
CSE 431/531: Analysis of Algorithms

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

3/69

CSE 431/531: Analysis of Algorithms

Course webpage:
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up the course on Piazza:
http://piazza.com/buffalo/fall2016/cse431531

http://www.cse.buffalo.edu/~shil/courses/CSE531/
http://piazza.com/buffalo/fall2016/cse431531

4/69

CSE 431/531: Analysis of Algorithms

Time and locatiion:

MoWeFr, 9:00-9:50am
Cooke 121

Lecturer:

Shi Li, shil@buffalo.edu
Office hours: TBD

TAs

Di Wang, dwang45@buffalo.edu
Minwei Ye, minweiye@buffalo.edu
Alexander Stachnik, ajstachn@buffalo.edu

5/69

You should know:

Mathematical Tools

Mathematical inductions
Probabilities and random variables

Data Structures

Stacks, queues, linked lists

Some Programming Experience

E.g., C, C++ or Java

You may know:

Asymptotic analysis

Simple algorithm design techniques such as greedy,
divide-and-conquer, dynamic programming

6/69

You Will Learn

Classic algorithms for classic problems

Sorting
Shortest paths
Minimum spanning tree
Network flow

How to analyze algorithms

Correctness
Running time (efficiency)
Space requirement

Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming
Reductions

NP-completeness

7/69

Textbook

Required Textbook:

Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

Other Reference Books

Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein

8/69

Grading

20% for homeworks

5 homeworks, each worth 4%

20% for projects

2 projects, each worth 10%

30% for in-class exams

2 in-class exams, each worth 15%

30% for final exam

If to your advantage: each in-class exam is worth 5% and final
is worth 50%

9/69

For Homeworks, You Are Allowed to

Use course materials (textbook, reference books, lecture
notes, etc)

Post questions on Piazza

Ask me or TAs for hints

Collaborate with classmates

Think about each problem for enough time before discussing
Must write down solutions on your own, in your own words
Write down names of students you collaborated with

10/69

For Homeworks, You Are Not Allowed to

Use external resources

Can’t Google or ask questions online for solutions
Can’t read posted solutions from other algorithm courses

Copy solutions from other students

If you are not following the rules, you will get an “F” for the
course.

11/69

Projects

Need to implement an algorithm for each of the two projects

Can not copy codes from others or the Internet

If you are not following the rules, you will get an “F” for the
course.

12/69

Late policy

You have one late credit

turn in a homework or a project late for three days using the
late credit

no other late submissions will be accepted

13/69

Exams

Closed-book

Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F” for the
course.

Questions?

14/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

15/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

16/69

What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

Computational problem: specifies the input/output
relationship.

An algorithm solves a computational problem if it produces
the correct output for any given input.

17/69

Examples

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)→ (210, 60)→ (60, 30)→ (30, 0)

18/69

Examples

Sorting

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence

such that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .

19/69

Examples

Shortest Path

Input: directed graph G = (V,E), s, t ∈ V

Output: a shortest path from s to t in G

16 1

1 5 4
2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm

20/69

Algorithm = Computer Program?

Algorithm: “abstract”, can be specified using computer
program, English, pseudo-codes or flow charts.

Computer program: “concrete”, implementation of
algorithm, associated with a particular programming language

21/69

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1 while b > 0

2 (a, b)← (b, a mod b)

3 return a

C++ program:

int Euclidean(int a, int b){
int c;

while (b > 0){
c = b;

b = a % b;

a = c;

}
return a;

}

22/69

Theoretical Analysis of Algorithms

Main focus: correctness, running time (efficiency)

Sometimes: memory usage

Not covered in the course: engineering side

readability
extensibility
user-friendliness
. . .

Why is it important to study the running time (efficiency) of
an algorithm?
1 feasible vs. infeasible
2 use efficiency to pay for user-friendliness, extensibility, etc.
3 fundamental
4 it is fun!

23/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

24/69

Sorting Problem

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence

such that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

25/69

Insertion-Sort

At the end of j-th iteration, make the first j numbers sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59

26/69

Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1 for j ← 2 to n

2 key ← A[j]

3 i← j − 1

4 while i > 0 and A[i] > key

5 A[i + 1]← A[i]

6 i← i− 1

7 A[i + 1]← key

j = 6

key = 15

12 15 21 35 53 59
↑
i

27/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

28/69

Analysis of Insertion Sort

Correctness

Running time

29/69

Correctness of Insertion Sort

Invariant: after iteration j of outer loop, A[1..j] is the sorted
array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15

after j = 2 : 12, 53, 35, 21, 59, 15

after j = 3 : 12, 35, 53, 21, 59, 15

after j = 4 : 12, 21, 35, 53, 59, 15

after j = 5 : 12, 21, 35, 53, 59, 15

after j = 6 : 12, 15, 21, 35, 53, 59

30/69

Analyze Running Time of Insertion Sort

Q: Size of input?

A: Running time as function of size

possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

Q: Which input?

A: Worst-case analysis:

Worst running time over all input instances of a given size

Q: How fast is the computer?

Q: Programming language?

A: Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any
particular value.

31/69

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)

32/69

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

O-notation allows us to

ignore architecture of computer

ignore programming language

33/69

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1 for j ← 2 to n

2 key ← A[j]

3 i← j − 1

4 while i > 0 and A[i] > key

5 A[i + 1]← A[i]

6 i← i− 1

7 A[i + 1]← key

Worst-case running time for iteration j in the outer loop?
Answer: O(j)

Total running time =
∑n

j=2O(j) = O(n2) (informal)

34/69

Computation Model

Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

Each integer (word) has c log n bits, c ≥ 1 large enough

Precision of real numbers?
In most scenarios in the course, assuming real numbers are
represented exactly

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort, heap sort, ...

35/69

Remember to sign up for Piazza.

Questions?

36/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

37/69

Asymptotically Positive Functions

Def. f : N→ R is an asymptotically positive function if:

∃n0 > 0 such that ∀n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n2 − n− 30 Yes

2n − n20 Yes

100n− n2/10 + 50? No

We only consider asymptotically positive functions.

38/69

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c
and large enough n.

Informally, think of it as “f ≤ g”.

3n2 + 2n ∈ O(n3)

3n2 + 2n ∈ O(n2)

n100 ∈ O(2n)

n3 /∈ O(n2)

39/69

Conventions

We use “f(n) = O(g(n))” to denote “f(n) ∈ O(g(n))”

3n2 + 2n = O(n3)

4n3 + 3n2 + 2n = 4n3 + O(n3)

There exists a function f(n) ∈ O(n3), such that
4n3 + 3n2 + 2n = 4n3 + f(n).

n2 + O(n) = O(n2)

For every function f(n) ∈ O(n), there exists a function
g(n) ∈ O(n2), such that n2 + f(n) = g(n).

Rule: left side → ∀, right side → ∃

40/69

Conventions

3n2 + 2n = O(n3)

4n3 + 3n2 + 2n = 4n3 + O(n3)

n2 + O(n) = O(n2)

“=” is asymmetric! Following statements are wrong:

O(n3) = 3n2 + 2n
4n3 + O(n3) = 4n3 + 3n2 + 2n
O(n2) = n2 + O(n)

Chaining is allowed:
4n3 + 3n2 + 2n = 4n3 + O(n3) = O(n3) = O(n4)

41/69

Ω-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

Ω-Notation For a function g(n),

Ω(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ Ω(g(n)) if f(n) ≥ cg(n) for some c
and large enough n.

Informally, think of it as “f ≥ g”.

42/69

Ω-Notation: Asymptotic Lower Bound

Again, we use “=” instead of ∈.

4n2 = Ω(n)
3n2 − n + 10 = Ω(n2)
Ω(n2) + n = Ω(n2) = Ω(n)

Theorem f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)).

43/69

Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{

function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n),∀n ≥ n0

}
.

f(n) = Θ(g(n)), then for large enough n, we have
“f(n) ≈ g(n)”.

Informally, think of it as “f = g”.

3n2 + 2n = Θ(n2)

2n/3+100 = Θ(2n/3)

Theorem f(n) = Θ(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Ω(g(n)).

44/69

Exercise

For each pair of functions f, g in the following table, indicate
whether f is O,Ω or Θ of g.

f g O Ω Θ

lg10 n n0.1 Yes No No

2n 2n/2 No Yes No
√
n nsinn No No No

n2 − 100n 5n2 + 30n Yes Yes Yes

45/69

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥ =

Trivial Facts on Comparison Relations

f ≤ g ⇔ g ≥ f

f = g ⇔ f ≤ g and f ≥ g

f ≤ g or f ≥ g

Correct Analogies

f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))

Incorrect Analogy

f(n) = O(g(n)) or g(n) = O(f(n))

46/69

Incorrect Analogy

f(n) = O(g(n)) or g(n) = O(f(n))

f(n) = n2

g(n) =

{
1 if n is odd

2n if n is even

47/69

Recall: informal way to define O-notation

ignoring lower order terms: 3n2 − 10n− 5→ 3n2

ignoring leading constant: 3n2 → n2

Thus 3n2 − 10n− 5 = O(n2)

Indeed, 3n2 − 10n− 5 = Ω(n2), 3n2 − 10n− 5 = Θ(n2)

Formally: if n > 10, then n2 < 3n2 − 10n− 5 < 3n2. So,
3n2 − 10n− 5 ∈ Θ(n2).

48/69

o and ω-Notations

o-Notation For a function g(n),

o(g(n)) =
{

function f : ∀c > 0,∃n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

ω-Notation For a function g(n),

ω(g(n)) =
{

function f : ∀c > 0,∃n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

Example:

3n2 + 5n + 10 = o(n2 lg n).

3n2 + 5n + 10 = ω(n2/ lg n).

49/69

Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

Questions?

50/69

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

51/69

O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)

1 S ← 0

2 for i← 1 to n

3 S ← S + A[i]

4 return S

52/69

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48

53/69

O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with length n1

and n2

1 A← []; i← 1; j ← 1

2 while i ≤ n1 and j ≤ n2

3 if (B[i] ≤ C[j]) then

4 append B[i] to A; i← i + 1

5 else

6 append C[j] to A; j ← j + 1

7 if i ≤ n1 then append B[i..n1] to A

8 if j ≤ n2 then append C[j..n2] to A

9 return A

Running time = O(n) where n = n1 + n2.

54/69

O(n lg n) Running Time

merge-sort(A, n)

1 if n = 1 then

2 return A

3 else

4 B ← merge-sort
(
A
[
1..bn/2c

]
, bn/2c

)
5 C ← merge-sort

(
A
[
bn/2c+ 1..n

]
, n− bn/2c

)
6 return merge(B,C, bn/2c, n− bn/2c)

55/69

O(n lg n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

56/69

O(n2) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

57/69

O(n2) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)

1 bestd←∞
2 for i← 1 to n− 1

3 for j ← i + 1 to n

4 d←
√

(x[i]− x[j])2 + (y[i]− y[j])2

5 if d < bestd then

6 besti← i, bestj ← j, bestd← d

7 return (besti, bestj)

Closest pair can be solved in O(n lg n) time!

58/69

O(n3) (Cubic) Running Time

Multiply two matrices of size n× n

matrix-multiplication(A,B, n)

1 C ← matrix of size n× n, with all entries being 0

2 for i← 1 to n

3 for j ← 1 to n

4 for k ← 1 to n

5 C[i, k]← C[i, k] + A[i, j]×B[j, k]

6 return C

59/69

O(nk) Running Time for Integer k ≥ 4

Def. An independent set of a graph G = (V,E) is a subset
S ⊆ V of vertices such that for every u, v ∈ S, we have
(u, v) /∈ E.

Independent set of size k

Input: graph G = (V,E), an integer k

Output: whether there is an independent set of size k

60/69

O(nk) Running Time for Integer k ≥ 4

Independent Set of Size k

Input: graph G = (V,E)

Output: whether there is an independent set of size k

independent-set(G = (V,E))

1 for every set S ⊆ V of size k

2 b← true

3 for every u, v ∈ S

4 if (u, v) ∈ E then b← false

5 if b return true

6 return false

Running time = O(n
k

k!
× k2) = O(nk) (assume k is a constant)

61/69

Beyond Polynomial Time: O(2n)

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))

1 R← ∅
2 for every set S ⊆ V

3 b← true

4 for every u, v ∈ S

5 if (u, v) ∈ E then b← false

6 if b and |S| > |R| then R← S

7 return R

Running time = O(2nn2).

62/69

Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

63/69

Beyond Polynomial Time: n!

Hamiltonian(G = (V,E))

1 for every permutation (p1, p2, · · · , pn) of V

2 b← true

3 for i← 1 to n− 1

4 if (pi, pi+1) /∈ E then b← false

5 if (pn, p1) /∈ E then b← false

6 if b then return (p1, p2, · · · , pn)

7 return “No Hamiltonian Cycle”

Running time = O(n!× n)

64/69

O(lg n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

65/69

O(lg n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)

1 i← 1, j ← n

2 while i ≤ j do

3 k ← b(i + j)/2c
4 if A[k] = t return true

5 if A[k] < t then j ← k − 1 else i← k + 1

6 return false

Running time = O(lg n)

66/69

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<” and “=”)
n
√
n, lg n, n, n2, n lg n, n!, 2n, en, lg(n!), nn

lg n < n
√
n

lg n < n < n
√
n

lg n < n < n2 < n
√
n

lg n < n < n lg n < n2 < n
√
n

lg n < n < n lg n < n2 < n
√
n < n!

lg n < n < n lg n < n2 < n
√
n < 2n < n!

lg n < n < n lg n < n2 < n
√
n < 2n < en < n!

lg n < n < n lg n = lg(n!) < n2 < n
√
n < 2n < en < n!

lg n < n < n lg n = lg(n!) < n2 < n
√
n < 2n < en < n! < nn

67/69

Terminologies

When we talk about upper bounds:

Logarithmic time: O(lg n)

Linear time: O(n)

Quadratic time O(n2)

Cubic time O(n3)

Polynomial time: O(nk) for some constant k

Exponential time: O(cn) for some c > 1

Sub-linear time: o(n)

Sub-quadratic time: o(n2)

When we talk about lower bounds:

Super-linear time: ω(n)

Super-quadratic time: ω(n2)

Super-polynomial time:
⋂

k>0 ω(nk)

68/69

Goal of Algorithm Design

Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant
depends on the implementation, complier and computer
architecture of computer.)

69/69

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time
0.1n2 with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

For reasonable n, algorithm with lower order running time
beats algorithm with higher order running time.

	Syllabus
	Introduction
	What is an Algorithm?
	Example: Insertion Sort
	Analysis of Insertion Sort

	Asymptotic Notations
	Common Running times

