
- $oldsymbol{0}$ else return x
- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

Randomized Selection Algorithm

```
selection(A, n, i)
\bullet if n=1 then return A
2 x \leftarrow \text{random element of } A \text{ (called pivot)}
\bullet A_L \leftarrow elements in A that are less than x
                                                                 \\ Divide
\bullet A_R \leftarrow elements in A that are greater than x
                                                                 \\ Divide
\bullet if i < A_L size then
       return selection(A_L, A_L.size, i)
                                                              \\ Conquer
• elseif i > n - A_R size then
       return select(A_R, A_R.size, i - (n - A_R.size)) \\ Conquer
 else return x
```

• expected running time = O(n)

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree n-1

Output: product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

- Input: (4, -5, 2, 3), (-5, 6, -3, 2)
- Output: (-20, 49, -52, 20, 2, -5, 6)

Naïve Algorithm

polynomial-multiplication (A, B, n)

- **1** let C[k] = 0 for every $k = 0, 1, 2, \dots, 2n 2$
- $\textbf{ 9} \ \text{ for } i \leftarrow 0 \ \text{to } n-1$

- \odot return C

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)$$

$$q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)$$

- \bullet p(x): degree of n-1 (assume n is even)
- $p(x) = p_H(x)x^{n/2} + p_L(x)$,
- $p_H(x), p_L(x)$: polynomials of degree n/2-1.

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

Divide-and-Conquer for Polynomial Multiplication

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{split} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \left(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H) \right) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{split}$$

- Recurrence: T(n) = 4T(n/2) + O(n)
- $T(n) = O(n^2)$

Reduce Number from 4 to 3

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

•
$$p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$$

Divide-and-Conquer for Polynomial Multiplication

$$\begin{split} r_H &= \mathsf{multiply}(p_H, q_H) \\ r_L &= \mathsf{multiply}(p_L, q_L) \\ \mathsf{multiply}(p, q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\ &+ r_L \end{split}$$

- Solving Recurrence: T(n) = 3T(n/2) + O(n)
- $T(n) = O(n^{\lg_2 3}) = O(n^{1.585})$

Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

- if n=1 then return (A[0]B[0])
- **2** $A_L \leftarrow A[0 ... n/2 1], A_H \leftarrow A[n/2 ... n 1]$
- **3** $B_L \leftarrow B[0 ... n/2 1], B_H \leftarrow B[n/2 ... n 1]$
- \bullet $C_L \leftarrow \mathsf{multiply}(A_L, B_L, n/2)$

- $C \leftarrow \text{array of } (2n-1) \text{ 0's}$
- 8 for $i \leftarrow 0$ to n-2 do

- - $oldsymbol{2}$ return C

Outline

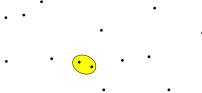
- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

- Closest pair
- Convex hull
- Matrix multiplication
- ullet FFT(Fast Fourier Transform): polynomial multiplication in $O(n\lg n)$ time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

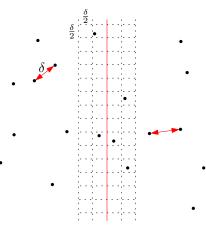
Output: the pair of points that are closest



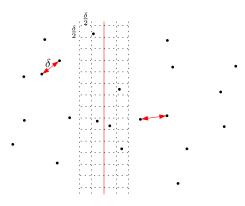
• Trivial algorithm: $O(n^2)$ running time

Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- Combine: Check if there is a closer pair between left-half and right-half

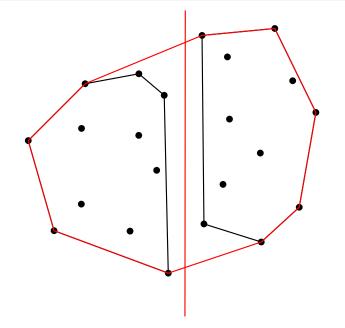


Divide-and-Conquer Algorithm for Closest Pair



- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$

$O(n \lg n)$ -Time Algorithm for Convex Hull



Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

- of for $j \leftarrow 1$ to n
- $C[i,j] \leftarrow 0$
- $C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j]$
- \odot return C
 - running time = $O(n^3)$

Try to Use Divide-and-Conquer

$$A = \begin{array}{|c|c|c|}\hline n/2 & n/2 \\ \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|}\hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|}\hline A_{12} & A_{12} \\ \hline B_{21} & B_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & B_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & B_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & B_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & B_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & B_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline B_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array} \quad P = \begin{array}{|c|c|}\hline A_{11} & A_{12} & A_{22} \\ \hline A_{21} & A_{22} & A_{22} \\ \hline \end{array}$$

$$\bullet \ C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

- matrix_multiplication (A,B) recursively calls matrix_multiplication (A_{11},B_{11}) , matrix_multiplication (A_{12},B_{21}) ,
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$
- $T(n) = O(n^3)$

Strassen's Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

Outline

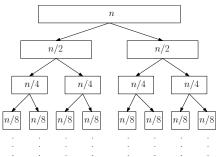
- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- **6** Solving Recurrences
- Self-Balancing Binary Search Trees
- $oxed{8}$ Computing n-th Fibonacci Number

Methods for Solving Recurrences

- The recursion-tree method
- The master theorem

Recursion-Tree Method

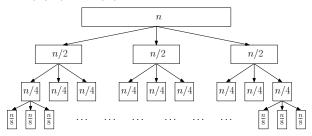
• T(n) = 2T(n/2) + O(n)



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$

Recursion-Tree Method

• T(n) = 3T(n/2) + O(n)

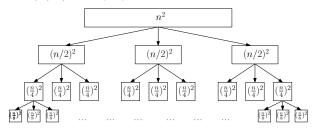


- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$

Recursion-Tree Method

• $T(n) = 3T(n/2) + O(n^2)$



- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Master Theorem

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

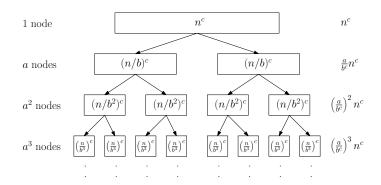
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\log_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

Proof of Master Theorem Using Recursion Tree

$$T(n) = aT(n/b) + O(n^c)$$



- ullet $c<\lg_b a$: bottom-level dominates: $\left(rac{a}{b^c}
 ight)^{\lg_b n} n^c = n^{\lg_b a}$
- $c = \lg_b a$: all levels have same time: $n^c \lg_b n = O(n^c \lg n)$
- $c > \lg_b a$: top-level dominates: $O(n^c)$

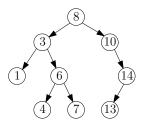
Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Binary Search Tree (BST)

- Elements are organized in a binary-tree structure
- Each element (node) is associated with a key value

- if node u is in the left sub-tree of node v, then $u.key \le v.key$
- if node u is the right sub-tree of node v, then $u.key \ge v.key$
- in-order traversal of tree gives a sorted list of keys



BST: numbers denote keys

Operations on Binary Search Tree T

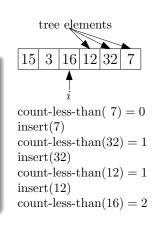
- **insert**: insert an element to T
- ullet delete an element from T
- count-less-than: return the number of elements in T with key values smaller than a given value
- ullet check existence, return element with i-th smallest key value, \dots

Counting Inversions Via Binary Search Tree (BST)

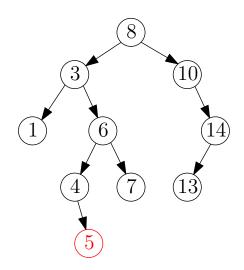
count-inversions(A, n)

- \bullet $T \leftarrow \mathsf{empty} \; \mathsf{BST}$
- $c \leftarrow 0$
- \bullet for $i \leftarrow n$ downto 1
- $c \leftarrow c + T$.count-less-than(A[i])
- T.insert(A[i])
- \odot return c

running time = $n \times (\text{time for count} + \text{time for insert})$



Binary Search Tree: Insertion



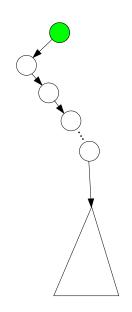
recursive-insert(v, key)

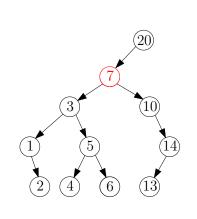
- \bullet if v = nil then
- $u \leftarrow \text{new node with } u.left = u.right = \text{nil}$
- \bullet return u
- if key < v.key then
- $v.left \leftarrow recursive-insert(v.left, key)$
- else
- $v.right \leftarrow recursive-insert(v.right, key)$
- \circ return v

insert(key)

 \bullet $root \leftarrow recursive-insert(root, key)$

Binary Search Tree: Deletition





recursive-delete(v)

- if v.right = nil then return (v.left, v)
- $(v.right, del) \leftarrow \text{recursive-delete}(v.right)$
- \bullet return (v, del)
 - \bullet recursive-delete(v) deletes the element in the sub-tree rooted at v with the largest key value
 - returns: the new root and the deleted node

delete(v)

\\ returns the new root after deletion

- if v.left = nil then return v.right
- $(r, del) \leftarrow \text{recursive-delete}(v.left)$
- $r.key \leftarrow del.key$
- \bullet return r

recursive-delete(v)

- if v.right = nil then return (v.left, v)
- $(v.right, del) \leftarrow \mathsf{recursive-delete}(v.right)$
- lacksquare return (v, del)

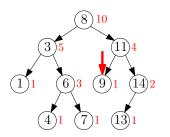
delete(v)

\\ returns the new root after deletion

- if v.left = nil then return v.right
- $(r, del) \leftarrow \text{recursive-delete}(v.left)$
- $r.key \leftarrow del.key$
- \bullet return r
- to remove left-child of v: call $v.left \leftarrow delete(v.left)$
- to remove right-child of v: call $v.right \leftarrow delete(v.right)$
- to remove root: call $root \leftarrow delete(root)$

Binary Search Tree: count-less-than

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



(elements
$$< 10$$
) = $(5+1)+1=7$

• Trick: "nil" is a node with size 0.

recursive-count(v, value)

- if v = nil then return 0
- return recursive-count(v.left, key)
- else
- return v.left.size + 1 + recursive-count(v.right, key)

count-less-than (value)

• return recursive-count(root, value)

Running Time for Each Operation

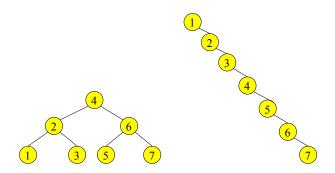
- Each operation takes time O(h).
- h = height of tree
- n = number of nodes in tree

Q: What is the height of the tree in the best scenario?

A: $O(\lg n)$

Q: What is the height of the tree in the worst scenario?

A: O(n)



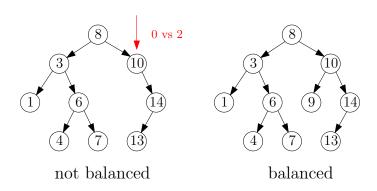
Def. A self-balancing BST is a BST that automatically keeps its height small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...

AVL Tree

An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

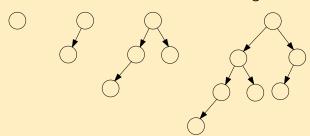


An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

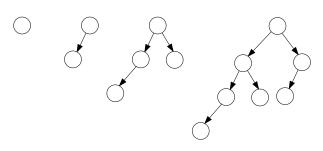
Lemma Property guarantees height = $O(\log n)$.

• f(h): minimum size of a balanced tree of height h



• $f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 \cdots$

• f(h): minimum size of a balanced tree of height h



$$f(0) = 0$$

 $f(1) = 1$
 $f(h) = f(h-1) + f(h-2) + 1$ $h \ge 2$

•
$$f(h) = 2^{\Theta(h)}$$
 (i.e, $\lg f(h) = \Theta(h)$)

Depth of AVL tree

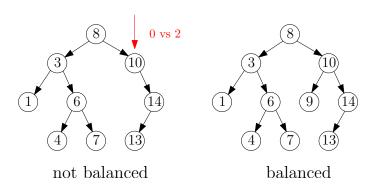
- f(h): minimum size of a balanced tree of height h
- $f(h) = 2^{\Theta(h)}$
- ullet If a AVL tree has size n and height h, then

$$n \ge f(h) = 2^{\Theta(h)}$$

• Thus, $h \leq \Theta(\log n)$

An AVL Tree Is Balanced

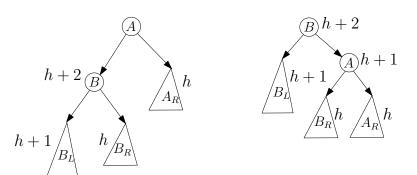
Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.



• How can we maintain the balanced property?

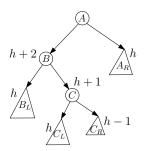
Maintain Balance Property After Insertion

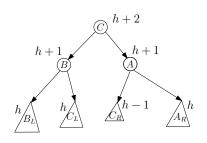
- A: the deepest node such that the balance property is not satisfied after insertion
- ullet Wlog, we inserted an element to the left-sub-tree of A
- \bullet B: the root of left-sub-tree of A
- ullet case 1: we inserted an element to the left-sub-tree of B



Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- ullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 2: we inserted an element to the right-sub-tree of B
- ullet C: the root of right-sub-tree of B





count-inversions(A, n)

- $c \leftarrow 0$
- \bullet for $i \leftarrow n$ downto 1
- $c \leftarrow c + T$.count-less-than(A[i])
- T.insert(A[i])
- \bullet return c
 - Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(\lg n)$.
 - Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n > 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0

Output: F_n

Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

- if n=0 return 0
- \bullet return $\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

- **2** $F[1] \leftarrow 1$
- $F[i] \leftarrow F[i-1] + F[i-2]$
- \bullet return F[n]
 - Dynamic Programming
 - Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\cdots$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

power(n)

- if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- lacktriangle return R

$\mathsf{Fib}(n)$

- if n=0 then return 0
- $M \leftarrow \mathsf{power}(n-1)$
- \odot return M[1][1]
 - Recurrence for running time? T(n) = T(n/2) + O(1)
 - $T(n) = O(\lg n)$

Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- \bullet We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time
- ullet Even printing F(n) requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n , we need $O(\lg n)$ basic arithmetic operations on integers

Summary: Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

• Merge sort, quicksort, count-inversions, closest pair, · · · :

$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$$

• Integer Multiplication:

$$T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$$

Matrix Multiplication:

$$T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$$

 Usually, designing better algorithm for "combine" step is key to improve running time