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Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
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(Undirected) Graph G = (V,E)
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V : a set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains
subsets of size 2
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}
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Abuse of Notations

For (undirected) graphs, we often use (i, j) to denote the set
{i, j}.
We call (i, j) an unordered pair; in this case (i, j) = (j, i).
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E = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8),
(4, 5), (5, 6), (7, 8)}
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Social Network : Undirected

Transition Graph : Directed

Road Network : Directed or Undirected

Internet : Directed or Undirected



7/28

Representation of Graphs
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Adjacency matrix

n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0
otherwise
A is symmetric if graph is undirected

Linked lists

For every vertex v, there is a linked list containing all
neighbours of v.
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Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n) O(dv)
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Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)
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Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj

and have an edge to a vertex in Lj
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Implementing BFS using a Queue

BFS(s)

1 head← 1, tail← 1, queue[1]← s

2 mark s as “visited” and all other vertices as “unvisited”

3 while head ≥ tail

4 v ← queue[tail], tail← tail + 1

5 for all neighbours u of v

6 if u is “unvisited” then

7 head← head+ 1, queue[head] = u

8 mark u as “visited”

Running time: O(n+m).
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Example of BFS via Queue
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head

tail

v

2 3 4 5 7 8 61
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Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back
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Implementing DFS using a Stack

DFS(s)

1 head← 1, stack[1]← s

2 mark all vertices as “unexplored”

3 while head ≥ 1

4 v ← stack[head], head← head− 1

5 if v is unexplored then

6 mark v as “explored”

7 for all neighbours u of v

8 if u is not explored then

9 head← head+ 1, stack[head] = u

Running time: O(n+m).
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Example of DFS using Stack
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head
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Implementing DFS using Recurrsion

DFS(s)

1 mark all vertices as “unexplored”

2 recursive-DFS(s)

recursive-DFS(v)

1 if v is explored then return

2 mark v as “explored”

3 for all neighbours u of v

4 recursive-DFS(u)
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Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a
bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) ∈ E, we have either
u ∈ L, v ∈ R or v ∈ L, u ∈ R.
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Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component
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Test Bipartiteness

bad edges!
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Testing Bipartiteness using BFS

BFS(s)

1 head← 1, tail← 1, queue[1]← s

2 mark s as “visited” and all other vertices as “unvisited”

3 color[s]← 0

4 while head ≥ tail

5 v ← queue[tail], tail← tail + 1

6 for all neighbours u of v

7 if u is “unvisited” then

8 head← head+ 1, queue[head] = u

9 mark u as “visited”

10 color[u]← 1− color[v]
11 elseif color[u] = color[v] then

12 print(“G is not bipartite”) and exit
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Testing Bipartiteness using BFS

1 mark all vertices as “unvisited”

2 for each vertex v ∈ V
3 if v is “unvisited” then

4 test-bipartiteness(v)

5 print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

Homework problem: using DFS to implement test-bipartiteness.
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Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)
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Topological Ordering

Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.
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Topological Ordering

Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0
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topological-sort(G)

1 let dv ← 0 for every v ∈ V
2 for every v ∈ V
3 for every u such that (v, u) ∈ E
4 du ← du + 1

5 S ← {v : dv = 0}, i← 0

6 while S 6= ∅
7 v ← arbitrary vertex in S, S ← S \ {v}
8 i← i+ 1, π(v)← i

9 for every u such that (v, u) ∈ E
10 du ← du − 1

11 if du = 0 then add u to S

12 if i < n then output “not a DAG”

S can be represented using a queue or a stack
Running time = O(n+m)
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