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Main Goal of Algorithm Design

Design fast algorithms to solve problems

Design more efficient algorithms to solve problems

Trivial Algorithm for an Optimization Problem

Enumerate all potential solutions, compare them and output the
best one that is valid.

However, trivial algorithm often runs in exponential time, as
the number of potential solutions is often exponentially large.

f(n) is polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = efficient
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Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming
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Greedy Algorithm

Build up the solutions in step

At each step, make a decision that optimizes some criterion,
that is “reasonable”
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Toy Problem 1: Bill Changing

Input: Integer A ≥ 0

Currency denominations: $1, $2, $5, $10, $20

Output: A way to pay A dollars using fewest number of bills

Example:

Input: 48

Output: 5 bills, $48 = $20× 2 + $5 + $2 + $1

Cashier’s Algorithm

1 while A ≥ 0 do

2 a← max{t ∈ {1, 2, 5, 10, 20} : t ≤ A}
3 pay a $a bill

4 A← A− a



7/97

Cashier’s Algorithm is Optimum

Lemma Cashier’s algorithm gives the optimum solution for
currency denominations $1, $2, $5, $10, $20.

n1, n2, n5, n10, n20: number of $1, $2, $5, $10, $20 bills paid

minimize n1 + n2 + n5 + n10 + n20 subject to
n1 + 2n2 + 5n5 + 10n10 + 20n20 = A

Obs.

n1 < 2 2 ≤ A < 5: pay a $2 bill

n1 + 2n2 < 5 5 ≤ A < 10: pay a $5 bill

n1 + 2n2 + 5n5 < 10 10 ≤ A < 20: pay a $10 bill

n1 + 2n2 + 5n5 + 10n10 < 20 20 ≤ A <∞: pay a $20 bill
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Toy Example 2: Box Packing

Box Packing

Input: n boxes of capacities c1, c2, · · · , cn
m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj ≤ ci

Output: A way to put as many items as possible in the boxes.

Example:

Box capacities: 60, 40, 25, 15, 12

Item sizes: 45, 42, 20, 19, 16

Can put 3 items in boxes: 45→ 60, 20→ 40, 19→ 25
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Box Packing: Design Greedy Strategy

Q: Take box 1 (with capacity c1). Which item should we put in
box 1? Can you design a simple strategy?

A: The item of the largest size that can be put into the box.

Reason why the strategy is good: putting the item in box 1
will give us the easiest residual problem.

Greedy Algorithm for Box Packing

1 T ← {1, 2, 3, · · · ,m}
2 for i← 1 to n do

3 if some item in T can be put into box i, then

4 j ← the largest item in T that can be put into box i

5 print(“put item j in box i”)

6 T ← T \ {j}
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Steps of Designing Greedy Algorithms

1 Design a greedy choice
2 Prove it is “safe” to make the greedy choice

Usually done by “exchange argument”

3 Show that the remaining task after applying the greedy
choice is to solve a (many) smaller instance(s) of the same
problem.

The step is usually trivial

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Exchange argument: let S be an arbitrary optimum solution. If S
is consistent with the greedy choice, we are done. Otherwise,
modify it to another optimum solution S ′ such that S ′ is
consistent with the greedy choice.
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Interval Scheduling

Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?

Schedule the job with the smallest size? No!

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other
jobs? No!

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other
jobs? No!

Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

Proof.

Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain an new
optimum schedule S ′.

S:

j:

S ′:
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Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

What is the remaining task after we decided to schedule j?

Is it another instance of interval scheduling problem? Yes!

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1 A← {1, 2, · · · , n}, S ← ∅
2 while A 6= ∅
3 j ← arg minj′∈A fj′

4 S ← S ∪ {j}; A← {j′ ∈ A : sj′ ≥ fj}
5 return S

0 1 2 3 4 5 6 7 8 9
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Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1 A← {1, 2, · · · , n}, S ← ∅
2 while A 6= ∅
3 j ← arg minj′∈A fj′

4 S ← S ∪ {j}; A← {j′ ∈ A : sj′ ≥ fj}
5 return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time
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Clever Implementation of Greedy Algorithm

Schedule(s, f, n)

1 sort jobs according to f values

2 t← 0, S ← ∅
3 for every j ∈ [n] according to non-decreasing order of fj
4 if sj ≥ t then

5 S ← S ∪ {j}
6 t← fj
7 return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

9

t
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Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .

a i

b

h g

c d

f

e
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a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n− 1 edges;

T is acyclic and has n− 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.
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Minimum Spanning Tree (MST) Problem

Input: Graph G = (V,E) and edge weights w : E → R
Output: the spanning tree T of G with the minimum total

weight

a

b c

d

e

5

8 2

7

11

6

12
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Recall: Steps for Designing Greedy Algorithms

1 Design a greedy choice
2 Prove it is “safe” to make the greedy choice

Usually done by “exchange argument”

3 Show that the remaining task after applying the greedy
choice is to solve a (many) smaller instance(s) of the same
problem.

The step is usually trivial

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST

Kruskal’s Algorithm

Prim’s Algorithm
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a i
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
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Lemma It is safe to include the lightest edge: there is a
minimum spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e∗ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T ′

w(e∗) ≤ w(e) =⇒ w(T ′) ≤ w(T ): T ′ is also a MST

lightest edge e∗

u

v
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Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e
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12
g∗

Residual problem: find the minimum spanning tree that
contains edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph
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Contraction of an Edge (u, v)

a i

b

h g

c d

f

e
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14
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g∗

Remove u and v from the graph, and add a new vertex u∗

Remove all edges parallel to (u, v) from E

For every edge (u,w) ∈ E,w 6= v, change it to (u∗, w)

For every edge (v, w) ∈ E,w 6= u, change it to (u∗, w)

May create parallel edges! E.g. : two edges (i, g∗)
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Greedy Algorithm

Repeat the following step until G contains only one vertex:

1 Choose the lightest edge e∗, add e∗ to the spanning tree

2 Contract e∗ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path
connecting u and v formed by edges we selected
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Greedy Algorithm

MST-Greedy(G,w)

1 F = ∅
2 sort edges in E in non-decreasing order of weights w

3 for each edge (u, v) in the order

4 if u and v are not connected by a path of edges in F

5 F = F ∪ {(u, v)}
6 return (V, F )
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Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e
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Sets: {a, b, c, i, f, g, h, d, e}
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Kruskal’s Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F )
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Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F )

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .



36/97

Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:

Check if u and v are in the same set of the partition
Merge two sets in partition
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V = {1, 2, 3, · · · , 16}
Partition:
{2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

par[i]: parent of i, (par[i] = nil if i is a root).



38/97

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r′: par[r]← r′.
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Union-Find Data Structure

root(v)

1 if par[v] = nil then

2 return v

3 else

4 return root(par[v])

root(v)

1 if par[v] = nil then

2 return v

3 else

4 par[v] ← root(par[v])

5 return par[v]

Problem: the tree might too deep; running time might be
large

Improvement: all vertices in the path directly point to the
root, saving time in the future.
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Union-Find Data Structure

root(v)

1 if par[v] = nil then

2 return v

3 else

4 par[v]← root(par[v])

5 return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5
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MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F )
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MST-Kruskal(G, w)

1 F ← ∅
2 for every v ∈ V : let par[v]← nil

3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 u′ ← root(u)

6 v′ ← root(v)

7 if u′ 6= v′

8 F ← F ∪ {(u, v)}
9 par[u′]← v′

10 return (V, F )

2 , 5 , 6 , 7 , 9 takes time O(mα(n))

α(n) is very slow-growing: α(n) ≤ 4 for n ≤ 1080.

Running time = time for 3 = O(m lg n).
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Assumption Assume all edge weights are different.

Lemma An edge e ∈ E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i
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(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists
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Two Methods to Build a MST
1 Start from F ← ∅, and add edges to F one by one until we

obtain a spanning tree

2 Start from F ← E, and remove edges from F one by one
until we obtain a spanning tree

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.
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Lemma It is safe to exclude the heaviest non-bridge edge: there
is a MST that does not contain the heaviest non-bridge edge.

Proof left as a homework exercise.
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Reverse Kruskal’s Algorithm

MST-Greedy(G,w)

1 F ← E

2 sort E in non-increasing order of weights

3 for every e in this order

4 if (V, F \ {e}) is connected then

5 F ← F \ {e}
6 return (V, F )
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Reverse Kruskal’s Algorithm: Example

a i
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h g

c d

f
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Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose
the edge with the smallest weight.
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Greedy strategy for Prim’s algorithm: choose the lightest
edge incident to a.
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Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e∗ incident to a

C

Proof.

Let T be a MST

Consider all components obtained by removing a from T

Let e∗ be the lightest edge incident to a and e∗ connects a to
component C

Let e be the edge in T connecting a to C

T ′ = T \ e ∪ {e∗} is a spanning tree with w(T ′) ≤ w(T )
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Prim’s Algorithm: Example

a i
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Greedy Algorithm

MST-Greedy1(G,w)

1 S ← {s}, where s is arbitrary vertex in V

2 F ← ∅
3 while S 6= V

4 (u, v)← lightest edge between S and V \ S,
where u ∈ S and v ∈ V \ S

5 S ← S ∪ {v}
6 F ← F ∪ {(u, v)}
7 return (V, F )

Running time of naive implementation: O(nm)
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

a i

b

h g

c d

f

e
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(13, c)

(7, i) (3, f )

(10, f )
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value

Add (π(u), u) to F

Add u to S, update d and π values.
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Prim’s Algorithm

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 while S 6= V , do

4 u← vertex in V \ S with the minimum d(u)

5 S ← S ∪ {u}
6 for each v ∈ V \ S such that (u, v) ∈ E
7 if w(u, v) < d(v) then

8 d(v)← w(u, v)

9 π(v)← u

10 return
{

(u, π(u))|u ∈ V \ {s}
}
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Example
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Prim’s Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value extract min

Add (π(u), u) to F

Add u to S, update d and π values. decrease key

Use a priority queue to support the operations
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Def. A priority queue is an abstract data structure that
maintains a set U of elements, each with an associated key value,
and supports the following operations:

insert(v, key value): insert an element v, whose associated
key value is key value.

decrease key(v, new key value): decrease the key value of
an element v in queue to new key value

extract min(): return and remove the element in queue with
the smallest key value

· · ·
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Prim’s Algorithm

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3

4 while S 6= V , do

5 u← vertex in V \ S with the minimum d(u)

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v)

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}
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Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}
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Running Time of Prim’s Algorithm Using Priority

Queue

O(n)× (time for extract min) + O(m)× (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)

We will talk about the heap data structure soon.
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Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut
(U, V \ U), such that (u, v) is the lightest edge between U and
V \ U .
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(c, f) is in MST because of cut
(
{a, b, c, i}, V \ {a, b, c, i}

)
(i, g) is not in MST because no such cut exists
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“Evidence” for e ∈ MST or e /∈ MST

Assumption Assume all edge weights are different.

e ∈ MST ↔ there is a cut in which e is the lightest edge

e /∈ MST ↔ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that
maintains a set U ⊆ V of elements, each with an associated key
value, and supports the following operations:

insert(v, key value): insert an element v ∈ V \ U , with
associated key value key value.

decrease key(v, new key value): decrease the key value of
an element v ∈ U to new key value

extract min(): return and remove the element in U with the
smallest key value

· · ·
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Simple Implementations for Priority Queue

n = size of ground set V

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)
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Heap

The elements in a heap is organized using a complete binary tree:

1

2 3

4 5 6 7

8 9 10

Nodes are indexed as
{1, 2, 3, · · · , s}
Parent of node i: bi/2c
Left child of node i: 2i

Right child of node i: 2i+ 1
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Heap

A heap H contains the following fields

s: size of U (number of elements in the heap)

A[i], 1 ≤ i ≤ s: the element at node i of the tree

p(v), v ∈ U : the index of node containing v

key(v), v ∈ U : the key value of element v

1

2

4

3

5

f

g

e b

c

s = 5

A = (‘f ’, ‘g’, ‘c’, ‘e’, ‘b’)

p(‘f ’) = 1, p(‘g’) = 2, p(‘c’) = 3,
p(‘e’) = 4, p(‘b’) = 5
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Heap

The following heap property is satisfied:

for any two nodes i, j such that i is the parent of j, we have
key(A[i]) ≤ key(A[j]).

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

17

19

A heap. Numbers in the circles denote key values of elements.
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insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 17

2

3

4

10

19
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insert(v, key value)

1 s← s+ 1

2 A[s]← v

3 p(v)← s

4 key(v)← key value

5 heapify up(s)

heapify-up(i)

1 while i > 1

2 j ← bi/2c
3 if key(A[i]) < key(A[j]) then

4 swap A[i] and A[j]

5 p(A[i])← i, p(A[j])← j

6 i← j

7 else break
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extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10
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173
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17
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extract min()

1 ret← A[1]

2 A[1]← A[s]

3 p(A[1])← 1

4 s← s− 1

5 if s ≥ 1 then

6 heapify down(1)

7 return ret

decrease key(v, key value)

1 key(v)← key value

2 heapify-up(p(v))

heapify-down(i)

1 while 2i ≤ s

2 if 2i = s or
key(A[2i]) ≤ key(A[2i+ 1]) then

3 j ← 2i

4 else

5 j ← 2i+ 1

6 if key(A[j]) < key(A[i]) then

7 swap A[i] and A[j]

8 p(A[i])← i, p(A[j])← j

9 i← j

10 else break
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Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)
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Two Definitions Needed to Prove that the

Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key(A[i]) is
too small if we can increase key(A[i]) to make H a heap.

Def. We say that H is almost a heap except that key(A[i]) is
too big if we can decrease key(A[i]) to make H a heap.
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Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm
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4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Summary
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s-t Shortest Paths

Input: (directed or undirected) graph G = (V,E), s, t ∈ V
w : E → R≥0

Output: shortest path from s to t

16 1

1 5 4
2

104

3

s

333 t
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Reason for Considering Single Source Shortest Paths Problem

We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight
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Shortest path from s to v may contain Ω(n) edges

There are Ω(n) different vertices v

Thus, printing out all shortest paths may take time Ω(n2)

Not acceptable if graph is sparse
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Shortest Path Tree

O(n)-size data structure to represent all shortest paths

For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)

16 10

1 5 12 4

74

3

s c d

e f t

a b

2

5

8 9 6

0

3

2 7

7

4 13

14
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: π(v), v ∈ V \ s: the parent of v

d(v), v ∈ V \ s: the length of shortest path from s to v
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Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s

1

2 3

4 5

7

8

6
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Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

4 1 1 1 1u v u v

Shortest Path Algorithm by Running BFS

1 replace (u, v) of length w(u, v) with a path of w(u, v)
unit-weight edges, for every (u, v) ∈ E

2 run BFS virtually

3 π(v) = vertex from which v is visited

4 d(v) = index of the level containing v

Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS Virtually

1 S ← {s}, d(s)← 0

2 while |S| ≤ n

3 find a v /∈ S that minimizes min
u∈S:(u,v)∈E

{d(u) + w(u, v)}
4 S ← S ∪ {v}
5 d(v)← minu∈S:(u,v)∈E{d(u) + w(u, v)}
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Virtual BFS: Example

4

2 3

5

4 6

5

4

3

s a b

edcc

0

2

4

7

9

10

Time 10
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Dijkstra’s Algorithm

Dijkstra(G,w, s)

1 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
2 while S 6= V do

3 u← vertex in V \ S with the minimum d(u)

4 add u to S

5 for each v ∈ V \ S such that (u, v) ∈ E
6 if d(u) + w(u, v) < d(v) then

7 d(v)← d(u) + w(u, v)

8 π(v)← u

9 return (d, π)

Running time = O(n2)
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Improved Running Time using Priority Queue

Dijkstra(G,w, s)

1

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if d(u) + w(u, v) < d(v) then

9 d(v)← d(u) + w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return (π, d)
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Recall: Prim’s Algorithm for MST

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}
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Improved Running Time

Running time:
O(n)× (time for extract min) +O(m)× (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)
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Summary for Greedy Algorithms

1 Design a greedy choice

Interval scheduling problem: schedule the job j∗ with the
earliest deadline
Kruskal’s algorithm for MST: select lightest edge e∗

Inverse Kruskal’s algorithm for MST: drop the heaviest
non-bridge edge e∗

Prim’s algorithm for MST: select the lightest edge e∗ incident
to a specified vertex s
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Summary for Greedy Algorithms

1 Design a greedy choice

2 Prove it is “safe” to make the greedy choice

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Usually done by “exchange argument”
Interval scheduling problem: exchange j∗ with the first job in
an optimal solution
Kruskal’s algorithm: exchange e∗ with some edge e in the cycle
in T ∪ {e∗}
Prim’s algorithm: exchange e∗ with some other edge e incident
to s
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Summary for Greedy Algorithms

1 Design a greedy choice

2 Prove it is “safe” to make the greedy choice
3 Show that the remaining task after applying the greedy

choice is to solve a (many) smaller instance(s) of the same
problem.

Interval scheduling problem: remove j∗ and the jobs it conflicts
with
Kruskal and Prim’s algorithms: contracting e∗

Inverse Kruskal’s algorithm: remove e∗
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Summary for Greedy Algorithms

Dijkstra’s algorithm does not quite fit in the framework.

It combines “greedy algorithm” and “dynamic programming”

Greedy algorithm: each time select the vertex in V \ S with
the smallest d value and add it to S

Dynamic programming: remember the d values of vertices in
S for future use

Dijkstra’s algorithm is very similar to Prim’s algorithm for
MST
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