Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

2/69

CSE 431/531: Analysis of Algorithms

@ Course webpage:
http://www.cse.buffalo.edu/~shil/courses/CSE531/

@ Please sign up the course on Piazza:
http://piazza.com/buffalo/fall2016/cse431531

http://www.cse.buffalo.edu/~shil/courses/CSE531/
http://piazza.com/buffalo/fall2016/cse431531

CSE 431/531: Analysis of Algorithms

@ Time and locatiion:
o MoWeFr, 9:00-9:50am
o Cooke 121

@ Lecturer:
e Shi Li, shil@buffalo.edu
o Office hours: TBD

o TAs

e Di Wang, dwang45@buffalo.edu
o Minwei Ye, minweiye@buffalo.edu
o Alexander Stachnik, ajstachn@buffalo.edu

You should know:

You should know:
@ Mathematical Tools

o Mathematical inductions
o Probabilities and random variables

5,/69

You should know:
@ Mathematical Tools
e Mathematical inductions
e Probabilities and random variables
@ Data Structures
e Stacks, queues, linked lists

You should know:
@ Mathematical Tools
e Mathematical inductions
e Probabilities and random variables
@ Data Structures
e Stacks, queues, linked lists
@ Some Programming Experience
e Eg., C, C4++ or Java

You should know:
@ Mathematical Tools
e Mathematical inductions
o Probabilities and random variables

@ Data Structures
e Stacks, queues, linked lists

@ Some Programming Experience
e E.g.,, C, C4++ or Java

You may know:

You should know:
@ Mathematical Tools

o Mathematical inductions
o Probabilities and random variables

@ Data Structures
e Stacks, queues, linked lists

@ Some Programming Experience
e E.g.,, C, C4++ or Java

You may know:

@ Asymptotic analysis

You should know:
@ Mathematical Tools
o Mathematical inductions
o Probabilities and random variables

@ Data Structures
e Stacks, queues, linked lists

@ Some Programming Experience
e E.g.,, C, C4++ or Java

You may know:
@ Asymptotic analysis

@ Simple algorithm design techniques such as greedy,
divide-and-conquer, dynamic programming

@ Classic algorithms for classic problems
Sorting

e Shortest paths

e Minimum spanning tree

o Network flow

6,69

You Will Learn

@ Classic algorithms for classic problems
e Sorting
@ Shortest paths
e Minimum spanning tree
o Network flow

@ How to analyze algorithms

o Correctness
e Running time (efficiency)
e Space requirement

You Will Learn

@ Classic algorithms for classic problems
e Sorting
e Shortest paths
e Minimum spanning tree
o Network flow
@ How to analyze algorithms
o Correctness

e Running time (efficiency)
e Space requirement

@ Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

Reductions

® 6 6 o

You Will Learn

@ Classic algorithms for classic problems
e Sorting
e Shortest paths
e Minimum spanning tree
o Network flow
@ How to analyze algorithms
o Correctness

e Running time (efficiency)
e Space requirement

@ Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

Reductions

@ NP-completeness

Textbook

Required Textbook:

e Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

JON KLEINBERG - EVA TARDOS

Other Reference Books

@ Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein

Grading

@ 20% for homeworks
e 5 homeworks, each worth 4%
@ 20% for projects
e 2 projects, each worth 10%
@ 30% for in-class exams
e 2 in-class exams, each worth 15%
@ 30% for final exam

e If to your advantage: each in-class exam is worth 5% and final
is worth 50%

For Homeworks, You Are Allowed to

@ Use course materials (textbook, reference books, lecture
notes, etc)

@ Post questions on Piazza

@ Ask me or TAs for hints

@ Collaborate with classmates
e Think about each problem for enough time before discussing

e Must write down solutions on your own, in your own words
o Write down names of students you collaborated with

For Homeworks, You Are Not Allowed to

@ Use external resources
e Can’t Google or ask questions online for solutions
e Can't read posted solutions from other algorithm courses

@ Copy solutions from other students

For Homeworks, You Are Not Allowed to

@ Use external resources
e Can’t Google or ask questions online for solutions
e Can't read posted solutions from other algorithm courses

@ Copy solutions from other students

If you are not following the rules, you will get an “F" for the
course.

@ Need to implement an algorithm for each of the two projects
@ Can not copy codes from others or the Internet

11/69

Projects

@ Need to implement an algorithm for each of the two projects

@ Can not copy codes from others or the Internet

If you are not following the rules, you will get an “F" for the
course.

Late policy

@ You have one late credit

@ turn in a homework or a project late for three days using the
late credit

@ no other late submissions will be accepted

@ Closed-book
@ Can bring one A4 handwritten sheet

13/69

@ Closed-book
@ Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F" for the
course.

13/69

Exams

@ Closed-book
@ Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F" for the
course.

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

14/69

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

15/69

What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

What is an Algorithm?

@ Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

e Computational problem: specifies the input/output
relationship.

@ An algorithm solves a computational problem if it produces
the correct output for any given input.

Input: two integers a,b > 0

Output: the greatest common divisor of a and b

17/69

Input: two integers a,b > 0
Output: the greatest common divisor of a and b

@ Input: 210, 270
@ Output: 30

17/69

Input: two integers a,b > 0
Output: the greatest common divisor of a and b

@ Input: 210, 270
@ Output: 30

@ Algorithm: Euclidean algorithm

17/69

Examples

Greatest Common Divisor
Input: two integers a,b > 0
Output: the greatest common divisor of a and b

Example:
@ Input: 210, 270
@ Output: 30

@ Algorithm: Euclidean algorithm
e gcd(270,210) = ged (210,270 mod 210) = ged(210, 60)

Examples

Greatest Common Divisor
Input: two integers a,b > 0
Output: the greatest common divisor of a and b

Example:
@ Input: 210, 270
@ Output: 30

@ Algorithm: Euclidean algorithm
e gcd(270,210) = ged (210,270 mod 210) = ged(210, 60)
e (270,210) — (210,60) — (60,30) — (30,0)

Input: sequence of n numbers (a1, aq, - ,a,)
/

Output: a permutation (a},al, -+ ,al) of the input sequence

» N

such that @} <a), <--- <a,

18/69

Input: sequence of n numbers (a1, aq, - ,a,)

Output: a permutation (a},al, -+ ,al) of the input sequence

» N

such that @} <a), <--- <a,

e Input: 53,12,35,21,59,15
e Output: 12,15,21, 35,53, 59

18/69

Examples

Sorting
Input: sequence of n numbers (ay, az, -, ay)
Output: a permutation (a},al, - ,al,) of the input sequence
such that a} < af) <--- <al,
Example:

@ Input: 53,12,35,21,59, 15
o Output: 12,15,21,35,53,59

@ Algorithms: insertion sort, merge sort, quicksort, ...

Input: directed graph G = (V, E), s,t € V
Output: a shortest path from sto ¢ in G

19/69

Input: directed graph G = (V, E), s,t € V
Output: a shortest path from sto ¢ in G

Y

19/69

Input: directed graph G = (V, E), s,t € V
Output: a shortest path from sto ¢ in G

4R}

19/69

Input: directed graph G = (V, E), s,t € V
Output: a shortest path from sto ¢ in G

4R}

@ Algorithm: Dijkstra’s algorithm

19/69

Algorithm = Computer Program?

@ Algorithm: “abstract”, can be specified using computer
program, English, pseudo-codes or flow charts.

o Computer program: “concrete”, implementation of
algorithm, associated with a particular programming language

Pseudo-Code

C++ program:
@ int Euclidean(int a, int b){

Pseudo-Code: ° int ¢;

e while (b > 0){
Euclidean(a, b) o c=b
0whi|eb>0 ° b:a%b'
Q@ (a,b) « (b,a mod b) o 3= c
@ return a ° }

) return a;

°}

e Main focus: correctness, running time (efficiency)

22/69

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)

@ Sometimes: memory usage

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)

@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility
user-friendliness

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility
user-friendliness

e Why is it important to study the running time (efficiency) of
an algorithm?

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility
user-friendliness

e Why is it important to study the running time (efficiency) of
an algorithm?
@ feasible vs. infeasible

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility
user-friendliness

e Why is it important to study the running time (efficiency) of
an algorithm?

@ feasible vs. infeasible
@ use efficiency to pay for user-friendliness, extensibility, etc.

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)
@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility
user-friendliness

e Why is it important to study the running time (efficiency) of
an algorithm?

@ feasible vs. infeasible
@ use efficiency to pay for user-friendliness, extensibility, etc.

© fundamental

Theoretical Analysis of Algorithms

@ Main focus: correctness, running time (efficiency)

@ Sometimes: memory usage
@ Not covered in the course: engineering side

readability
extensibility

user-friendliness

e Why is it important to study the running time (efficiency) of
an algorithm?
@ feasible vs. infeasible

use efficiency to pay for user-friendliness, extensibility, etc.
fundamental
it is fun!

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

23/69

Sorting Problem
Input: sequence of n numbers (ay,as, - ,a,)

Output: a permutation (a},a), - ,al,) of the input sequence
such that ¢} <a), <--- <al,

Example:
e Input: 53,12,35,21,59,15
e Output: 12,15, 21, 35,53, 59

Insertion-Sort

@ At the end of j-th iteration, make the first j numbers sorted.

iteration 1: 53,12, 35, 21,59, 15
iteration 2: 12,53, 35, 21,59, 15
iteration 3: 12, 35,53, 21,59, 15
iteration 4: 12,21,35,53,59, 15
iteration 5: 12,21,35,53,59,15
iteration 6: 12,15,21,35,53,59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] «+ A[f]
té=u=1

Ali + 1] + key

26/69

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 53 59

/I\

?

15

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 53 59

/I\

?

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 53 59

T

0

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 53 53

T

0

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 53 53

T

l

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6
@ key =15
12 21 35 35 53

T

l

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6

@ key =15

12 21 35 35 53
/[\

i

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6

@ key =15

12 21 21 35 53
/[\

i

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6

@ key =15

12 21 21 35 53
/]\

l

59

Example:
@ Input: 53,12, 35, 21,59, 15
e Output: 12,15,21, 35,53, 59

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « Ali]
14—1—1

Ali + 1) + key

@ =6

@ key =15

12 15 21 35 53
/]\

l

59

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

27/69

@ Correctness

@ Running time

28,69

Correctness of Insertion Sort

@ Invariant: after iteration j of outer loop, A[l..j] is the sorted
array for the original A[l..j].
after 7 =1:53,12,35,21,59,15
after 7 =2:12,53,35,21,59,15
after j = 3:12,35,53,21,59,15
after j =4:12,21,35,53,59,15
after j = 5:12,21,35,53,59,15
after j =6:12,15,21,35,53,59

e Q: Size of input?

30,69

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

Analyze Running Time of Insertion Sort

e Q: Size of input?
@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

@ Q: Which input?

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

@ Q: Which input?

@ A: Worst-case analysis:
e Worst running time over all input instances of a given size

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

@ Q: Which input?

@ A: Worst-case analysis:
e Worst running time over all input instances of a given size

@ Q: How fast is the computer?

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

@ Q: Which input?

@ A: Worst-case analysis:
e Worst running time over all input instances of a given size

@ Q: How fast is the computer?

@ Q: Programming language?

Analyze Running Time of Insertion Sort

e Q: Size of input?

@ A: Running time as function of size

@ possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

@ Q: Which input?

@ A: Worst-case analysis:
e Worst running time over all input instances of a given size

@ Q: How fast is the computer?
@ Q: Programming language?
@ A: Important idea: asymptotic analysis

e Focus on growth of running-time as a function, not any
particular value.

@ Ignoring lower order terms

@ Ignoring leading constant

31/69

Asymptotic Analysis: O-notation

@ Ignoring lower order terms

@ Ignoring leading constant

@ 3n® +2n? — 18n + 1028 = 3n® = n3

Asymptotic Analysis: O-notation

@ Ignoring lower order terms

@ Ignoring leading constant

@ 3n®+2n? — 18n + 1028 = 3n® = n3
@ 3n% +2n? — 18n + 1028 = O(n?)

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n% — 18n + 1028 = 3n® = n?
3n% + 2n% — 18n + 1028 = O(n?)

2n/3+100 + 1001100 — 2n/3+100 = 2n/3

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n% — 18n + 1028 = 3n® = n?
3n% + 2n% — 18n + 1028 = O(n?)

2n/3+100 + 1001100 — 2n/3+100 = 2n/3
° 2n/3+100 T 100100 = O(zn/B)

Asymptotic Analysis: O-notation

@ Ignoring lower order terms

@ Ignoring leading constant

O-notation allows us to
@ ignore architecture of computer

@ ignore programming language

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

Q forj«— 2ton

key < Alj]

147 —1

while i > 0 and A[i] > key
Ali + 1] « AJi]
14—1—1

Ali + 1] + key

33/69

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « AJi]
14—1—1

Ali 4+ 1] < key

@ Worst-case running time for iteration j in the outer loop?

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « AJi]
14—1—1

Ali 4+ 1] < key

@ Worst-case running time for iteration j in the outer loop?
Answer: O(j)

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

Q forj+ 2ton

key < Alj]

i j—1

while i > 0 and A[i] > key
Ali + 1] « AJi]
14—1—1

Ali 4+ 1] < key

@ Worst-case running time for iteration j in the outer loop?
Answer: O(j)

@ Total running time = >, O(j) = O(n?) (informal)

Computation Model

@ Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

@ Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

@ Each integer (word) has clogn bits, ¢ > 1 large enough

Computation Model

Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

Each integer (word) has clogn bits, ¢ > 1 large enough

Precision of real numbers?

Computation Model

@ Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

@ Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

@ Each integer (word) has clogn bits, ¢ > 1 large enough

@ Precision of real numbers?
In most scenarios in the course, assuming real numbers are
represented exactly

Computation Model

@ Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

@ Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

@ Each integer (word) has clogn bits, ¢ > 1 large enough

@ Precision of real numbers?
In most scenarios in the course, assuming real numbers are
represented exactly

@ Can we do better than insertion sort asymptotically?

Computation Model

@ Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

@ Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

@ Each integer (word) has clogn bits, ¢ > 1 large enough

@ Precision of real numbers?
In most scenarios in the course, assuming real numbers are
represented exactly

@ Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort, heap sort, ...

@ Remember to sign up for Piazza.

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

36,69

Def. f:N — R is an asymptotically positive function if:
@ dng > 0 such that Vn > ny we have f(n) >0

37/69

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n’—n—230

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n’—n—230 Yes

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n’—n—230 Yes

e 2" _ n20

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n’—n—230 Yes

@ 2" —n20 Yes

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n’—n—230 Yes
@ 2" —n20 Yes

e 100n — n?/10 + 507

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

@ In other words, f(n) is positive for large enough n.

e n2—n—30 Yes
@ 2" —n20 Yes
e 100n — n?/10 + 507 No

Asymptotically Positive Functions

Def. f:N — R is an asymptotically positive function if:
@ Jng > 0 such that ¥n > ng we have f(n) >0

In other words, f(n) is positive for large enough n.

n®>—n—30 Yes
o — 20 Yes
100n — n?/10 + 507 No

We only consider asymptotically positive functions.

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

@ Informally, think of it as “f < g".

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

@ Informally, think of it as “f < g".

@ 3n%+2n € O(n?)

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

@ Informally, think of it as “f < g".

@ 3n%+2n € O(n?)
e 3n?+2n € O(n?)

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

Informally, think of it as “f < ¢".

3n? 4+ 2n € O(n?)
3n? +2n € O(n?)
nlOO c O(Qn)

O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥n > ng}.

@ In other words, f(n) € O(g(n)) if f(n) < cg(n) for some ¢
and large enough n.

@ Informally, think of it as “f < g".

3n? 4+ 2n € O(n?)
3n? +2n € O(n?)
nt% e O(2")

n* ¢ O(n?)

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"

39/69

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)

39/69

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)

@ 4n® +3n? + 2n = 4n® + O(n?)

39/69

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)

@ 4n® +3n? + 2n = 4n® + O(n?)
e There exists a function f(n) € O(n?), such that
4n3 +3n? 4 2n = 4n3 + f(n).

39/69

@ We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)

@ 4n® +3n? + 2n = 4n® + O(n?)
e There exists a function f(n) € O(n?), such that
4n3 +3n? 4 2n = 4n3 + f(n).

e n2+ O(n) = O(n?)

39/69

Conventions

e We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)
@ 4n® +3n? + 2n = 4n® + O(n?)
o There exists a function f(n) € O(n?), such that
4n3 4+ 3n? 4 2n = 4n3 + f(n).
e n2+ O(n) = O(n?)
e For every function f(n) € O(n), there exists a function
g(n) € O(n?), such that n? + f(n) = g(n).

Conventions

e We use “f(n) = O(g(n))" to denote “f(n) € O(g(n))"
@ 3n% +2n = 0(n?)
@ 4n® +3n? + 2n = 4n® + O(n?)
o There exists a function f(n) € O(n?), such that
4n3 4+ 3n? 4 2n = 4n3 + f(n).
e n2+ O(n) = O(n?)
e For every function f(n) € O(n), there exists a function

g(n) € O(n?), such that n? + f(n) = g(n).

@ Rule: left side — V, right side — 3

@ 3n?+2n = 0O(n?)
@ 4n® +3n? + 2n = 4n® + O(n?)
e n2+ 0O(n) = O(n?)

@ “=" is asymmetric! Following statements are wrong:

oO(3) =3n%+2n
o 4n? +O(3 =4n3+3n% +2n
o O(n?)=n%+0(n)

40,69

Conventions

3n? 4+ 2n = O(n?)
4n3 4 3n? + 2n = 4n3 + O(n?)
n?+ O(n) = O(n?)

" ”

=" is asymmetric! Following statements are wrong:
CK 3) =3n%+2n

4n3 %—CK)—-4n34—3n24—2n

O(n?) =n?+ O(n)

Chaining is allowed:
4n® + 3n? + 2n = 4n3 + O(n?) = O(n?) = O(n?)

40/69

()-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥Yn > ng}.

-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) = cg(n),¥n > ne}.

()-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥Yn > ng}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) = cg(n),¥n > ne}.

@ In other words, f(n) € Q(g(n)) if f(n) > cg(n) for some ¢
and large enough n.

()-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),
O(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) < cg(n),¥Yn > ng}.

2-Notation For a function g(n),
Q(g(n)) = {function f : 3¢ > 0,ng > 0 such that

f(n) = cg(n),¥n > ne}.

@ In other words, f(n) € Q(g(n)) if f(n) > cg(n) for some ¢
and large enough n.

o Informally, think of it as “f > ¢".

()-Notation: Asymptotic Lower Bound

@ Again, we use “=" instead of €.
e 4n? = Q(n)
o 3n? —n+10 = Q(n?)
o Q(n?) +n=Qmn? =Q(n)

()-Notation: Asymptotic Lower Bound

@ Again, we use “=" instead of €.
e 4n? = Q(n)
o 3n? —n+10 = Q(n?)
o Q(n?) +n=Qmn? =Q(n)

Theorem f(n) = O(g(n)) < g(n) = Q(f(n)).

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

ag(n) < f(n) < cag(n),¥n > no}-

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

ag(n) < f(n) < cag(n),vn > no}-

e f(n) =0O(g(n)), then for large enough n, we have
")H

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

c19(n) < f(n) < cag(n), ¥ = mo}.

e f(n) =0O(g(n)), then for large enough n, we have
“f(n) = g(n)".

@ Informally, think of it as “f = ¢".

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

c19(n) < f(n) < cag(n), ¥ = mo}.

e f(n) =0O(g(n)), then for large enough n, we have
“f(n) = g(n)".

@ Informally, think of it as “f = ¢".

e 3n? + 2n = O(n?)

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

c19(n) < f(n) < cag(n), ¥ = mo}.

e f(n) =0O(g(n)), then for large enough n, we have
“f(n) = g(n)".

@ Informally, think of it as “f = ¢".

e 3n%+2n = O(n?)
° 2n/3+100 — @(2n/3)

©-Notation: Asymptotic Tight Bound

©-Notation For a function g(n),
©(g(n)) = {function f: Jez > ¢; > 0,ng > 0 such that

c19(n) < f(n) < cag(n), ¥ = mo}.

e f(n) =0O(g(n)), then for large enough n, we have
“f(n) = g(n)".

@ Informally, think of it as “f = ¢".
e 3n%+2n = O(n?)
° 2n/3+100 — @(2n/3)

Theorem f(n) = ©(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Q(g(n)).

Exercise

For each pair of functions f, g in the following table, indicate

whether f is O, €2 or © of g.

f g O| Q| 6
lglo n nO.l
on 2n/2

\/ﬁ nsin n

n?>—100n 5n%+ 30n

Exercise

For each pair of functions f, g in the following table, indicate

whether f is O, €2 or © of g.

f g ol ale
1g'%n n0-! Yes | No | No
on 2n/2

\/ﬁ nsin n

n?>—100n 5n%+ 30n

4469

Exercise

For each pair of functions f, g in the following table, indicate

whether f is O, €2 or © of g.

f g O| Q| 6
1g'%n n0-! Yes | No | No
on e No | Yes | No

\/ﬁ nsin n

n?>—100n 5n%+ 30n

Exercise

For each pair of functions f, g in the following table, indicate

whether f is O, €2 or © of g.

f g O| Q| 6
1g'%n n0-! Yes | No | No
on e No | Yes | No
No | No

NG win | No

n?>—100n 5n%+ 30n

Exercise
For each pair of functions f, g in the following table, indicate
whether f is O, €2 or © of g.

f . olale
1g'%n no-1 Yes | No | No
2 e No | Yes | No
Vn psinn No | No | No

n? —100n 5n2 4 30n | Yes | Yes | Yes

Asymptotic Notations ‘ 0] ‘ Q ‘ ©
Comparison Relations ‘ < ‘ > ‘ =

Asymptotic Notations | 0] | Q | ©
>

Comparison Relations | < |

4569

Asymptotic Notations | 0] | Q | ©
<[>]=

Comparison Relations |

4569

Asymptotic Notations | 0] | Q | ©
<[>]=

Comparison Relations |

4569

46,69

g(n) =

——

2n

if n is odd

if n is even

46,69

Recall: informal way to define O-notation

@ ignoring lower order terms: 3n% — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

Recall: informal way to define O-notation

@ ignoring lower order terms: 3n% — 10n — 5 — 3n?
@ ignoring leading constant: 3n? — n?
@ Thus 3n? — 10n — 5 = O(n?)

Recall: informal way to define O-notation

@ ignoring lower order terms: 3n% — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

@ Thus 3n? — 10n — 5 = O(n?)

@ Indeed, 3n* — 10n — 5 = Q(n?),3n? — 10n — 5 = O(n?)

Recall: informal way to define O-notation

@ ignoring lower order terms: 3n% — 10n — 5 — 3n?

@ ignoring leading constant: 3n? — n?

@ Thus 3n? — 10n — 5 = O(n?)

@ Indeed, 3n* — 10n — 5 = Q(n?),3n? — 10n — 5 = O(n?)

Formally: if n > 10, then n? < 3n? — 10n — 5 < 3n2. So,
3n? —10n — 5 € O(n?).

o and w-Notations

o-Notation For a function g(n),
o(g(n)) = {function f : Vc > 0,3ng > 0 such that

f(n) < cg(n),¥Yn > no}.

w-Notation For a function g(n),
w(g(n)) = {function f : Ve > 0,3ng > 0 such that

f(n) > cg(n),¥n > no}.

Example:
@ 3n* +5n+ 10 = o(n?lgn).
@ 3n% +5n+ 10 = w(n?/Ign).

Asymptotic Notations ‘ @) ‘ Q ‘ © ‘ 0 ‘ w

Comparison Relations ‘ < ‘ > ‘ ‘ < ‘ >

Asymptotic Notations ‘ @) ‘ Q ‘ © ‘ 0 ‘ w

Comparison Relations ‘ < ‘ > ‘ ‘ < ‘ >

Questions?

© Syllabus

© Introduction
@ What is an Algorithm?
@ Example: Insertion Sort
@ Analysis of Insertion Sort

© Asymptotic Notations

@ Common Running times

50,69

Computing the sum of n numbers

sum(A,n)

Q@ S0

Q fori« 1ton
Q@ S+ S+ A[]
Q return S

51,69

@ Merge two sorted arrays

3181(12]20(32|48

52,69

@ Merge two sorted arrays

8 112(20]32|48

¢
ﬁ

52,69

@ Merge two sorted arrays

8 112(20]32|48

¢
ﬁ

52,69

@ Merge two sorted arrays

v

3181(12]20(32|48

52,69

@ Merge two sorted arrays

v

3181(12]20(32|48

52,69

@ Merge two sorted arrays

1212013248

- - |0 -

52,69

@ Merge two sorted arrays

1212013248

¢
'

52,69

@ Merge two sorted arrays

v

3181(12]20(32|48

52,69

@ Merge two sorted arrays

v

3181(12]20(32|48

3]s]7]s]

52,69

@ Merge two sorted arrays

v

3181(12]20(32|48

v

5171912529

3]s]7]s]

52,69

O(n) (Linear) Running Time

@ Merge two sorted arrays

v

3] 8]12]20]32]48]

v

5] 7] 9]25]29]

(3] 5]7]8]9]12]20]25] 2]

O(n) (Linear) Running Time

@ Merge two sorted arrays

v

3] 8]12]20|32]48]

v

5] 7] 9]25]29]

(3] 5]7]8]9]12]20]25]29]32] 48]

O(n) (Linear) Running Time

merge(B, C,ny,noy) \\ B and C are sorted, with length n;
and ny

Q A [;i+ 1«1

@ while i <nyand j < ny

@ if (B[i] < Cj]) then

() append B[i] to A; i+ i+ 1
Q@ else

(8] append C[jl to A; j+ j+1
@ if i <n, then append B[i..ny] to A
Q if j < ny then append C[j..ns] to A
Q return A

O(n) (Linear) Running Time

merge(B, C,ny,noy) \\ B and C are sorted, with length n;
and ny

Q A [;i+ 1«1

@ while i <nyand j < ny

@ if (B[i] < Cj]) then

(%) append B[i] to A; i+ i+ 1
Q@ else

o append C[j]to A; j <+ j+1
@ if i <n, then append B[i..ny] to A
Q if j < ny then append C[j..ns] to A
Q return A

Running time = O(n) where n = n; + na.

O(nlgn) Running Time

merge-sort(A, n)

@ if n =1 then
@ return A
@ clse

Q@ B« merge—sort(A[l..[n/Zj], Ln/2j>

Q@ C«+ merge-sort(A[Ln/QJ +1.n|,n— Ln/2j>
Q return merge(B,C, [n/2],n — |n/2])

@ Merge-Sort

‘ A[L.8] ‘

‘A[l..Q]‘ ‘A[3..4}‘ ‘A[5..6]‘ %1[7..

8] ‘
A 1AR] JA@B] | A[] A[5)| [Al6]] | A[7]] | A[8]

55,69

O(nlgn) Running Time

@ Merge-Sort

‘ A[L.8]

@ Each level takes running time O(n)

O(nlgn) Running Time

@ Merge-Sort

‘ A[L.8] ‘

Al LAl LAl Al Al Al A Al

@ Each level takes running time O(n)
@ There are O(Ign) levels

O(nlgn) Running Time

@ Merge-Sort

‘ A[L.8] ‘

Al LAl LAl Al Al Al A Al

@ Each level takes running time O(n)
@ There are O(Ign) levels
@ Running time = O(nlgn)

O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,41), (x2,Y2), -, (Tn, Yn)
Output: the pair of points that are closest
[] []
° []
[J i °
[J
°
° L °
[J 'y PY
°

O(n?) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (z1,41), (x2,Y2), -, (Tn, Yn)
Output: the pair of points that are closest
[] []
oL
[J
[J
°
° L °
[J 'y PY
°

O(n?) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (z1,41), (¥2,92),*+ ; (Tn, Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

Q lestd < oo

Q@ fori<1ton—1

Q@ forj«—i+1lton

%) d +/(x[i] — z[4])2 + (y[i] — yl5])?
(5] if d < bestd then

o besti <— 1, besty < 7, bestd < d
@ return (besti, bestyj)

O(n?) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (z1,41), (¥2,92),*+ ; (Tn, Yn)
Output: the pair of points that are closest

closest-pair(z, y,n)

Q lestd < oo

Q@ fori<1ton—1

Q@ forj«—i+1lton

%) d +/(x[i] — z[4])2 + (y[i] — yl5])?
(5] if d < bestd then

o besti <— 1, besty < 7, bestd < d
@ return (besti, bestyj)

Closest pair can be solved in O(nlgn) time!

O(n?) (Cubic) Running Time

Multiply two matrices of size n X n

matrix-multiplication(A, B, n)

@ (' + matrix of size n x n, with all entries being 0
Q@ fori+ 1ton

©@ forj<1ton

(%] for k< 1ton

o Cli, k] < C[i, k] + Ali, j] x B[j, k]

Q return C

O(n*) Running Time for Integer k& > 4

Def. An independent set of a graph G = (V, E) is a subset
S C V of vertices such that for every u,v € S, we have

(u,v) ¢ E.

O(n*) Running Time for Integer k& > 4

Def. An independent set of a graph G = (V, E) is a subset
S C V of vertices such that for every u,v € S, we have

(u,v) ¢ E.

O(n*) Running Time for Integer k& > 4

Def. An independent set of a graph G = (V, E) is a subset
S C V of vertices such that for every u,v € S, we have

(u,v) ¢ E.

O(n*) Running Time for Integer k& > 4

Def. An independent set of a graph G = (V, E) is a subset
S C V of vertices such that for every u,v € S, we have

(u,v) ¢ E.

Independent set of size k
Input: graph G = (V| E), an integer k

Output: whether there is an independent set of size k

O(n*) Running Time for Integer k& > 4

Independent Set of Size &
Input: graph G = (V, E)

Output: whether there is an independent set of size k

independent-set(G' = (V, E))

Q for every set S C V of size k

Q@ b+ true

@ foreveryu,veS

0 if (u,v) € E then b < false
@ if b return true

Q return false

Running time = O(’;—’f x k?) = O(n*) (assume k is a constant)

Beyond Polynomial Time: O(2")

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the maximum independent set of G

max-independent-set(G = (V, F))

@ R+ 0

Q foreveryset SCV

Q@ b« true

Q@ foreveryu,v€eS

(5] if (u,v) € E then b < false
Q@ ifband |S| > |R|then R+ S
@ return R

Running time = O(2"n?).

Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem
Input: a graph with n vertices
Output: a cycle that visits each node exactly once,

or say no such cycle exists

Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem
Input: a graph with n vertices
Output: a cycle that visits each node exactly once,

or say no such cycle exists

Beyond Polynomial Time: n!

Hamiltonian(G = (V, E))

@ for every permutation (p1,ps, -+ ,pn) of V
Q@ b+ true

Q@ fori<1lton—1

Q if (pi,piv1) ¢ F then b < false

Q@ if (pn,p1) ¢ E then b < false

Q if b then return (p1,p2, - ,Pn)
@ return “No Hamiltonian Cycle”

Running time = O(n! x n)

64,69

O(lgn) (Logarithmic) Running Time

@ Binary search

e Input: sorted array A of size n, an integer t;
e Output: whether ¢ appears in A.

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

‘ 3 ‘ 8 ‘ 10‘ 25‘ 29‘ 37‘ 38‘ 42‘ 46‘ 52‘ 59‘ 61‘ 63‘ 75‘ 79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

1 |

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

| l |

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

42 > 35

| l

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

| |

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

| l l

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

25 < 35

| l l

‘ ‘8‘10‘25‘29‘37‘38‘42‘46‘52‘59‘61‘63‘75‘79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

-

‘ 3 ‘ 8 ‘ 10‘ 25‘ 29‘ 37‘ 38‘ 42‘ 46‘ 52‘ 59‘ 61‘ 63‘ 75‘ 79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

I

‘ 3 ‘ 8 ‘ 10‘ 25‘ 29‘ 37‘ 38‘ 42‘ 46‘ 52‘ 59‘ 61‘ 63‘ 75‘ 79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

37> 35

I

3 ‘ 8 ‘ 10‘ 25‘ 29‘ 37‘ 38‘ 42‘ 46‘ 52‘ 59‘ 61 63‘ 75‘ 79

O(lgn) (Logarithmic) Running Time

@ Binary search
e Input: sorted array A of size n, an integer t;

e Output: whether ¢ appears in A.
e E.g, search 35 in the following array:

|

‘ 3 ‘ 8 ‘ 10‘ 25‘ 29‘ 37‘ 38‘ 42‘ 46‘ 52‘ 59‘ 61‘ 63‘ 75‘ 79

O(lgn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Qi< 1,j7<n

@ while i < j do

Q@ ke [(+)/2]

Q@ if A[k] =t return true

Q@ ifAk]<tthenj<« k—1lelsei<+ k+1

Q@ return false

O(lgn) (Logarithmic) Running Time

Binary search
@ Input: sorted array A of size n, an integer t;

@ Output: whether t appears in A.

binary-search(A, n, t)

Qi+ 1,7n

@ while i < j do

@ ke li+7)/2

Q@ if A[k] =t return true

Q@ ifAk]<tthenj<« k—1lelsei<+ k+1
Q return false

Running time = O(lgn)

Compare the Orders

@ Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")

nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"

Compare the Orders

@ Sort the functions from asymptotically smallest to

asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"

o lgn < nv"

Compare the Orders

@ Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"

o lgn < nv"

o lgn<n<nv®

Compare the Orders

@ Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"

o lgn < nv"

o lgn<n<nv®

o lgn<n<n?<nv®

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

lgn <n<nlgn<n?<n'™<nl

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

lgn <n<nlgn<n?<n'™<nl

Ign <n <nlgn <n?<nV™<2" <nl

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

lgn <n<nlgn<n?<n'™<nl

Ign <n <nlgn <n?<nV™<2" <nl

lgn <n <nlgn <n?<nV® <2 <e” <nl

Compare the Orders

Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

lgn <n<nlgn<n?<n'™<nl

Ign <n <nlgn <n?<nV™<2" <nl

lgn <n <nlgn <n?<nV® <2 <e” <nl

lgn <n <nlgn=1g(n!) <n?><nV® < 2" < e” < nl

Compare the Orders

@ Sort the functions from asymptotically smallest to
asymptotically largest (informally, using “<" and “=")
nvn lgn, n, n? nlgn, n!, 27, ¢, lg(n!), n"
lgn < nV®

lgn <n<nv"

lgn <n <n?<nV®

lgn <n <nlgn <n?<nv™

lgn <n<nlgn<n?<n'™<nl

Ign <n <nlgn <n?<nV™<2" <nl

lgn <n <nlgn <n?<nV® <2 <e” <nl

lgn <n <nlgn=1g(n!) <n?><nV® < 2" < e” < nl
lgn <n<nlgn=1g(n!) <n><nV™ <2" <e” <nl<n”

Terminologies

When we talk about upper bounds:

Logarithmic time: O(lgn)

@ Linear time: O(n)

@ Quadratic time O(n?)

e Cubic time O(n?)

@ Polynomial time: O(n*) for some constant &
e Exponential time: O(c™) for some ¢ > 1

@ Sub-linear time: o(n)

@ Sub-quadratic time: o(n?)

Terminologies

When we talk about upper bounds:
e Logarithmic time: O(lgn)
@ Linear time: O(n)

Quadratic time O(n?)

Cubic time O(n?)

Polynomial time: O(n*) for some constant k

°
°
e Exponential time: O(c™) for some ¢ > 1
@ Sub-linear time: o(n)

°

Sub-quadratic time: o(n?)

When we talk about lower bounds:
@ Super-linear time: w(n)
@ Super-quadratic time: w(n?)

e Super-polynomial time: (), ., w(n")

@ Design algorithms to minimize the order of the running time. l

68,69

Goal of Algorithm Design
@ Design algorithms to minimize the order of the running time. }

@ Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Goal of Algorithm Design
@ Design algorithms to minimize the order of the running time.

@ Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

@ Makes our life much easier! (E.g., the leading constant
depends on the implementation, complier and computer
architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

A:

@ Sometimes yes

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

A:
@ Sometimes yes
@ However, when n is big enough, 1000n < 0.1n?

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

A:
@ Sometimes yes
@ However, when n is big enough, 1000n < 0.1n?

@ For “natural” algorithms, constants are not so big!

Q: Does ignoring the leading constant cause any issues?

@ e.g, how can we compare an algorithm with running time
0.1n? with an algorithm with running time 1000n?

A:
@ Sometimes yes
@ However, when n is big enough, 1000n < 0.1n?
@ For “natural” algorithms, constants are not so big!

@ For reasonable n, algorithm with lower order running time
beats algorithm with higher order running time.

	Syllabus
	Introduction
	What is an Algorithm?
	Example: Insertion Sort
	Analysis of Insertion Sort

	Asymptotic Notations
	Common Running times

