CSE 431/531: Analysis of Algorithms Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Divide-and-Conquer

2 Counting Inversions

- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

• Greedy algorithm: design efficient algorithms

- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

merge-sort(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- 2 return A
- else

• return merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

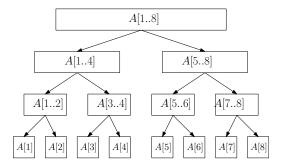
merge-sort(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- 2 return A
- else

• return merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

- Divide: trivial
- Conquer: **4**, **5**
- Combine: 6

Running Time for Merge-Sort



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort

• T(n) =running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

Divide-and-Conquer

2 Counting Inversions

- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Counting Inversions

Input: an sequence A of n numbers

Counting Inversions

Input: an sequence A of n numbers

Exam	nple:				
	10	8	15	9	12

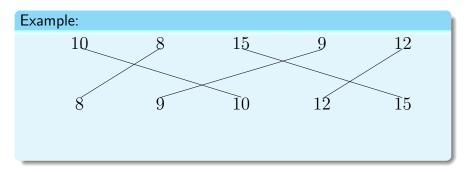
Counting Inversions

Input: an sequence A of n numbers

8	15	9	12
9	10	12	15
	8 9		

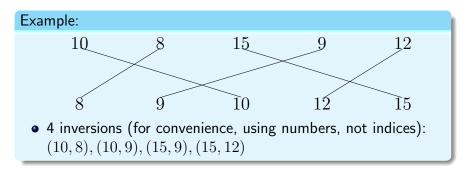
Counting Inversions

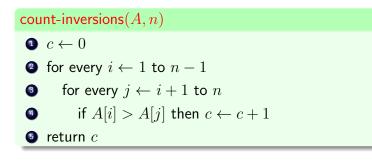
Input: an sequence A of n numbers



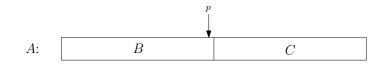
Counting Inversions

Input: an sequence A of n numbers





Divide-and-Conquer



•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

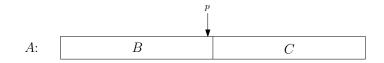
• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Q: How fast can we compute *m*, via trivial algorithm?

A: $O(n^2)$

• Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer



•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

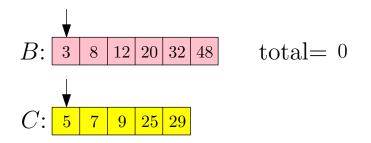
• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

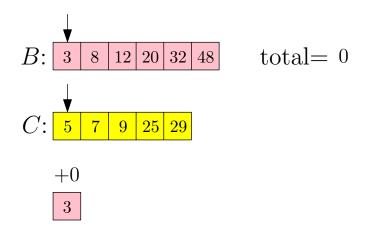
Lemma If both B and C are sorted, then we can compute m in O(n) time!

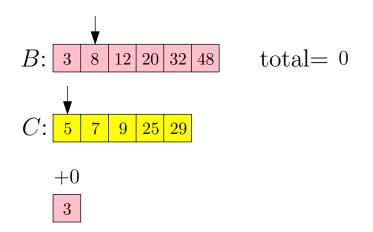
$$B:$$
 3 8 12 20 32 48

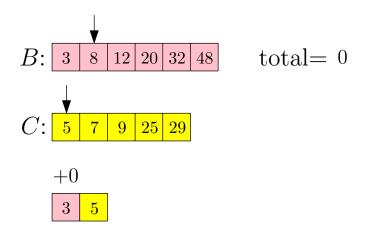
$$total = 0$$

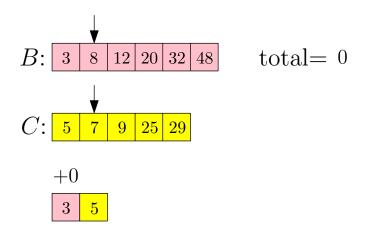
$$C:$$
 5 7 9 25 29

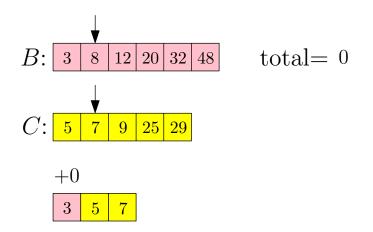


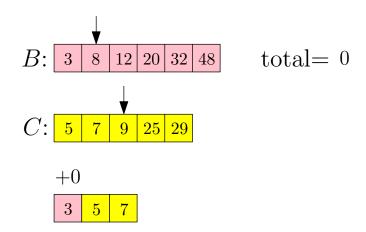


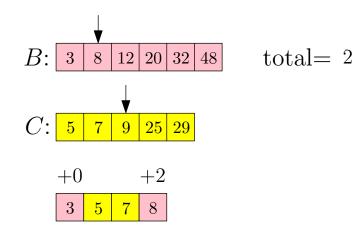


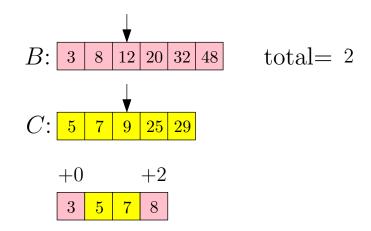


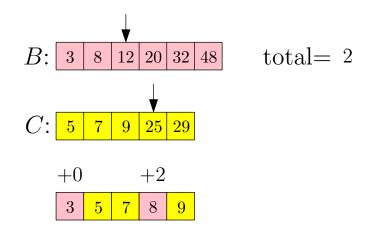


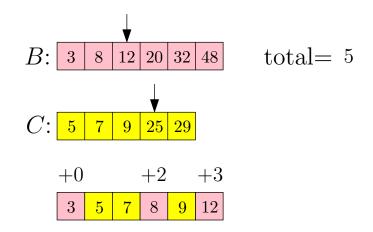


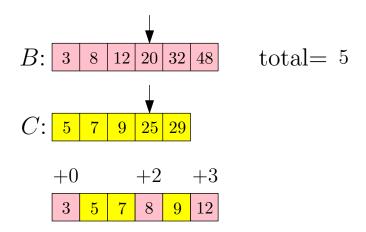


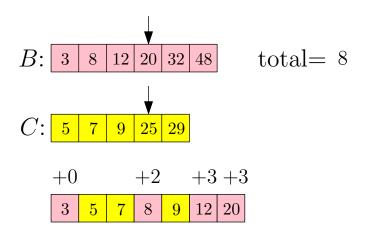


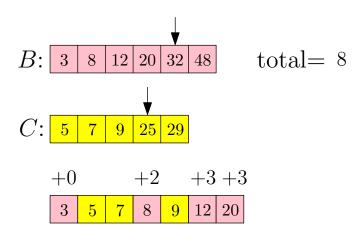


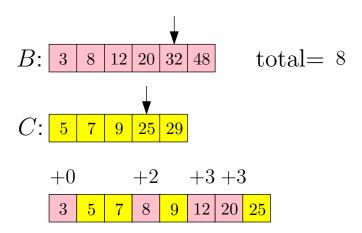


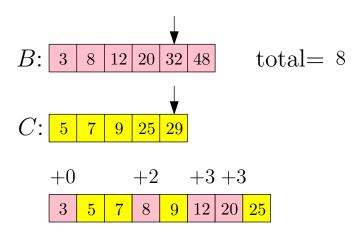


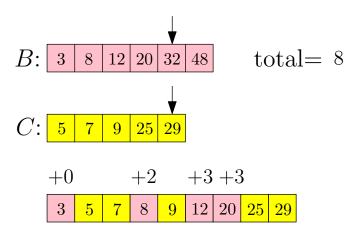


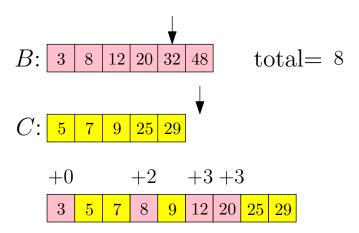


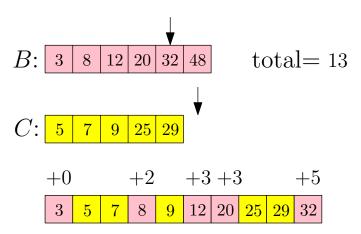












Count pairs i, j such that B[i] > C[j]: B: | 3total = 138 12 20 32 48 C: 5 7 9 2529 +0+2 +3 +3+512 20 25 29 32 3 5 7 8 9

Count pairs i, j such that B[i] > C[j]: B: | 38 total = 1812 20 32 48 C: 57 9 2529 +0+2 +3 +3+5 +59 12 20 25 29 32 3 5 7 8 48

13/95

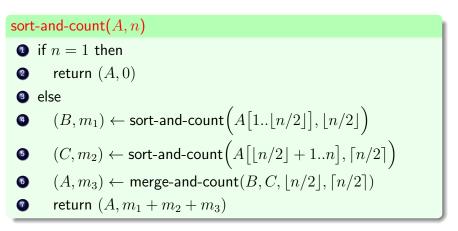
Count pairs i, j such that B[i] > C[j]: B: | 3total = 1812 20 32 48 8 C: 5 7 9 2529 +0+2 +3 +3+5 +512 20 25 29 32 3 5 7 8 9 48

• Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
• count \leftarrow 0:
2 A \leftarrow []; i \leftarrow 1; j \leftarrow 1
(3) while i < n_1 or j < n_2
        if j > n_2 or (i \le n_1 \text{ and } B[i] \le C[j]) then
           append B[i] to A; i \leftarrow i+1
5
6
           count \leftarrow count + (j-1)
        else
 7
           append C[j] to A; j \leftarrow j+1
 8
\bigcirc return (A, count)
```

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:



Sort and Count Inversions in \boldsymbol{A}

• A procedure that returns the sorted array of A and counts the number of inversions in A:

$sort\operatorname{-and-count}(A,n)$	• Divide: trivial
1 if $n = 1$ then	• Conquer: 4 , 5
2 return $(A, 0)$	• Combine: 6, 7
else	
$ (B, m_1) \leftarrow \text{sort-and-count} $	$= \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$
$ (C, m_2) \leftarrow \text{sort-and-count} $	$\left(A\left[\lfloor n/2 \rfloor + 1n\right], \lceil n/2 \rceil\right)$
$ (A, m_3) \leftarrow merge-and-cou $	$\operatorname{unt}(B,C,\lfloor n/2 \rfloor,\lceil n/2 \rceil)$
• return $(A, m_1 + m_2 + m_3)$)

sort-and-count(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- **2** return (A, 0)

else

 $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1 \dots n \right], \lceil n/2 \rceil \right)$ $(A, m_3) \leftarrow \text{merge-and-count} (B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

oreturn
$$(A, m_1 + m_2 + m_3)$$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

sort-and-count(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- **2** return (A, 0)

else

 $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1 \dots n \right], \lceil n/2 \rceil \right)$

$$(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$$

• return $(A, m_1 + m_2 + m_3)$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

• Running time = $O(n \lg n)$

Outline

Divide-and-Conquer

2 Counting Inversions

- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Outline

Divide-and-Conquer

2 Counting Inversions

- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Merge SortQuicksortDivideTrivialSeparate small and big numbersConquerRecurseRecurseCombineMerge 2 sorted arraysTrivial

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

	29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
[
	29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85

29	38	45	25	15	37	17	64	82	75	94	92	69	76	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

Quicksort Example

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort(A, n)

- $2 \ x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Quicksort

quicksort(A, n)

- $2 \ x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \leq 2T(n/2) + O(n)$

Quicksort

quicksort(A, n)

- $2 \ x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \leq 2T(n/2) + O(n)$
 - Running time = $O(n \lg n)$

Q: How to remove this assumption?

Q: How to remove this assumption?

A:

There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Q: How to remove this assumption?

A:

- There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

- $\ \, {\rm If} \ n\leq 1 \ {\rm then} \ {\rm return} \ A \\$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $A_L \leftarrow \text{ elements in } A \text{ that are less than } x$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow$ number of times x appear A
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Assumption There is a procedure to produce a random real number in $\left[0,1\right]\!.$

Q: Can computers really produce random numbers?

Assumption There is a procedure to produce a random real number in $\left[0,1\right]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Assumption There is a procedure to produce a random real number in $\left[0,1\right]$.

Q: Can computers really produce random numbers?

- A: No! The execution of a computer programs is deterministic!
 - In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

Assumption There is a procedure to produce a random real number in $\left[0,1\right]\!.$

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: make the assumption

Quicksort Using A Random Pivot

quicksort(A, n)

- $\bullet \quad \text{if } n \leq 1 \text{ then return } A$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $I A_L \leftarrow elements in A that are less than x$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is $O(n \lg n)$. 25/95

\\ Divide

\\ Divide

\\ Conquer

\\ Conquer

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

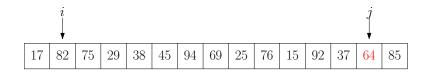
• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

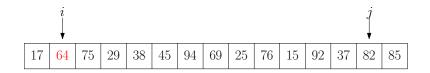
64 82 75 29 38 45 94 69 25 76 15	92 37 17 85
--	-------------

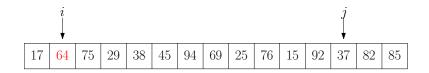
$\overset{i}{\downarrow}$														j ↓
64	82	75	29	38	45	94	69	25	76	15	92	37	17	85

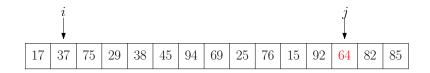
	,													j ↓	
64	4	82	75	29	38	45	94	69	25	76	15	92	37	17	85

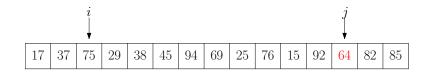
$\overset{i}{\downarrow}$													j ↓	
17	82	75	29	38	45	94	69	25	76	15	92	37	64	85

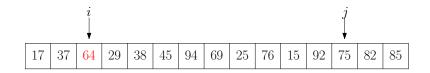


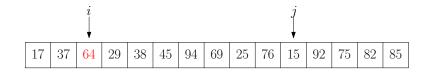


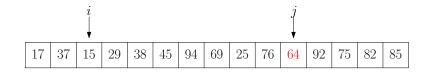


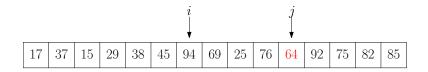


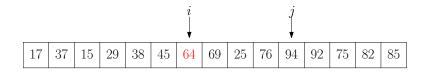


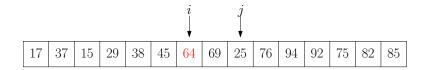


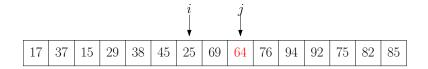


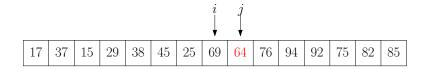


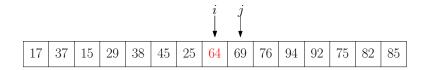


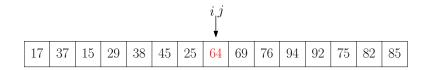




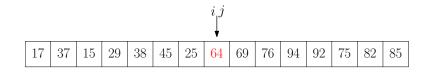








• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.



• To partition the array into two parts, we only need ${\cal O}(1)$ extra space.

$\mathsf{partition}(A, \ell, r)$

- $\textbf{0} \ p \leftarrow \text{random integer between } \ell \text{ and } r$
- $\label{eq:swap} \textbf{ and } A[p] \text{ and } A[\ell]$
- $\textcircled{3} i \leftarrow \ell, j \leftarrow r$
- $\textcircled{ \bullet } \text{ while } i < j \text{ do}$
- while i < j and $A[i] \le A[j]$ do $j \leftarrow j 1$
- swap A[i] and A[j]

return *i*

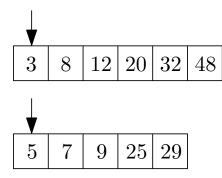
quicksort (A, ℓ, r)

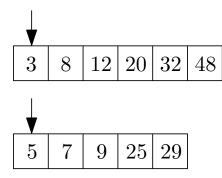
- $\begin{array}{l} \textbf{if } \ell \geq r \ \text{return} \\ \textbf{2} \ p \leftarrow \text{patition}(A,\ell,r) \\ \textbf{3} \ q \leftarrow p-1 \text{; while } A[q] = A[p] \ \text{and } q \geq \ell \ \text{do: } q \leftarrow q-1 \\ \textbf{3} \ \text{quicksort}(A,\ell,q) \\ \textbf{3} \ q \leftarrow p+1 \text{; while } A[q] = A[p] \ \text{and } q \leq r \ \text{do: } q \leftarrow q+1 \\ \textbf{3} \ \text{quicksort}(A,q,r) \end{array}$
 - To sort an array A of size n, call quicksort(A, 1, n).

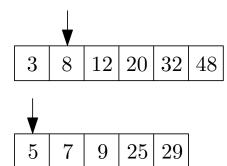
Note: We pass the array A by reference, instead of by copying.

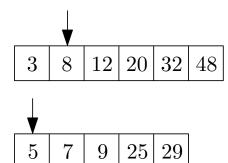
3	8 12	20	32	48
---	------	----	----	----

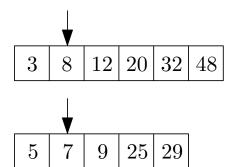
5	7	9	25	29
---	---	---	----	----



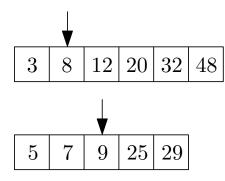


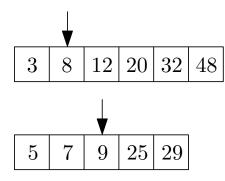




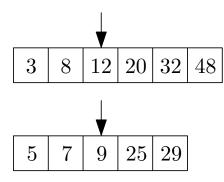




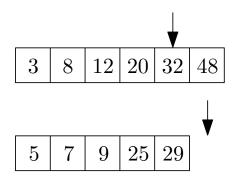


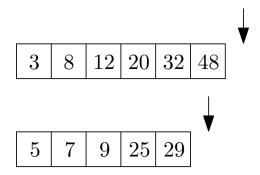


3	5	7	8
---	---	---	---



3	5	7	8
---	---	---	---





Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Q: Can we do better than $O(n \log n)$ for sorting?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

• Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know *x*?

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

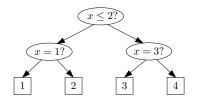
Q: How many questions do you need to ask Bob in order to know *x*?

A: $\lceil \log_2 N \rceil$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know *x*?

A: $\lceil \log_2 N \rceil$.



Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log_2 n! = \Theta(n \lg n)$

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least
$$\log_2 n! = \Theta(n \lg n)$$

Outline

Divide-and-Conquer

2 Counting Inversions

- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

• Sorting solves the problem in time $O(n \lg n)$.

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- $2 \ x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- **③** return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

Selection Algorithm with Median Finder

selection(A, n, i)

- $\bullet \quad \text{if } n = 1 \text{ then return } A$
- $2 \ x \leftarrow \text{lower median of } A$
- $I A_L \leftarrow elements in A that are less than x \qquad \qquad \backslash \backslash Divide$
- $A_R \leftarrow$ elements in A that are greater than x
- if $i \leq A_L$.size then
- return selection $(A_L, A_L. size, i)$ $\setminus \ Conquer$
- elseif $i > n A_R$.size then
- return select $(A_R, A_R$.size, $i (n A_R$.size)) $\setminus \setminus$ Conquer
- \bigcirc else return x

\\ Divide

Selection Algorithm with Median Finder

selection(A, n, i)

- $\bullet \quad \text{if } n = 1 \text{ then return } A$
- $\ \ \, \textbf{2} \ \ \, x \leftarrow \text{lower median of } A$
- $I A_L \leftarrow elements in A that are less than x \qquad \qquad \backslash \backslash Divide$
- $A_R \leftarrow$ elements in A that are greater than x
- if $i \leq A_L$.size then
- return selection $(A_L, A_L. size, i)$ $\setminus \ Conquer$
- elseif $i > n A_R$.size then
- return select $(A_R, A_R$.size, $i (n A_R$.size)) $\setminus \setminus$ Conquer

9 else return x

• Recurrence for selection: T(n) = T(n/2) + O(n)

\\ Divide

Selection Algorithm with Median Finder

selection(A, n, i)

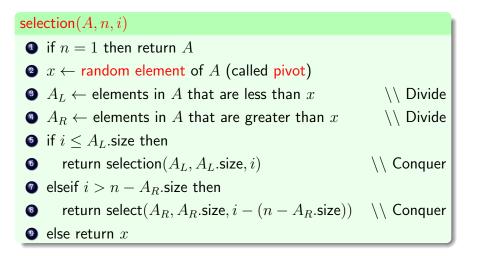
- $\bullet \quad \text{if } n = 1 \text{ then return } A$
- $2 \ x \leftarrow \text{lower median of } A$
- $A_R \leftarrow$ elements in A that are greater than x
- if $i \leq A_L$.size then
- return selection $(A_L, A_L. size, i)$ $\setminus \ Conquer$
- elseif $i > n A_R$.size then
- return select $(A_R, A_R.size, i (n A_R.size))$ \\ Conquer

9 else return x

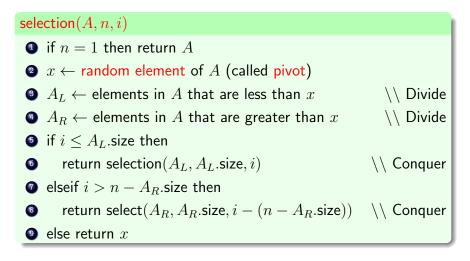
- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

\\ Divide

Randomized Selection Algorithm



Randomized Selection Algorithm



• expected running time = O(n)

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Input: two polynomials of degree n-1

Output: product of two polynomials

Input: two polynomials of degree n-1**Output:** product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

Input: two polynomials of degree n-1**Output:** product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

= $6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$
+ $4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$
- $10x^{4} + 15x^{3} - 30x^{2} + 25x$
+ $8x^{3} - 12x^{2} + 24x - 20$
= $6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$

Input: two polynomials of degree n-1**Output:** product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

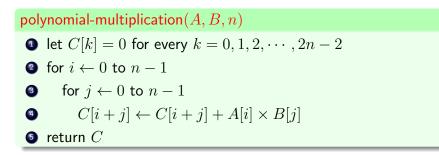
$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

• Input: (4, -5, 2, 3), (-5, 6, -3, 2)

• **Output**: (-20, 49, -52, 20, 2, -5, 6)



polynomial-multiplication(A, B, n)• let C[k] = 0 for every $k = 0, 1, 2, \dots, 2n - 2$ • for $i \leftarrow 0$ to n - 1• for $j \leftarrow 0$ to n - 1• $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$ • return C

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4)$$

$$q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5)$$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

• p(x): degree of n-1 (assume n is even)

•
$$p(x) = p_H(x)x^{n/2} + p_L(x)$$
,

• $p_H(x), p_L(x)$: polynomials of degree n/2 - 1.

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{aligned} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \big(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\big) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{aligned}$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{aligned} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \big(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\big) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{aligned}$$

• Recurrence:
$$T(n) = 4T(n/2) + O(n)$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{aligned} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \big(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\big) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{aligned}$$

Recurrence: T(n) = 4T(n/2) + O(n)
T(n) = O(n²)

Reduce Number from 4 to 3

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

• $p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

 $\begin{aligned} \mathsf{multiply}(p,q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L\right) \times x^{n/2} \\ &+ r_L \end{aligned}$

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

 $\begin{aligned} \mathsf{multiply}(p,q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L\right) \times x^{n/2} \\ &+ r_L \end{aligned}$

• Solving Recurrence: T(n) = 3T(n/2) + O(n)

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

 $\begin{aligned} \mathsf{multiply}(p,q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L\right) \times x^{n/2} \\ &+ r_L \end{aligned}$

Solving Recurrence: T(n) = 3T(n/2) + O(n)
T(n) = O(n^{lg₂3}) = O(n^{1.585})

Assumption n is a power of 2. Arrays are 0-indexed.

$\mathsf{multiply}(A, B, n)$

1 if
$$n = 1$$
 then return $(A[0]B[0])$
2 $A_L \leftarrow A[0 \dots n/2 - 1], A_H \leftarrow A[n/2 \dots n - 1]$
3 $B_L \leftarrow B[0 \dots n/2 - 1], B_H \leftarrow B[n/2 \dots n - 1]$
3 $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
3 $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
3 $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
6 $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
7 for $i \leftarrow 0$ to $n - 2$ do
9 $C[i] \leftarrow C[i] + C_L[i]$
9 $C[i + n] \leftarrow C[i + n] + C_H[i]$
10 $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
11 $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12 return C

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- 7 Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

- Closest pair
- Convex hull
- Matrix multiplication
- FFT(Fast Fourier Transform): polynomial multiplication in $O(n\lg n)$ time

Closest Pair

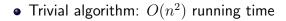
Input: n points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

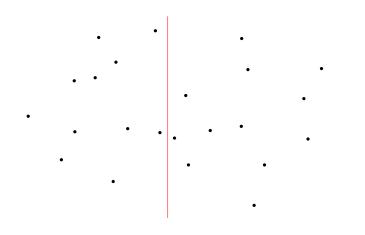
Input: n points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

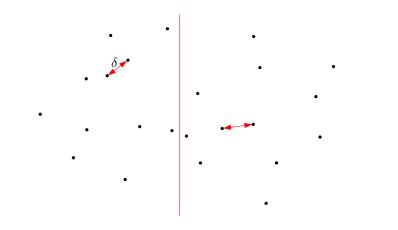
Input: n points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest



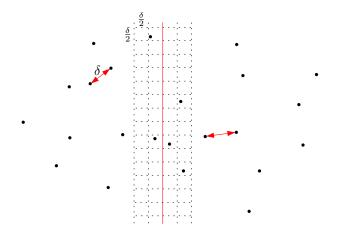
• Divide: Divide the points into two halves via a vertical line

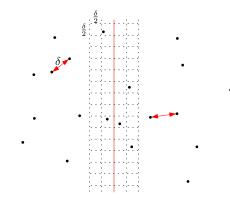


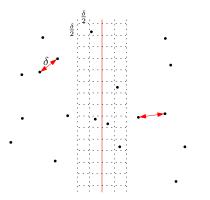
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively



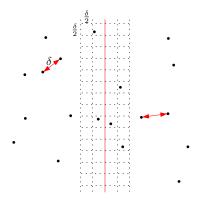
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half



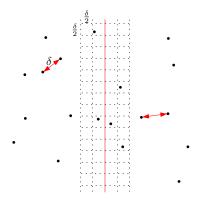




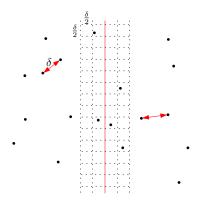
• Each box contains at most one pair



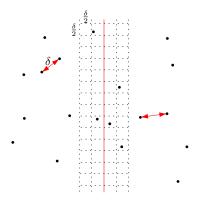
- Each box contains at most one pair
- \bullet For each point, only need to consider O(1) boxes nearby



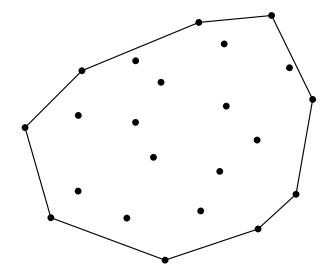
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)

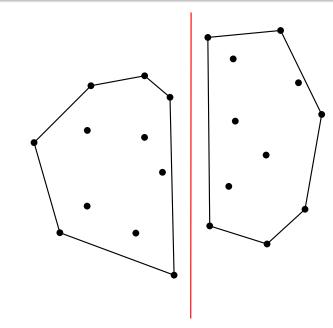


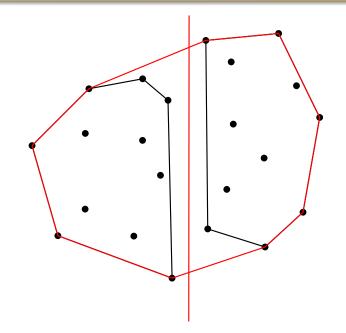
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)



- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$







Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B**Output:** C = AB

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B **Output:** C = AB

Naive Algorithm: matrix-multiplication(A, B, n)

- for $i \leftarrow 1$ to n
- 2 for $j \leftarrow 1$ to n

• for
$$k \leftarrow 1$$
 to n

 \bigcirc return C

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B **Output:** C = AB

Naive Algorithm: matrix-multiplication(A, B, n)

• for
$$i \leftarrow 1$$
 to n

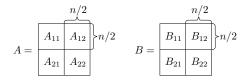
2 for
$$j \leftarrow 1$$
 to n

• for
$$k \leftarrow 1$$
 to n

 \bigcirc return C

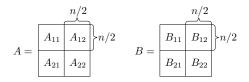
• running time =
$$O(n^3)$$

Try to Use Divide-and-Conquer



- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A, B) recursively calls matrix_multiplication(A₁₁, B₁₁), matrix_multiplication(A₁₂, B₂₁),

Try to Use Divide-and-Conquer



•
$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

• matrix_multiplication(A, B) recursively calls matrix_multiplication (A_{11}, B_{11}) , matrix_multiplication (A_{12}, B_{21}) ,

. . .

• Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$ • $T(n) = O(n^3)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

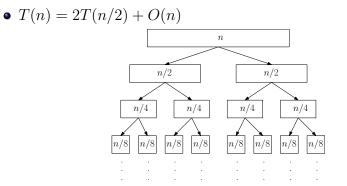
Outline

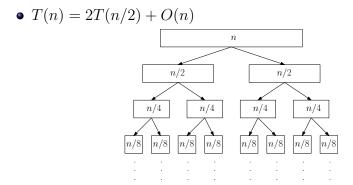
- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Methods for Solving Recurrences

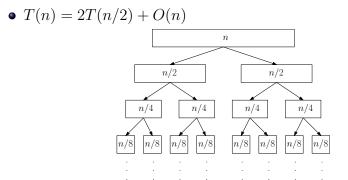
- The recursion-tree method
- The master theorem

•
$$T(n) = 2T(n/2) + O(n)$$

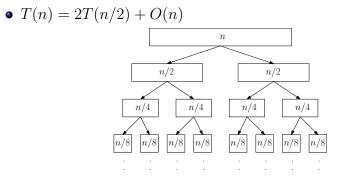




• Each level takes running time O(n)



- Each level takes running time O(n)
- There are $O(\lg n)$ levels



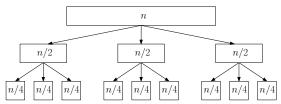
- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

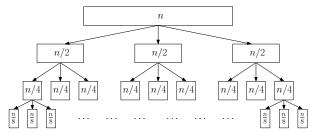
•
$$T(n) = 3T(n/2) + O(n)$$

•
$$T(n) = 3T(n/2) + O(n)$$

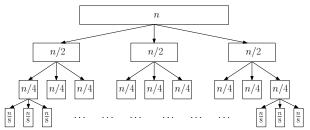
n

•
$$T(n) = 3T(n/2) + O(n)$$



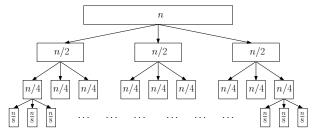


• T(n) = 3T(n/2) + O(n)

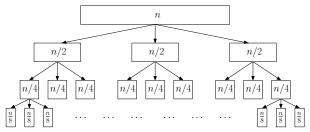


• Total running time at level *i*?

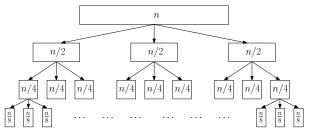
• T(n) = 3T(n/2) + O(n)



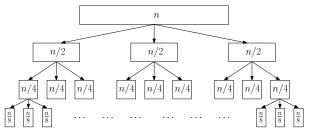
• Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$



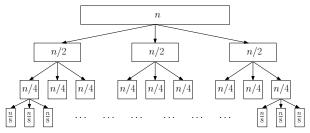
- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level?



- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$



- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

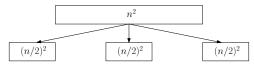


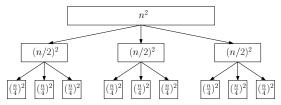
- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

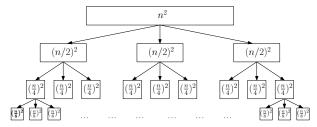
$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$

• $T(n) = 3T(n/2) + O(n^2)$

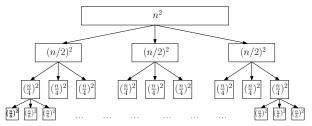
 n^2





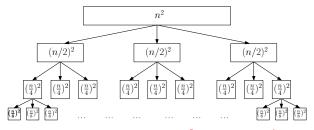


• $T(n) = 3T(n/2) + O(n^2)$

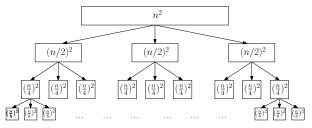


• Total running time at level *i*?

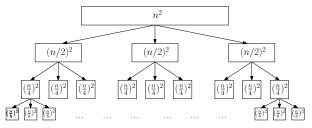
• $T(n) = 3T(n/2) + O(n^2)$



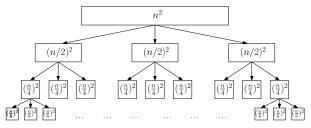
• Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$



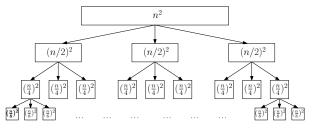
- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level?



- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$

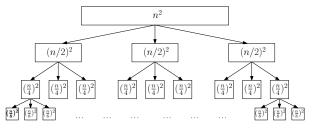


- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?



- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =$$



- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)				$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} ?? & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ \red{amulationary order} \\ \red{amulation} \\ \red{amulationary order} \\ \red{amulation$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ \red{eq: red} & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Ex: T(n) = 4T(n/2) + O(n²). Case 2. T(n) = O(n² lg n)
Ex: T(n) = 3T(n/2) + O(n). Case 1.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Ex: T(n) = 4T(n/2) + O(n²). Case 2. T(n) = O(n² lg n)
Ex: T(n) = 3T(n/2) + O(n). Case 1. T(n) = O(n^{lg₂3})

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3.

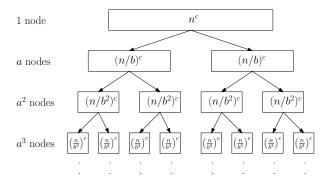
$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$
• Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$

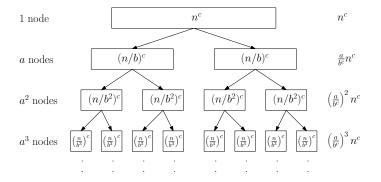
• Ex:
$$T(n) = T(n/2) + O(1)$$
. Case 2. $T(n) = O(\lg n)$

• Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

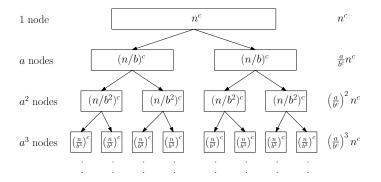
 $T(n) = aT(n/b) + O(n^c)$



 $T(n) = aT(n/b) + O(n^c)$

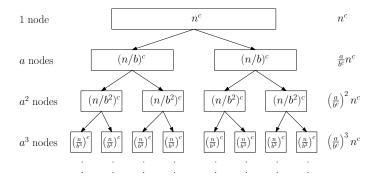


 $T(n) = aT(n/b) + O(n^c)$



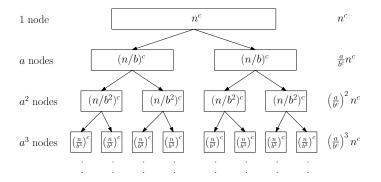
• $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$

 $T(n) = aT(n/b) + O(n^c)$



• $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$ • $c = \lg_b a$: all levels have same time: $n^c \lg_b n = O(n^c \lg n)$

 $T(n) = aT(n/b) + O(n^c)$



c < lg_b a : bottom-level dominates: (^a/_{bc})^{lg_b n} n^c = n^{lg_b a}
c = lg_b a : all levels have same time: n^c lg_b n = O(n^c lg n)
c > lg_b a : top-level dominates: O(n^c)

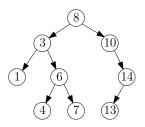
64/95

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
 - Computing *n*-th Fibonacci Number

- Elements are organized in a binary-tree structure
- Each element (node) is associated with a key value

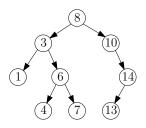
- if node u is in the left sub-tree of node v, then u.key ≤ v.key
- if node u is the right sub-tree of node v, then $u.key \ge v.key$



BST: numbers denote keys

- Elements are organized in a binary-tree structure
- Each element (node) is associated with a key value

- if node u is in the left sub-tree of node v, then u.key ≤ v.key
- if node u is the right sub-tree of node v, then $u.key \ge v.key$
- in-order traversal of tree gives a sorted list of keys



BST: numbers denote keys

Operations on Binary Search Tree ${\cal T}$

• **insert**: insert an element to T

Operations on Binary Search Tree ${\cal T}$

- **insert**: insert an element to T
- **delete**: delete an element from T

- insert: insert an element to T
- **delete**: delete an element from T
- **count-less-than**: return the number of elements in *T* with key values smaller than a given value

• insert: insert an element to T

. . .

- **delete**: delete an element from T
- **count-less-than**: return the number of elements in *T* with key values smaller than a given value
- check existence, return element with *i*-th smallest key value,

Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

- $\ \, \bullet \ \, T \leftarrow \mathsf{empty} \ \, \mathsf{BST}$
- $c \leftarrow 0$
- **3** for $i \leftarrow n$ downto 1
- $c \leftarrow c + T$.count-less-than(A[i])

• return c

Counting Inversions Via Binary Search Tree (BST)

count-inversions(A, n)

- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$

• return c

running time = $n \times (\text{time for count} + \text{time for insert})$

Counting Inversions Via Binary Search Tree (BST)

tree elements

$$15 \ 3 \ 16 \ 12 \ 32 \ 7$$

count-inversions(A, n)

- $\ \, \bullet \ \, T \leftarrow \mathsf{empty} \ \, \mathsf{BST}$
- $c \leftarrow 0$
- $\textbf{③} \text{ for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- T.insert(A[i])

• return c

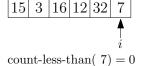
running time = $n \times (\text{time for count} + \text{time for insert})$

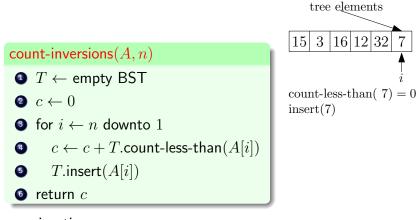
tree elements

$\mathsf{count}\text{-}\mathsf{inversions}(A,n)$

- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- $T.\mathsf{insert}(A[i])$

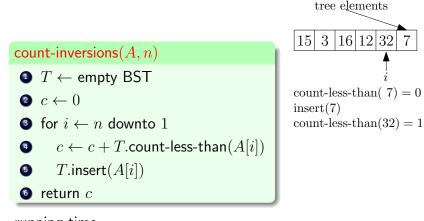
• return c





running time = $n \times (\text{time for count} + \text{time for insert})$

68/95



running time = $n \times (\text{time for count} + \text{time for insert})$

68/95

- $T \leftarrow empty BST$
- $c \leftarrow 0$
- **3** for $i \leftarrow n$ downto 1
- $c \leftarrow c + T$.count-less-than(A[i])
- $T.\mathsf{insert}(A[i])$

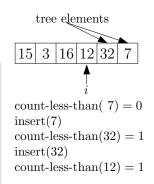
 \bullet return c

running time = $n \times (\text{time for count} + \text{time for insert})$

tree elements $15 \ 3 \ 16 \ 12 \ 32 \ 7$ icount-less-than(7) = 0 insert(7) count-less-than(32) = 1 insert(32)

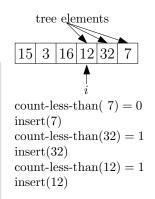
- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- **3** for $i \leftarrow n$ downto 1
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- $T.\mathsf{insert}(A[i])$

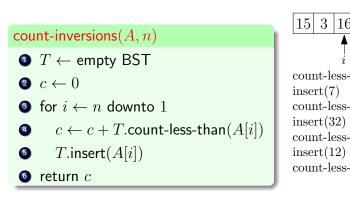
• return c



- $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- T.insert(A[i])

• return c



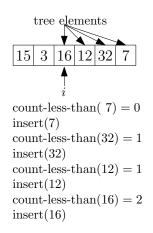


running time = $n \times (\text{time for count} + \text{time for insert})$

tree elements 16 12 32 count-less-than (7) = 0 $\operatorname{count-less-than}(32) = 1$ $\operatorname{count-less-than}(12) = 1$ $\operatorname{count-less-than}(16) = 2$

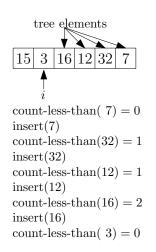
- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- T.insert(A[i])

 \bullet return c



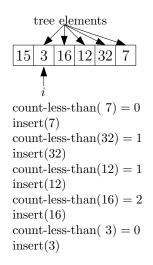
- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- T.insert(A[i])

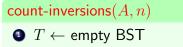
• return c



- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. count-less-than(A[i])$
- T.insert(A[i])

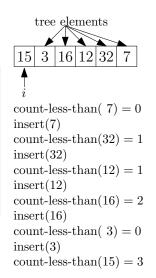
 \bullet return c





- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. count-less-than(A[i])$
- T.insert(A[i])

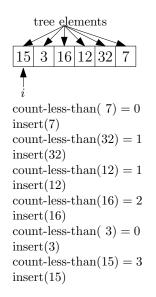
 $\mathbf{0}$ return c



count-inversions(A, n)

- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. count-less-than(A[i])$
- T.insert(A[i])

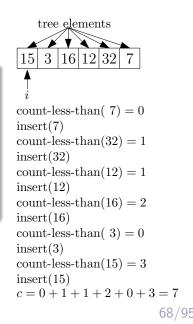
 $\mathbf{0}$ return c

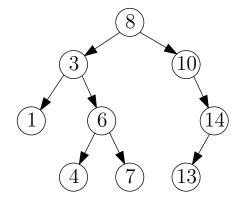


count-inversions(A, n)

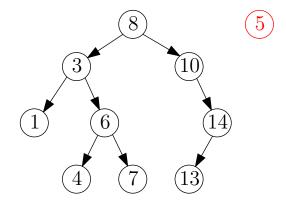
- **1** $T \leftarrow empty BST$
- $c \leftarrow 0$
- $\textbf{ o for } i \leftarrow n \text{ downto } 1$
- $c \leftarrow c + T. \mathsf{count-less-than}(A[i])$
- T.insert(A[i])

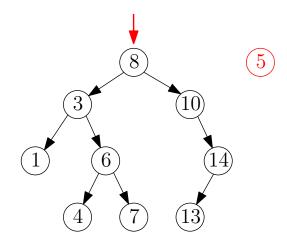
 $\mathbf{0}$ return c

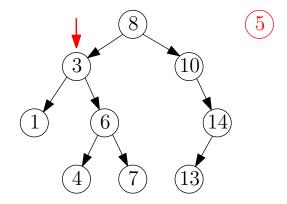


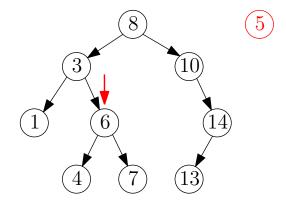


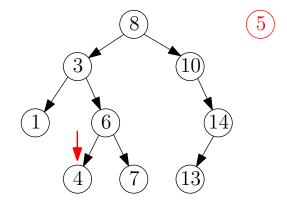
BST: numbers denote keys













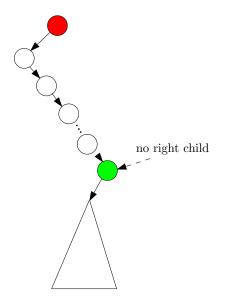
69/95

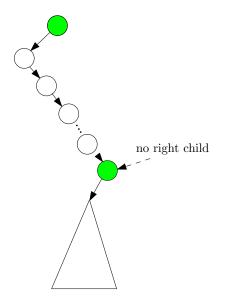
recursive-insert(v, key)

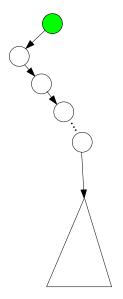
- if v = nil then
- $u \leftarrow \text{new node with } u.left = u.right = \text{nil}$
- $u.key \leftarrow key$
- return u
- if key < v.key then
- else
- \bigcirc return v

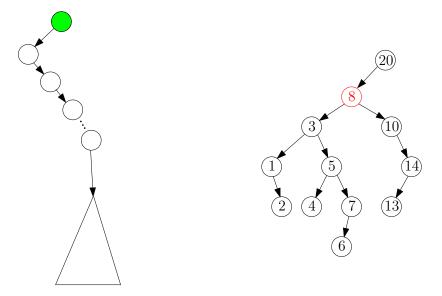
insert(key)

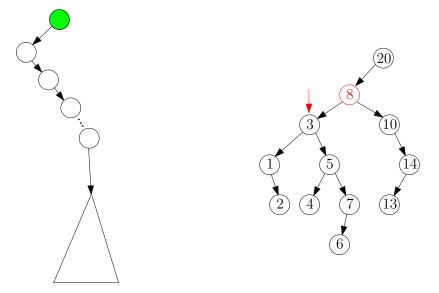
 $\ \, \bullet \ \, root \leftarrow \mathsf{recursive-insert}(root, key)$

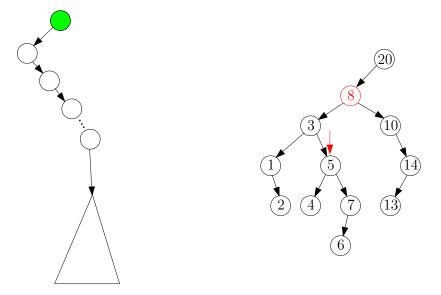


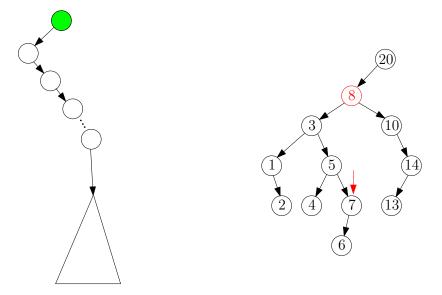


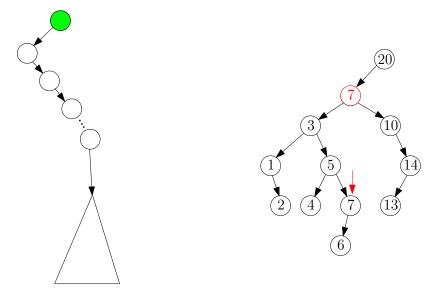




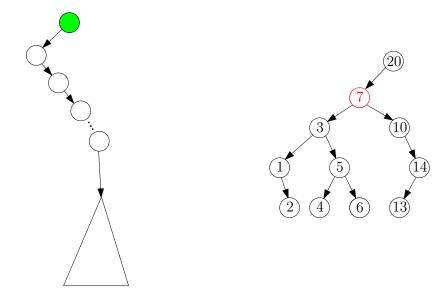








71/95



- if v.right = nil then return (v.left, v)
- $\textcircled{o} \ (v.right, del) \leftarrow \mathsf{recursive-delete}(v.right)$
- \bigcirc return (v, del)
 - \bullet recursive-delete(v) deletes the element in the sub-tree rooted at v with the largest key value

- if v.right = nil then return (v.left, v)
- $\textcircled{o} \ (v.right, del) \leftarrow \mathsf{recursive-delete}(v.right)$
- \bigcirc return (v, del)
 - $\bullet\ {\rm recursive-delete}(v)$ deletes the element in the sub-tree rooted at v with the largest key value
 - returns: the new root and the deleted node

- if v.right = nil then return (v.left, v)
- $\textcircled{o} \ (v.right, del) \leftarrow \mathsf{recursive-delete}(v.right)$
- \bigcirc return (v, del)
 - $\bullet\ {\rm recursive-delete}(v)$ deletes the element in the sub-tree rooted at v with the largest key value
 - returns: the new root and the deleted node

delete(v)\\ returns the new root after deletionIf v.left = nil then return v.rightIf $(r, del) \leftarrow$ recursive-delete(v.left)

 $I.key \leftarrow del.key$

• return r

if v.right = nil then return (v.left, v)
(v.right, del) ← recursive-delete(v.right)
return (v, del)

delete(v)

\setminus returns the new root after deletion

- if v.left = nil then return v.right
- $\textcircled{\ } (r,del) \leftarrow \mathsf{recursive-delete}(v.left)$
- $I.key \leftarrow del.key$

• return r

if v.right = nil then return (v.left, v)
(v.right, del) ← recursive-delete(v.right)
return (v, del)

delete(v)

\setminus returns the new root after deletion

- if v.left = nil then return v.right
- $\textcircled{\ } (r,del) \leftarrow \mathsf{recursive-delete}(v.left)$

$$I.key \leftarrow del.key$$

I return r

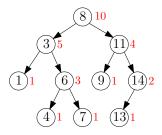
- to remove left-child of v: call $v.left \leftarrow delete(v.left)$
- to remove right-child of v: call $v.right \leftarrow delete(v.right)$
- to remove root: call $root \leftarrow delete(root)$

Binary Search Tree: count-less-than

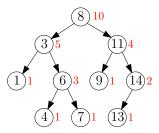
• Need to maintain a "size" property for each node

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v

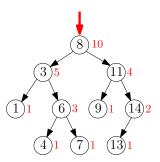


- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



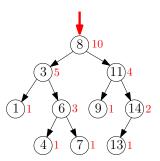
(elements < 10) =

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



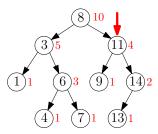
(elements < 10) =

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



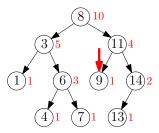
(elements < 10) $=(5{+}1)$

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



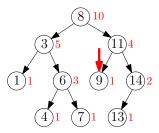
(elements < 10) $=(5{+}1)$

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



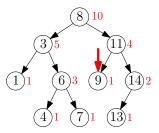
(elements < 10) $=(5{+}1)$

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



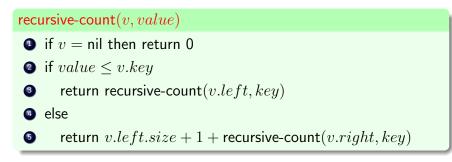
(elements < 10) = (5+1) +1

- Need to maintain a "size" property for each node
- v.size = number of nodes in the tree rooted at v



(elements < 10) = (5+1) + 1 = 7

• Trick: "nil" is a node with size 0.



count-less-than(value)

return recursive-count(root, value)

- Each operation takes time O(h).
- h =height of tree
- n = number of nodes in tree

- Each operation takes time O(h).
- h =height of tree
- n = number of nodes in tree

Q: What is the height of the tree in the best scenario?

- Each operation takes time O(h).
- h =height of tree
- n = number of nodes in tree

Q: What is the height of the tree in the best scenario?

A: $O(\lg n)$

- Each operation takes time O(h).
- h =height of tree
- n = number of nodes in tree

Q: What is the height of the tree in the best scenario?

A: $O(\lg n)$

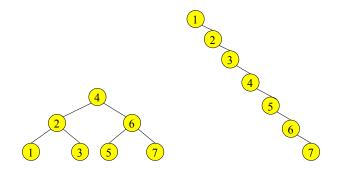
Q: What is the height of the tree in the worst scenario?

- Each operation takes time O(h).
- h =height of tree
- n = number of nodes in tree

Q: What is the height of the tree in the best scenario?

- A: $O(\lg n)$
- Q: What is the height of the tree in the worst scenario?

A: O(n)



77/95

Def. A self-balancing BST is a BST that automatically keeps its height small

Def. A self-balancing BST is a BST that automatically keeps its height small

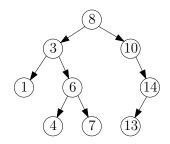
- AVL tree
- red-black tree
- Splay tree
- Treap
- ...

Def. A self-balancing BST is a BST that automatically keeps its height small

• AVL tree

- red-black tree
- Splay tree
- Treap
- ...

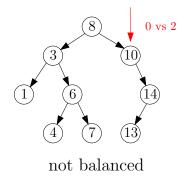
An AVL Tree Is Balanced



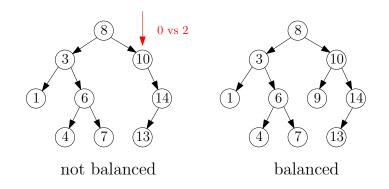
An AVL Tree Is Balanced



An AVL Tree Is Balanced



An AVL Tree Is Balanced



An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

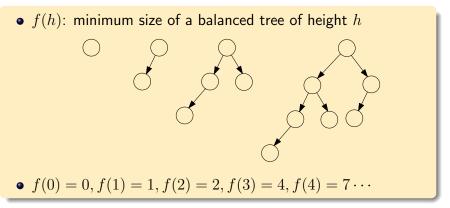
Lemma Property guarantees height = $O(\log n)$.

• f(h): minimum size of a balanced tree of height h

An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.

Lemma Property guarantees height = $O(\log n)$.



• f(h): minimum size of a balanced tree of height h



$$f(0) = 0$$

$$f(1) = 1$$

$$f(h) = f(h-1) + f(h-2) + 1 \qquad h \ge 2$$

• f(h): minimum size of a balanced tree of height h



$$\begin{split} f(0) &= 0 \\ f(1) &= 1 \\ f(h) &= f(h-1) + f(h-2) + 1 \end{split} \qquad h \geq 2 \\ \bullet \ f(h) &= 2^{\Theta(h)} \ \text{(i.e, } \lg f(h) = \Theta(h) \text{)} \end{split}$$

• f(h): minimum size of a balanced tree of height h • $f(h)=2^{\Theta(h)}$

- $\bullet \ f(h):$ minimum size of a balanced tree of height h
- $f(h) = 2^{\Theta(h)}$
- $\bullet~$ If a AVL tree has size n and height h, then

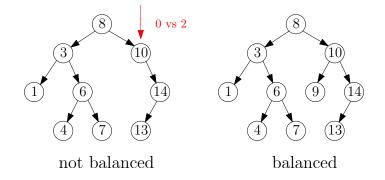
$$n \ge f(h) = 2^{\Theta(h)}$$

- $\bullet \ f(h):$ minimum size of a balanced tree of height h
- $f(h) = 2^{\Theta(h)}$
- $\bullet~$ If a AVL tree has size n and height h, then

$$n \ge f(h) = 2^{\Theta(h)}$$

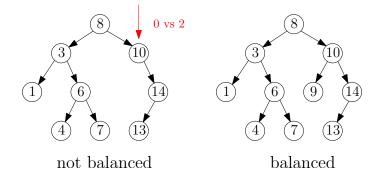
• Thus, $h \leq \Theta(\log n)$

An AVL Tree Is Balanced



An AVL Tree Is Balanced

Balanced: for every node v in the tree, the heights of the left and right sub-trees of v differ by at most 1.



• How can we maintain the balanced property?

Maintain Balance Property After Insertion

Maintain Balance Property After Insertion

• A: the deepest node such that the balance property is not satisfied after insertion

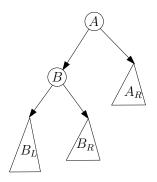
Maintain Balance Property After Insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A

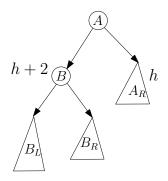
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A

- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B

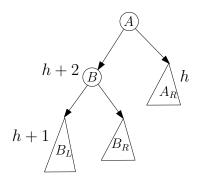
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



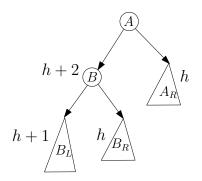
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



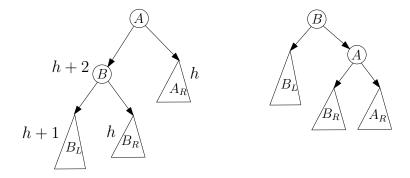
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



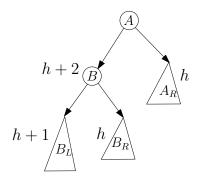
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B

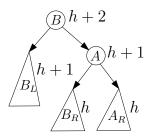


- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



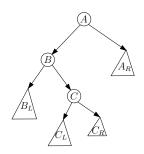


- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A

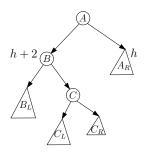
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B

- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- $\bullet\,$ case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B

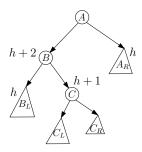
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



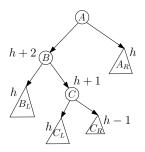
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- $\bullet\,$ case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



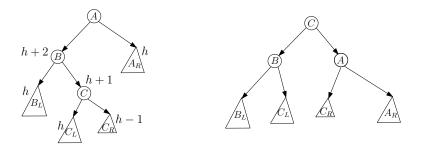
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



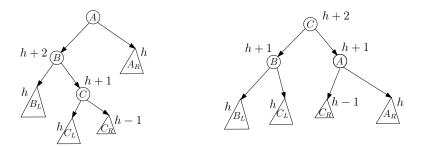
- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- \bullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



count-inversions(A, n)

- $\textcircled{O} T \leftarrow \mathsf{empty} \ \mathsf{AVL} \ \mathsf{tree}$
- $c \leftarrow 0$
- $\textbf{③} \ \text{for} \ i \leftarrow n \ \text{downto} \ 1$
- T.insert(A[i])
- $\mathbf{0}$ return c

count-inversions(A, n)

- $\textbf{0} \ T \leftarrow \mathsf{empty} \ \mathsf{AVL} \ \mathsf{tree}$
- $\bigcirc c \leftarrow 0$
- $\textbf{③} \ \text{for} \ i \leftarrow n \ \text{downto} \ 1$
- $c \leftarrow c + T$.count-less-than(A[i])
- \bullet T.insert(A[i])

$\mathbf{0}$ return c

• Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(\lg n)$.

count-inversions(A, n)

- $\textbf{0} \ T \leftarrow \mathsf{empty} \ \mathsf{AVL} \ \mathsf{tree}$
- $c \leftarrow 0$
- $\textbf{③} \ \text{for} \ i \leftarrow n \ \text{downto} \ 1$
- $c \leftarrow c + T$.count-less-than(A[i])
- \bullet T.insert(A[i])

 $\mathbf{0}$ return c

- Each operation (insert, delete, count-less-than, etc.) takes time $O(h) = O(\lg n)$.
- Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Self-Balancing Binary Search Trees
- 8 Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0Output: F_n

$\mathsf{Fib}(n)$

- if n = 0 return 0
- 2 if n = 1 return 1

$$\bullet$$
 return $\mathsf{Fib}(n-1) + \mathsf{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

$\mathsf{Fib}(n)$

- if n = 0 return 0
- 2 if n = 1 return 1

$$\bullet$$
 return $\mathsf{Fib}(n-1) + \mathsf{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

$\mathsf{Fib}(n)$

- if n = 0 return 0
- 2 if n = 1 return 1

$$\bullet$$
 return $\mathsf{Fib}(n-1) + \mathsf{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

• Running time is at least $\Omega(F_n)$

$\mathsf{Fib}(n)$

- if n = 0 return 0
- **2** if n = 1 return 1

$$\bullet$$
 return $\mathsf{Fib}(n-1) + \mathsf{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

- $\bullet F[0] \leftarrow 0$
- $\textbf{ o for } i \leftarrow 2 \text{ to } n \text{ do}$

$$\bullet \qquad F[i] \leftarrow F[i-1] + F[i-2]$$

5 return F[n]

• Dynamic Programming

Computing F_n : Reasonable Algorithm

Fib(n)

- $\bullet \ F[0] \leftarrow 0$

3 for
$$i \leftarrow 2$$
 to n do

$$\bullet \qquad F[i] \leftarrow F[i-1] + F[i-2]$$

5 return F[n]

- Dynamic Programming
- Running time = ?

Computing F_n : Reasonable Algorithm

Fib(n)

- $\bullet F[0] \leftarrow 0$
- ${\bf 2} \ F[1] \leftarrow 1$

$${f 0}$$
 for $i\leftarrow 2$ to n do

$$\bullet \quad F[i] \leftarrow F[i-1] + F[i-2]$$

5 return F[n]

- Dynamic Programming
- Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
...

$$\left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right)^{n-1} \left(\begin{array}{c}F_1\\F_0\end{array}\right)$$

• if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- $\ 2 \ R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $\textbf{3} \ R \leftarrow R \times R$
- if *n* is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

• return R

$\mathsf{Fib}(n)$

- I if n = 0 then return 0
- $\textcircled{O} M \gets \mathsf{power}(n-1)$
- 3 return M[1][1]

• if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- $\ 2 \ R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $\textbf{3} \ R \leftarrow R \times R$

• if
$$n$$
 is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

• return R

$\mathsf{Fib}(n)$

- $\textcircled{O} M \gets \mathsf{power}(n-1)$
- $\textcircled{o} \ \operatorname{return} \ M[1][1]$

• Recurrence for running time?

• if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- $\ 2 \ R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $\textcircled{3} R \leftarrow R \times R$

• if
$$n$$
 is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

⑤ return R

$\mathsf{Fib}(n)$

- I if n = 0 then return 0
- $\textcircled{O} M \gets \mathsf{power}(n-1)$
- o return M[1][1]

• Recurrence for running time? T(n) = T(n/2) + O(1)

• if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $\textbf{3} \ R \leftarrow R \times R$

• if
$$n$$
 is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

• return R

$\mathsf{Fib}(n)$

- $\textcircled{O} M \gets \mathsf{power}(n-1)$
- o return M[1][1]
 - Recurrence for running time? T(n) = T(n/2) + O(1)

•
$$T(n) = O(\lg n)$$

Q: How many bits do we need to represent F(n)?

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

Q: How many bits do we need to represent F(n)?

- A: $\Theta(n)$
 - We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time
- Even printing F(n) requires time much larger than $O(\lg n)$

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time
- Even printing F(n) requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n , we need $O(\lg n)$ basic arithmetic operations on integers

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

• Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$
- Usually, designing better algorithm for "combine" step is key to improve running time