CSE 431/531: Analysis of Algorithms Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Course webpage: http://www.cse.buffalo.edu/~shil/courses/CSE531/
- Please sign up the course on Piazza: http://piazza.com/buffalo/fall2016/cse431531

CSE 431/531: Analysis of Algorithms

- Time and locatiion:
 - MoWeFr, 9:00-9:50am
 - Cooke 121
- Lecturer:
 - Shi Li, shil@buffalo.edu
 - Office hours: TBD
- TAs
 - Di Wang, dwang45@buffalo.edu
 - Minwei Ye, minweiye@buffalo.edu
 - Alexander Stachnik, ajstachn@buffalo.edu

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Data Structures
 - Stacks, queues, linked lists

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - E.g., C, C++ or Java

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - $\bullet~$ E.g., C, C++ or Java

You may know:

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - E.g., C, C++ or Java

You may know:

• Asymptotic analysis

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - E.g., C, C++ or Java

You may know:

- Asymptotic analysis
- Simple algorithm design techniques such as greedy, divide-and-conquer, dynamic programming

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
 - Network flow

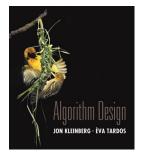
- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
 - Network flow
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
 - Network flow
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Reductions

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
 - Network flow
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Reductions
- NP-completeness

Required Textbook:

• Algorithm Design, 1st Edition, by Jon Kleinberg and Eva Tardos



Other Reference Books

• Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

Grading

- 20% for homeworks
 - 5 homeworks, each worth 4%
- 20% for projects
 - $\bullet~2$ projects, each worth 10%
- 30% for in-class exams
 - $\bullet~2$ in-class exams, each worth 15%
- 30% for final exam
 - $\bullet\,$ If to your advantage: each in-class exam is worth 5% and final is worth 50%

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussing
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm courses
- Copy solutions from other students

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm courses
- Copy solutions from other students

If you are not following the rules, you will get an "F" for the course.

- Need to implement an algorithm for each of the two projects
- Can not copy codes from others or the Internet

- Need to implement an algorithm for each of the two projects
- Can not copy codes from others or the Internet

If you are not following the rules, you will get an "F" for the course.

- You have one late credit
- turn in a homework or a project late for three days using the late credit
- no other late submissions will be accepted

- Closed-book
- Can bring one A4 handwritten sheet

- Closed-book
- Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an $\ensuremath{^{\circ}\text{F}}\xspace^{-1}$ for the course.

- Closed-book
- Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an $\ensuremath{^{\prime\prime}}\xspace F''$ for the course.

Questions?

Outline

1 Syllabus

2

Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations

Outline

1 Syllabus

2 Introduction

• What is an Algorithm?

- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

• Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

Sorting

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

Sorting

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

Sorting

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
- Algorithms: insertion sort, merge sort, quicksort, ...

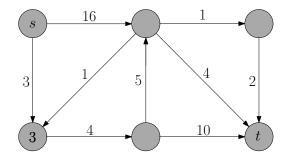
Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

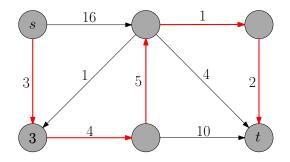
Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G



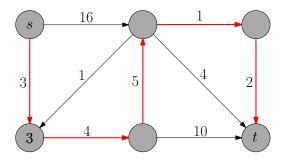
Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G



Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G



• Algorithm: Dijkstra's algorithm

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, associated with a particular programming language

Pseudo-Code

Pseudo-Code:

$\mathsf{Euclidean}(a, b)$

• while b > 0

$$(a,b) \leftarrow (b,a \mod b)$$

 \bigcirc return a

C++ program:

- int Euclidean(int a, int b){
- int c;
- while (b > 0){

• b = a % b;

• }

• }

return a;

• Main focus: correctness, running time (efficiency)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - 2 use efficiency to pay for user-friendliness, extensibility, etc.

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - use efficiency to pay for user-friendliness, extensibility, etc.
 - fundamental

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - readability
 - extensibility
 - user-friendliness
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - use efficiency to pay for user-friendliness, extensibility, etc.
 - fundamental
 - it is fun!

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

• At the end of j-th iteration, make the first j numbers sorted.

iteration 1: 53, 12, 35, 21, 59, 15 iteration 2: 12, 53, 35, 21, 59, 15 iteration 3: 12, 35, 53, 21, 59, 15 iteration 4: 12, 21, 35, 53, 59, 15 iteration 5: 12, 21, 35, 53, 59, 15 iteration 6: 12, 15, 21, 35, 53, 59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 $i \leftarrow i - 1$ 6 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 35 53 59 15
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

• j = 6• key = 1512 21 35 53 59 59 \uparrow i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 35 53 59 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 35 53 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
0	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 53 53 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
0	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 35 53 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

$insertion\operatorname{-}sort(A,n)$		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 35 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 $i \leftarrow i - 1$ 6 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 15 21 35 53 59
 \uparrow
 i

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Correctness
- Running time

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15after j = 2 : 12, 53, 35, 21, 59, 15after j = 3 : 12, 35, 53, 21, 59, 15after j = 4 : 12, 21, 35, 53, 59, 15after j = 5 : 12, 21, 35, 53, 59, 15after j = 6 : 12, 15, 21, 35, 53, 59

Analyze Running Time of Insertion Sort

• Q: Size of input?

Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size

Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?
- Q: Programming language?

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?
- Q: Programming language?
- A: Important idea: asymptotic analysis
 - Focus on growth of running-time as a function, not any particular value.

- Ignoring lower order terms
- Ignoring leading constant

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

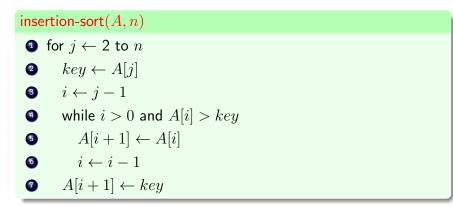
- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$

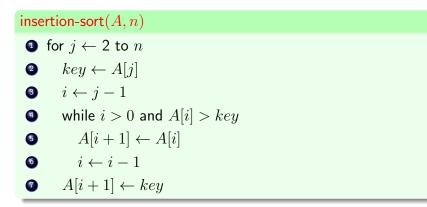
- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$ • $2^{n/3+100} + 100n^{100} = O(2^{n/3})$

- Ignoring lower order terms
- Ignoring leading constant
- ${\it O}\text{-}{\sf notation}$ allows us to
 - ignore architecture of computer
 - ignore programming language

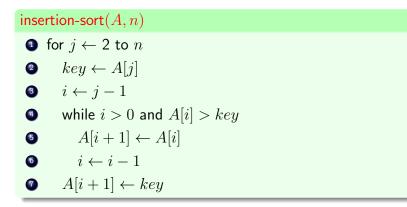
insertion-sort(A, n)**1** for $j \leftarrow 2$ to n2 $key \leftarrow A[j]$ $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ $A[i+1] \leftarrow key$ 7



• Worst-case running time for iteration *j* in the outer loop?



• Worst-case running time for iteration j in the outer loop? Answer: O(j)



- Worst-case running time for iteration j in the outer loop? Answer: ${\cal O}(j)$
- Total running time = $\sum_{j=2}^{n} O(j) = O(n^2)$ (informal)

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers?

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- \bullet Basic operations take ${\cal O}(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers? In most scenarios in the course, assuming real numbers are represented exactly

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- \bullet Basic operations take ${\cal O}(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers? In most scenarios in the course, assuming real numbers are represented exactly
- Can we do better than insertion sort asymptotically?

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers? In most scenarios in the course, assuming real numbers are represented exactly
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort, heap sort, ...

• Remember to sign up for Piazza.

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

Asymptotic Notations

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

• In other words, f(n) is positive for large enough n.

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

• In other words, f(n) is positive for large enough n.

•
$$n^2 - n - 30$$

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes • $2^n - n^{20}$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No
- We only consider asymptotically positive functions.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \leq g$ ".

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \leq g$ ".
- $3n^2 + 2n \in O(n^3)$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \leq g$ ".
- $3n^2 + 2n \in O(n^3)$
- $3n^2 + 2n \in O(n^2)$

O-Notation: Asymptotic Upper Bound

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \leq g$ ".
- $3n^2 + 2n \in O(n^3)$
- $3n^2 + 2n \in O(n^2)$
- $n^{100} \in O(2^n)$

O-Notation: Asymptotic Upper Bound

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \leq g$ ".
- $3n^2 + 2n \in O(n^3)$
- $3n^2 + 2n \in O(n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(n^2)$

\bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$

• We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
 - There exists a function $f(n) \in O(n^3)$, such that $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
 - There exists a function $f(n) \in O(n^3)$, such that $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.
- $n^2 + O(n) = O(n^2)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
 - There exists a function $f(n) \in O(n^3)$, such that $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.
- $n^2 + O(n) = O(n^2)$
 - For every function $f(n) \in O(n)$, there exists a function $g(n) \in O(n^2)$, such that $n^2 + f(n) = g(n)$.

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ " • $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
 - There exists a function $f(n) \in O(n^3)$, such that $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.
- $n^2 + O(n) = O(n^2)$
 - For every function $f(n) \in O(n)$, there exists a function $g(n) \in O(n^2)$, such that $n^2 + f(n) = g(n)$.
- Rule: left side $\rightarrow \forall$, right side $\rightarrow \exists$

•
$$3n^2 + 2n = O(n^3)$$

• $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
• $n^2 + O(n) = O(n^2)$

• "=" is asymmetric! Following statements are wrong:

•
$$O(n^3) = 3n^2 + 2n$$

• $4n^3 + O(n^3) = 4n^3 + 3n^2 + 2n$
• $O(n^2) = n^2 + O(n)$

•
$$3n^2 + 2n = O(n^3)$$

• $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
• $n^2 + O(n) = O(n^2)$

• "=" is asymmetric! Following statements are wrong:

•
$$O(n^3) = 3n^2 + 2n$$

• $4n^3 + O(n^3) = 4n^3 + 3n^2 + 2n$
• $O(n^2) = n^2 + O(n)$

- $O(n^2) = n^2 + O(n)$
- Chaining is allowed: $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) = O(n^3) = O(n^4)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

- In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.
- Informally, think of it as " $f \ge g$ ".

• Again, we use "=" instead of \in .

•
$$4n^2 = \Omega(n)$$

•
$$3n^2 - n + 10 = \Omega(n^2)$$

•
$$\Omega(n^2) + n = \Omega(n^2) = \Omega(n)$$

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n)$$

•
$$3n^2 - n + 10 = \Omega(n^2)$$

•
$$\Omega(n^2) + n = \Omega(n^2) = \Omega(n)$$

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$

 $\begin{aligned} \Theta\text{-Notation} \quad & \text{For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ & c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{aligned}$

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}. \end{aligned}$

• $f(n) = \Theta(g(n)),$ then for large enough n, we have " $f(n) \approx g(n)$ ".

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}. \end{aligned}$

- $f(n) = \Theta(g(n)),$ then for large enough n, we have " $f(n) \approx g(n)$ ".
- Informally, think of it as "f = g".

 $\Theta-\text{Notation For a function } g(n),$ $\Theta(g(n)) = \{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0 \}.$

- $f(n) = \Theta(g(n)),$ then for large enough n, we have " $f(n) \approx g(n)$ ".
- Informally, think of it as "f = g".
- $3n^2 + 2n = \Theta(n^2)$

 $\Theta-\text{Notation For a function } g(n),$ $\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0 \right\}.$

- $f(n) = \Theta(g(n)),$ then for large enough n, we have " $f(n) \approx g(n)$ ".
- Informally, think of it as "f = g".
- $3n^2 + 2n = \Theta(n^2)$
- $2^{n/3+100} = \Theta(2^{n/3})$

 $\Theta-\text{Notation For a function } g(n),$ $\Theta(g(n)) = \{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0 \}.$

- $f(n) = \Theta(g(n)),$ then for large enough n, we have " $f(n) \approx g(n)$ ".
- Informally, think of it as "f = g".
- $3n^2 + 2n = \Theta(n^2)$
- $2^{n/3+100} = \Theta(2^{n/3})$

Theorem $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

f	g	O	Ω	Θ	
$\lg^{10} n$	$n^{0.1}$				
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				
$n^2 - 100n$	$5n^2 + 30n$				

f	g	O	Ω	Θ	
$\lg^{10} n$	$n^{0.1}$	Yes	No	No	
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				
$n^2 - 100n$	$5n^2 + 30n$				-

f	g	0	Ω	Θ	
$\lg^{10} n$	$n^{0.1}$	Yes	No	No	
2^n	$2^{n/2}$	No	Yes	No	
\sqrt{n}	$n^{\sin n}$				
$n^2 - 100n$	$5n^2 + 30n$				

f	g	O	Ω	Θ	
$\lg^{10} n$	$n^{0.1}$	Yes	No	No	
2^n	$2^{n/2}$	No	Yes	No	
\sqrt{n}	$n^{\sin n}$	No	No	No	
$n^2 - 100n$	$5n^2 + 30n$				

f	g	0	Ω	Θ
$\lg^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Trivial Facts on Comparison Relations

 $\bullet \ f \leq g \ \Leftrightarrow \ g \geq f$

•
$$f = g \iff f \le g$$
 and $f \ge g$

•
$$f \leq g$$
 or $f \geq g$

Trivial Facts on Comparison Relations

- $f \leq g \Leftrightarrow g \geq f$ • $f = g \Leftrightarrow f \leq g$ and f
- $f = g \iff f \le g \text{ and } f \ge g$
- $\bullet \ f \leq g \ {\rm or} \ f \geq g$

Correct Analogies

$$\bullet \ f(n) = O(g(n)) \ \Leftrightarrow \ g(n) = \Omega(f(n))$$

 $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Trivial Facts on Comparison Relations

• $f \leq g \iff g \geq f$ • $f = g \iff f \leq g$ and $f \geq g$

•
$$f \leq g$$
 or $f \geq g$

Correct Analogies

•
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

•
$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

$$f(n) = n^{2}$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2^{n} & \text{if } n \text{ is even} \end{cases}$$

Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- Thus $3n^2 10n 5 = O(n^2)$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

• Thus
$$3n^2 - 10n - 5 = O(n^2)$$

• Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

• Thus
$$3n^2 - 10n - 5 = O(n^2)$$

• Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

Formally: if n > 10, then $n^2 < 3n^2 - 10n - 5 < 3n^2$. So, $3n^2 - 10n - 5 \in \Theta(n^2)$.

$o \text{ and } \omega\text{-Notations}$

o-Notation For a function g(n), $o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that}$ $f(n) \leq cg(n), \forall n \geq n_0 \}.$

$$\begin{split} & \omega \text{-Notation For a function } g(n), \\ & \omega(g(n)) = \big\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that} \\ & f(n) \geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

Example:

•
$$3n^2 + 5n + 10 = o(n^2 \lg n).$$

•
$$3n^2 + 5n + 10 = \omega(n^2/\lg n).$$

Questions?

Outline

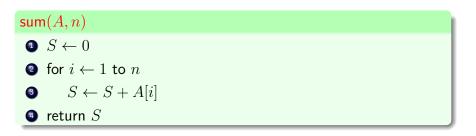
1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

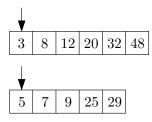
3 Asymptotic Notations

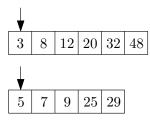
Computing the sum of \boldsymbol{n} numbers

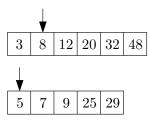


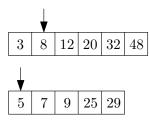
3	8	12	20	32	48
---	---	----	----	----	----

5	7	9	25	29	
---	---	---	----	----	--

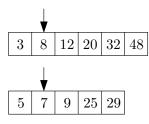




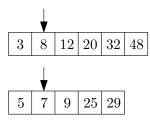


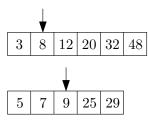


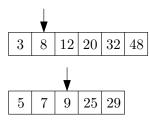
3	5
---	---

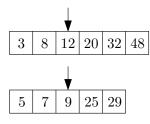


3	5
---	---

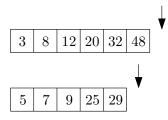




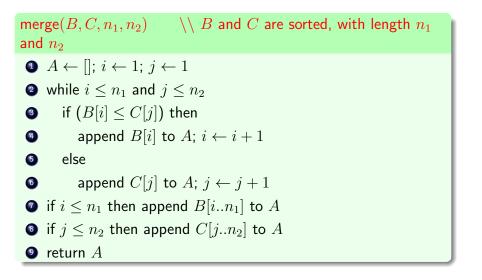


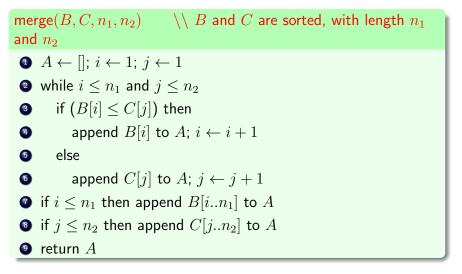


3 5 7 8	9 12	20 25	29
---------	------	-------	----



3	5	7	8	9	12	20	25	29	32	48	
---	---	---	---	---	----	----	----	----	----	----	--





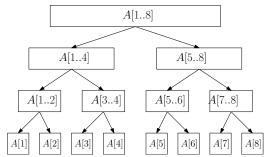
Running time = O(n) where $n = n_1 + n_2$.

merge-sort(A, n)

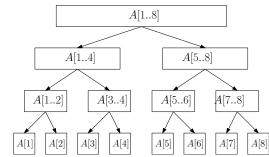
- if n = 1 then
- 2 return A
- else

• return merge $(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)$

• Merge-Sort

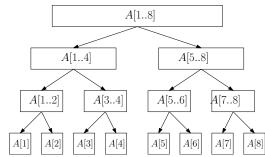


• Merge-Sort



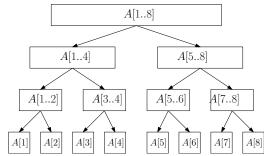
• Each level takes running time O(n)

• Merge-Sort



- Each level takes running time O(n)
- There are $O(\lg n)$ levels

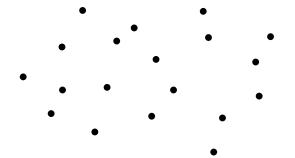
• Merge-Sort



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

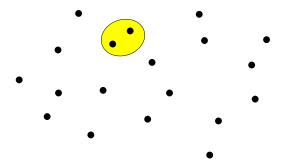
Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest



Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest



Closest Pair

Input: n points in plane:
$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

Output: the pair of points that are closest

closest-pair(x, y, n)• best $d \leftarrow \infty$ **2** for $i \leftarrow 1$ to n-1for $j \leftarrow i+1$ to n 3 $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 4 5 if d < best d then $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$ 6 • return (besti, bestj)

Closest Pair

Input: n points in plane:
$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

Output: the pair of points that are closest

closest-pair(x, y, n)• best $d \leftarrow \infty$ **2** for $i \leftarrow 1$ to n-1for $j \leftarrow i+1$ to n 3 $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 4 5 if d < best d then $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$ 6 • return (besti, bestj)

Closest pair can be solved in $O(n \lg n)$ time!

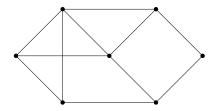
$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n\times n$

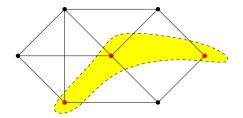
matrix-multiplication(A, B, n)1 $C \leftarrow$ matrix of size $n \times n$, with all entries being 02for $i \leftarrow 1$ to n3for $j \leftarrow 1$ to n4for $k \leftarrow 1$ to n5 $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$ 6return C

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

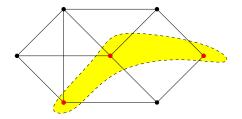
Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.



Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.



Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.



Independent set of size k

Input: graph G = (V, E), an integer k

Output: whether there is an independent set of size k

Independent Set of Size k

Input: graph G = (V, E)

 $\ensuremath{\textbf{Output:}}$ whether there is an independent set of size k

independent-set (G = (V, E))

$$\bullet \quad \text{for every set } S \subseteq V \text{ of size } k$$

2 $b \leftarrow \mathsf{true}$

• for every
$$u, v \in S$$

if
$$(u,v) \in E$$
 then $b \leftarrow$ false

 \bullet if b return true

return false

Running time = $O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)

Beyond Polynomial Time: $O(2^n)$

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

$$\begin{array}{l} \text{max-independent-set}(G=(V,E))\\ \textcircledleft algoritht R \leftarrow \emptyset\\ \fboxleft algoritht line \\ \reft algoritht R \\ \reft algoritht line \\ \reft algoritht line \\ \reft algoritht R \\ \reft algoritht line \\ \reft algoritht line \\ \reft algoritht R \\ \reft algoritht line \\ \reft algoritht line \\ \reft algoritht R \\ \reft algoritht line \\ \reft algoritht R \\ \reft algoritht line \\ \reft algoritht li$$

Running time = $O(2^n n^2)$.

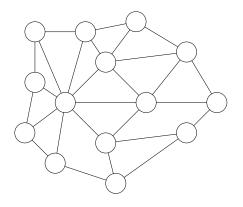
Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with *n* vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



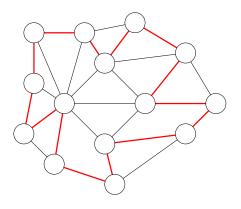
Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with *n* vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



$\mathsf{Hamiltonian}(G = (V, E))$

- for every permutation (p_1, p_2, \cdots, p_n) of V

• for
$$i \leftarrow 1$$
 to $n-1$

• if
$$(p_i, p_{i+1}) \notin E$$
 then $b \leftarrow$ false

• if
$$(p_n, p_1) \notin E$$
 then $b \leftarrow$ false

• if b then return
$$(p_1, p_2, \cdots, p_n)$$

return "No Hamiltonian Cycle"

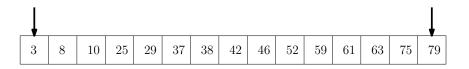
Running time = $O(n! \times n)$

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

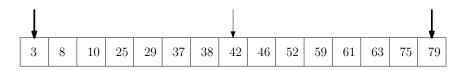
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

3	8	10	25	29	37	38	42	46	52	59	61	63	75	79	
---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	--

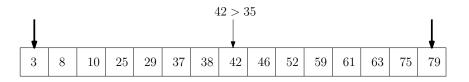
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



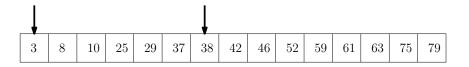
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



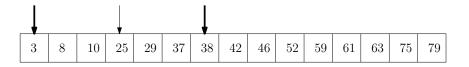
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



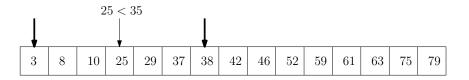
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



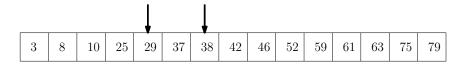
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



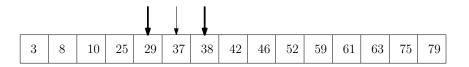
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



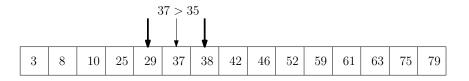
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



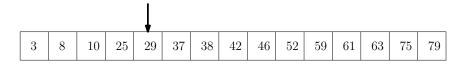
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- $\bullet \quad i \leftarrow 1, j \leftarrow n$
- $\textcircled{2} \text{ while } i \leq j \text{ do}$

- if A[k] = t return true
- $if A[k] < t then j \leftarrow k-1 else i \leftarrow k+1$

return false

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- $\textcircled{1} i \leftarrow 1, j \leftarrow n$
- $\textcircled{2} \text{ while } i \leq j \text{ do}$

- if A[k] = t return true

return false

Running time = $O(\lg n)$

• Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n

Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") n^{√n}, lg n, n, n², n lg n, n!, 2ⁿ, eⁿ, lg(n!), nⁿ
lg n < n^{√n}

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < n^2 < n^{\sqrt{n}}$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < \frac{n \lg n}{n} < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < \frac{n}{\lg n} < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < \frac{n}{\lg n} < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$

- Sort the functions from asymptotically smallest to asymptotically largest (informally, using "<" and "=") $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! < n^n$

Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- \bullet Polynomial time: ${\cal O}(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- $\bullet\,$ Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- \bullet Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k>0} \omega(n^k)$

67/69

Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- For reasonable *n*, algorithm with lower order running time beats algorithm with higher order running time.