CSE 431/531: Algorithm Analysis and Design (Fall 2021) Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: **else**

4:
$$B \leftarrow \mathsf{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$$

5:
$$C \leftarrow \text{merge-sort} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right) \right)$$

6: return $merge(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

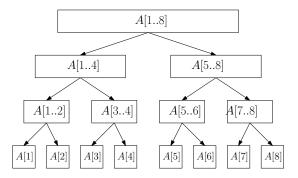
merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: else
- 4: $B \leftarrow \text{merge-sort}\left(A\left[1..\lfloor n/2\rfloor\right], \lfloor n/2\rfloor\right)$ 5: $C \leftarrow \text{merge-sort}\left(A\left[\lfloor n/2\rfloor + 1..n\right], \lceil n/2\rceil\right)$

6: **return** merge(B, C, |n/2|, [n/2])

- Divide: trivial
- Conquer: 4, 5
- Combine: 6

Running Time for Merge-Sort



- Each level takes running time ${\cal O}(n)$
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases}$$

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2) + O(n)}{2T(n/2)} & \text{if } n \ge 2 \end{cases}$$

• Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2) + O(n)}{2T(n/2)} & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Counting Inversions

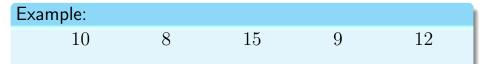
Input: an sequence A of n numbers

Output: number of inversions in *A*

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in *A*



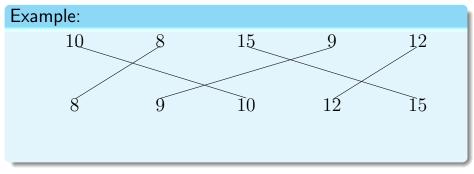
Counting Inversions

Input: an sequence A of n numbers **Output:** number of inversions in A

8	15	9	12
9	10	12	15

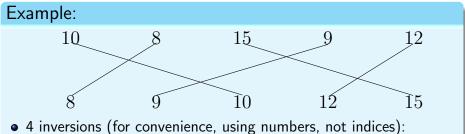
Counting Inversions

Input: an sequence *A* of *n* numbers **Output:** number of inversions in *A*



Counting Inversions

Input: an sequence A of n numbers **Output:** number of inversions in A



 4 inversions (for convenience, using numbers, not indices): (10,8), (10,9), (15,9), (15,12)

Naive Algorithm for Counting Inversions

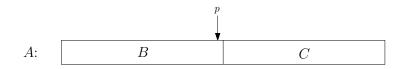
count-inversions(A, n)

1:
$$c \leftarrow 0$$

2: for every $i \leftarrow 1$ to $n - 1$ do
3: for every $j \leftarrow i + 1$ to n do
4: if $A[i] > A[j]$ then $c \leftarrow c + 1$

5: return c

Divide-and-Conquer



•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

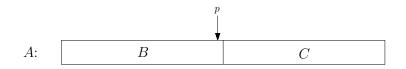
• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

 $\bullet\,$ Can not improve the ${\cal O}(n^2)$ time for counting inversions.

Divide-and-Conquer



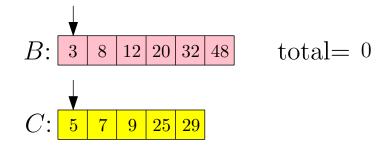
•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

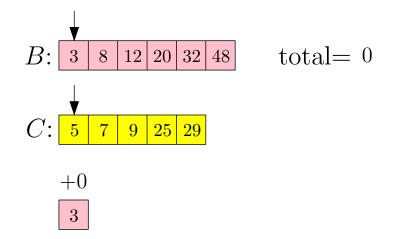
• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

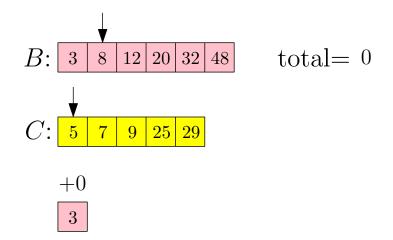
Lemma If both B and C are sorted, then we can compute m in O(n) time!

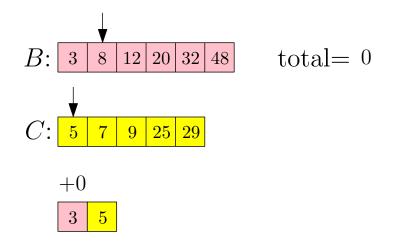
$$total = 0$$

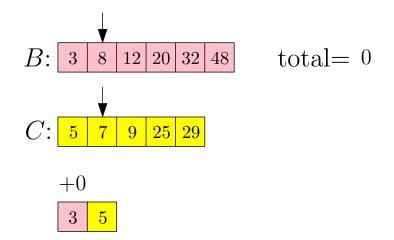
$$C:$$
 5 7 9 25 29

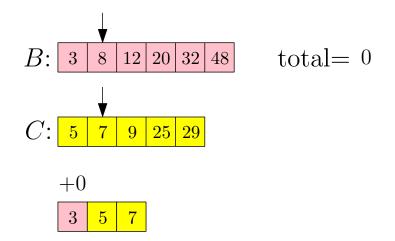


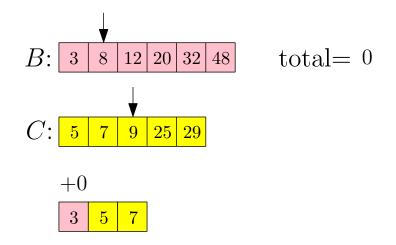


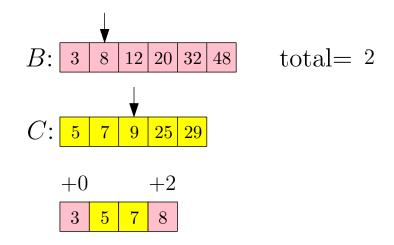


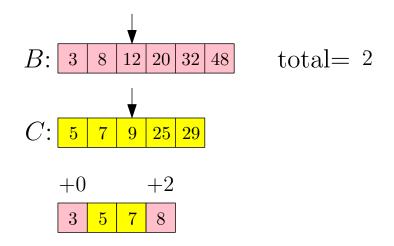


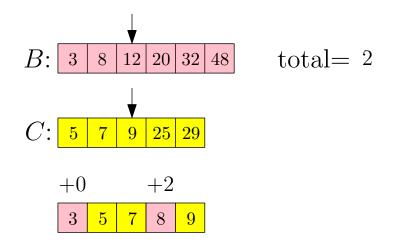


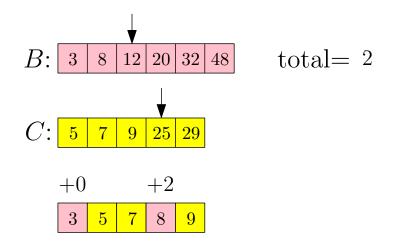


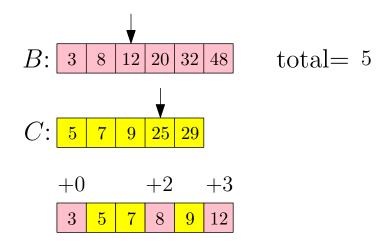


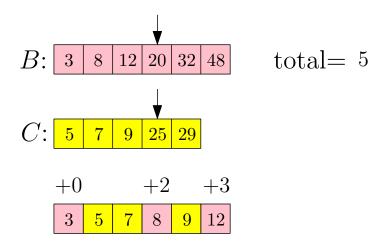


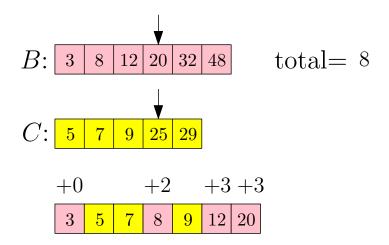


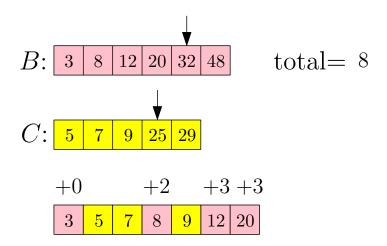


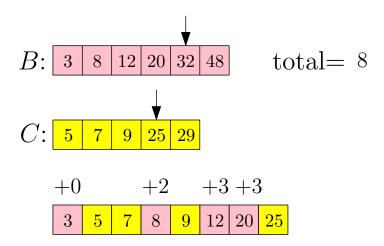


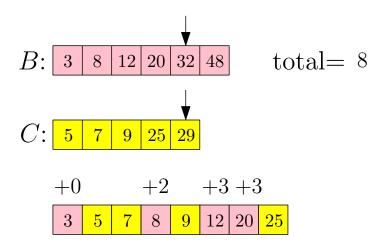


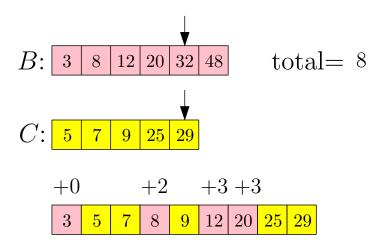


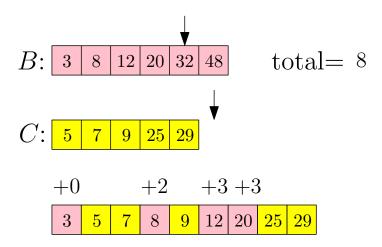


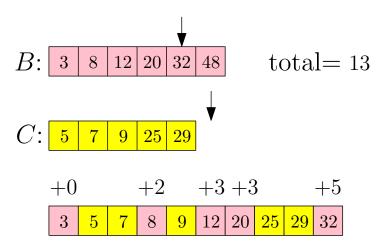


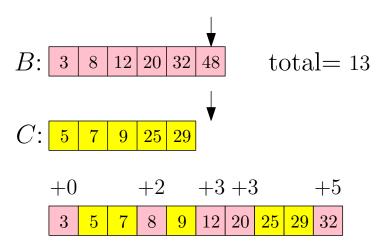


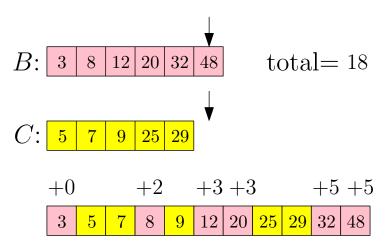




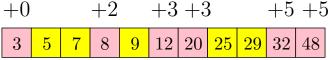








Count pairs i, j such that B[i] > C[j]: B: 12 20 32 48 total = 183 8 9 C: 7 25 29 5



 \bullet Procedure that merges B and C and counts inversions between B and C at the same time

• A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then

2: **return**
$$(A, 0)$$

3: **else**

4:
$$(B, m_1) \leftarrow \text{sort-and-count} (A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$$

- 5: $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- 7: return $(A, m_1 + m_2 + m_3)$

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)Divide: trivial • Conquer: 4, 5 1: if n = 1 then return (A, 0)2: • Combine: 6. 7 3: else $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ 4: $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$ 5: $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lfloor n/2 \rfloor)$ 6: return $(A, m_1 + m_2 + m_3)$ 7:

sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**
- 4: $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$
- 5: $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

7: return
$$(A, m_1 + m_2 + m_3)$$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**
- 4: $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$
- 5: $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)$
- 6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- 7: return $(A, m_1 + m_2 + m_3)$
- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Outline

Divide-and-Conquer

- 2 Counting Inversions
 - Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Merge SortDivideTrivialConquerRecurseCombineMerge 2 sorted arrays

Quicksort

Separate small and big numbers Recurse Trivial

29 82	75	64	38	45	94	69	25	76	15	92	37	17	85	
-------	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

4	29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
4	29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
- \\ Divide
 \\ Divide
 \\ Conquer
 \\ Conquer

Quicksort

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
- Recurrence $T(n) \leq 2T(n/2) + O(n)$

Quicksort

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x

5:
$$B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$$

6:
$$B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$$

- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$

Q: How to remove this assumption?

Q: How to remove this assumption?

A:

There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Q: How to remove this assumption?

A:

- There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x

5:
$$B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$$

6:
$$B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$$

- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

Q: Can computers really produce random numbers?

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

• In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- 7: $t \leftarrow$ number of times x appear A
- 8: return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.

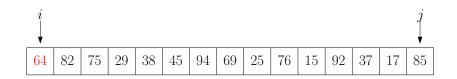
\\ Divide

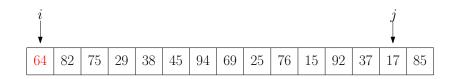
\\ Divide

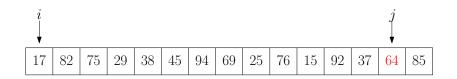
\\ Conquer \\ Conquer

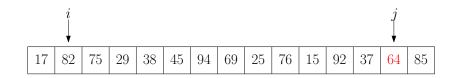
Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

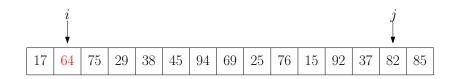
• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

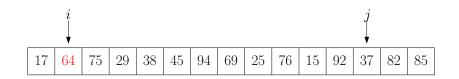


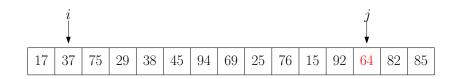


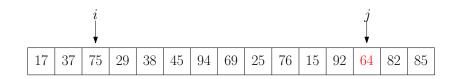


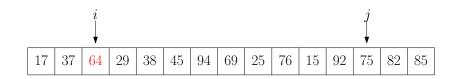


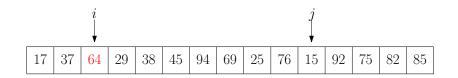


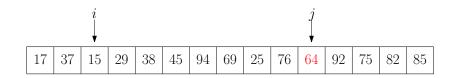


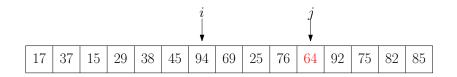


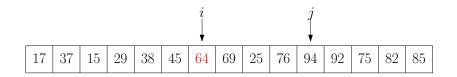


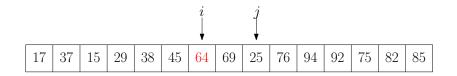


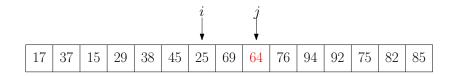


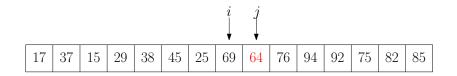


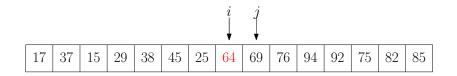


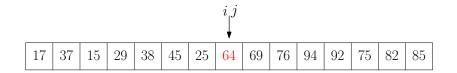




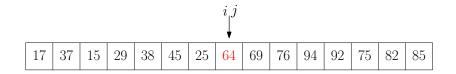








• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.



 $\bullet\,$ To partition the array into two parts, we only need O(1) extra space.

$\mathsf{partition}(A,\ell,r)$

- 1: $p \leftarrow$ random integer between ℓ and r, swap A[p] and $A[\ell]$ 2: $i \leftarrow \ell, j \leftarrow r$
- 3: while true do
- 4: while i < j and A[i] < A[j] do $j \leftarrow j 1$
- 5: **if** i = j **then** break
- 6: swap A[i] and A[j]; $i \leftarrow i+1$
- 7: while i < j and A[i] < A[j] do $i \leftarrow i+1$
- 8: **if** i = j **then** break
- 9: swap A[i] and A[j]; $j \leftarrow j-1$

10: return i

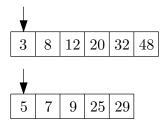
In-Place Implementation of Quick-Sort

$quicksort(A, \ell, r)$

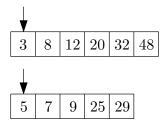
- 1: if $\ell \geq r$ then return
- 2: $m \leftarrow \mathsf{patition}(A, \ell, r)$
- 3: quicksort $(A, \ell, m-1)$
- 4: quicksort(A, m + 1, r)
- To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.

5	7	9	25	29
---	---	---	----	----

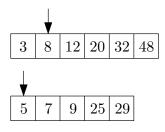


• To merge two arrays, we need a third array with size equaling the total size of two arrays

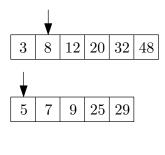


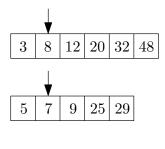
3

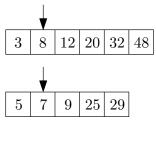
• To merge two arrays, we need a third array with size equaling the total size of two arrays



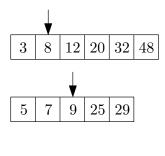
3



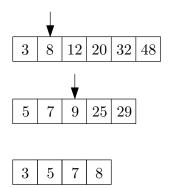


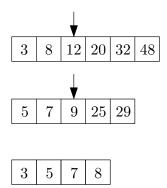


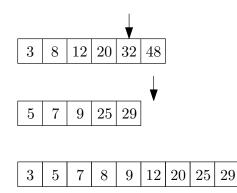
3	5	7
---	---	---

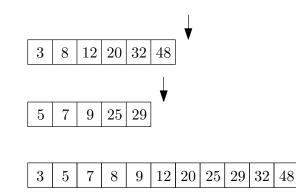


3	5	7
---	---	---









Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort

Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem

- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Q: Can we do better than $O(n \log n)$ for sorting?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

• Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know *x*?

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

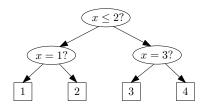
Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know *x*?

A: $\lceil \log_2 N \rceil$.



Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log_2 n! = \Theta(n \lg n)$

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does *i* appear before *j* in π ?"

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least
$$\log_2 n! = \Theta(n \lg n)$$

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the *i*-th smallest number in A

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

• Sorting solves the problem in time $O(n \lg n)$.

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)	
1: if $n \leq 1$ then return A	
2: $x \leftarrow \text{lower median of } A$	
3: $A_L \leftarrow$ elements in A that are less than x	⊳ Divide
4: $A_R \leftarrow$ elements in A that are greater than x	⊳ Divide
5: $B_L \leftarrow quicksort(A_L, A_L.size)$	⊳ Conquer
6: $B_R \leftarrow quicksort(A_R, A_R.size)$	⊳ Conquer
7: $t \leftarrow$ number of times x appear A	
8: return the array obtained by concatenating B_L , t	he array
containing t copies of x , and B_R	

Selection Algorithm with Median Finder

$\operatorname{selection}(A, n, i)$	
1: if $n = 1$ then return A	
2: $x \leftarrow \text{lower median of } A$	
3: $A_L \leftarrow$ elements in A that are less than x	⊳ Divide
4: $A_R \leftarrow$ elements in A that are greater than x	⊳ Divide
5: if $i \leq A_L$ size then	
6: return selection $(A_L, A_L.size, i)$	⊳ Conquer
7: else if $i > n - A_R$.size then	
8: return selection $(A_R, A_R.size, i - (n - A_R.size))$	⊳ Conquer
9: else	
10: return <i>x</i>	

Selection Algorithm with Median Finder

selection(A,n,i)	
1: if $n = 1$ then return A	
2: $x \leftarrow \text{lower median of } A$	
3: $A_L \leftarrow$ elements in A that are less than x	⊳ Divide
4: $A_R \leftarrow$ elements in A that are greater than x	⊳ Divide
5: if $i \leq A_L$.size then	
6: return selection $(A_L, A_L.size, i)$	⊳ Conquer
7: else if $i > n - A_R$.size then	
8: return selection $(A_R, A_R.size, i - (n - A_R.size))$	⊳ Conquer
9: else	
10: return x	

• Recurrence for selection: T(n) = T(n/2) + O(n)

Selection Algorithm with Median Finder

selection(A, n, i)	
1: if $n = 1$ then return A	
2: $x \leftarrow $ lower median of A	
3: $A_L \leftarrow$ elements in A that are less than x	⊳ Divide
4: $A_R \leftarrow$ elements in A that are greater than x	⊳ Divide
5: if $i \leq A_L$ size then	
6: return selection $(A_L, A_L.size, i)$	⊳ Conquer
7: else if $i > n - A_R$.size then	
8: return selection $(A_R, A_R.size, i - (n - A_R.size))$	⊳ Conquer
9: else	
10: return <i>x</i>	
• Recurrence for selection: $T(n) = T(n/2) + O(n)$	

• Solving recurrence: T(n) = O(n)

Randomized Selection Algorithm

selection(A, n, i)	
1: if $n = 1$	thenreturn A	
2: $x \leftarrow raction rates x \leftarrow raction rates x$	ndom element of A (called pivot)	
3: $A_L \leftarrow \epsilon$	elements in A that are less than x	⊳ Divide
4: $A_R \leftarrow \epsilon$	elements in A that are greater than x	⊳ Divide
5: if $i \leq A$	Λ_L .size then	
6: ret ı	Irn selection $(A_L, A_L$.size, $i)$	⊳ Conquer
7: else if	$i > n - A_R$.size then	
8: ret ı	Irn selection $(A_R, A_R.size, i - (n - A_R.size))$	⊳ Conquer
9: else		
10: ret u	irn x	

Randomized Selection Algorithm

1: if $n = 1$ thenreturn A 2: $x \leftarrow \text{random element}$ of A (called pivot) 3: $A_L \leftarrow \text{elements}$ in A that are less than $x \qquad \triangleright$ Div 4: $A_R \leftarrow \text{elements}$ in A that are greater than $x \qquad \triangleright$ Div 5: if $i \leq A_L$ size then	ide
3: $A_L \leftarrow$ elements in A that are less than x \triangleright Div4: $A_R \leftarrow$ elements in A that are greater than x \triangleright Div	ide
4: $A_R \leftarrow$ elements in A that are greater than $x \triangleright$ Div	ide
r if $i < A$ size then	ide
5: If $i \geq A_L$. Size then	
6: return selection $(A_L, A_L.size, i)$ \triangleright Conq	uer
7: else if $i > n - A_R$ size then	
8: return selection $(A_R, A_R.size, i - (n - A_R.size)) \triangleright Conq$	uer
9: else	
10: return x	

• expected running time = O(n)

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Input: two polynomials of degree n-1

Output: product of two polynomials

Input: two polynomials of degree n-1

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$

Input: two polynomials of degree n-1

Output: product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

Input: two polynomials of degree n-1

Output: product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

Input: (4, -5, 2, 3), (-5, 6, -3, 2)
Output: (-20, 49, -52, 20, 2, -5, 6)

polynomial-multiplication (A, B, n)

1: let
$$C[k] \leftarrow 0$$
 for every $k=0,1,2,\cdots,2n-2$

2: for
$$i \leftarrow 0$$
 to $n-1$ do

3: for
$$j \leftarrow 0$$
 to $n-1$ do

$$\textbf{4:} \qquad \quad C[i+j] \leftarrow C[i+j] + A[i] \times B[j]$$

5: return C

polynomial-multiplication (A, B, n)

1: let
$$C[k] \leftarrow 0$$
 for every $k = 0, 1, 2, \cdots, 2n-2$

2: for
$$i \leftarrow 0$$
 to $n-1$ do

3: for
$$j \leftarrow 0$$
 to $n-1$ do

4:
$$C[i+j] \leftarrow C[i+j] + A[i] \times B[j]$$

5: return C

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

- p(x): degree of n-1 (assume n is even)
- $p(x) = p_H(x)x^{n/2} + p_L(x)$,
- $p_H(x), p_L(x)$: polynomials of degree n/2 1.

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

• p(x): degree of n-1 (assume n is even)

•
$$p(x) = p_H(x)x^{n/2} + p_L(x)$$
,

• $p_H(x), p_L(x)$: polynomials of degree n/2 - 1.

$$pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)$$

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

• p(x): degree of n-1 (assume n is even)

•
$$p(x) = p_H(x)x^{n/2} + p_L(x)$$
,

• $p_H(x), p_L(x)$: polynomials of degree n/2 - 1.

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{split} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \left(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\right) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{split}$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{split} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \big(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\big) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{split}$$

• Recurrence: T(n) = 4T(n/2) + O(n)

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{split} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \left(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\right) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{split}$$

• Recurrence: T(n) = 4T(n/2) + O(n)

• $T(n) = O(n^2)$

Reduce Number from 4 to 3

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

• $p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

$$\begin{split} r_{H} &= \mathsf{multiply}(p_{H}, q_{H}) \\ r_{L} &= \mathsf{multiply}(p_{L}, q_{L}) \end{split}$$
$$\mathsf{multiply}(p, q) &= r_{H} \times x^{n} \\ &+ \left(\mathsf{multiply}(p_{H} + p_{L}, q_{H} + q_{L}) - r_{H} - r_{L}\right) \times x^{n/2} \\ &+ r_{L} \end{split}$$

$$\begin{split} r_{H} &= \mathsf{multiply}(p_{H}, q_{H}) \\ r_{L} &= \mathsf{multiply}(p_{L}, q_{L}) \end{split}$$
$$\mathsf{multiply}(p, q) &= r_{H} \times x^{n} \\ &+ \left(\mathsf{multiply}(p_{H} + p_{L}, q_{H} + q_{L}) - r_{H} - r_{L}\right) \times x^{n/2} \\ &+ r_{L} \end{split}$$

• Solving Recurrence: T(n) = 3T(n/2) + O(n)

$$\begin{split} r_{H} &= \mathsf{multiply}(p_{H}, q_{H}) \\ r_{L} &= \mathsf{multiply}(p_{L}, q_{L}) \end{split}$$
$$\mathsf{multiply}(p, q) &= r_{H} \times x^{n} \\ &+ \left(\mathsf{multiply}(p_{H} + p_{L}, q_{H} + q_{L}) - r_{H} - r_{L}\right) \times x^{n/2} \\ &+ r_{L} \end{split}$$

• Solving Recurrence: T(n) = 3T(n/2) + O(n)

•
$$T(n) = O(n^{\lg_2 3}) = O(n^{1.585})$$

$\mathsf{multiply}(A, B, n)$

1: if
$$n = 1$$
 then return $(A[0]B[0])$
2: $A_L \leftarrow A[0 ... n/2 - 1], A_H \leftarrow A[n/2 ... n - 1]$
3: $B_L \leftarrow B[0 ... n/2 - 1], B_H \leftarrow B[n/2 ... n - 1]$
4: $C_L \leftarrow$ multiply $(A_L, B_L, n/2)$
5: $C_H \leftarrow$ multiply $(A_L, B_H, n/2)$
6: $C_M \leftarrow$ multiply $(A_L + A_H, B_L + B_H, n/2)$
7: $C \leftarrow$ array of $(2n - 1)$ O's
8: for $i \leftarrow 0$ to $n - 2$ do
9: $C[i] \leftarrow C[i] + C_L[i]$
10: $C[i + n] \leftarrow C[i + n] + C_H[i]$
11: $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12: return C

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
 - 6 Solving Recurrences
- 🕜 Computing n-th Fibonacci Number

- Closest pair
- Convex hull
- Matrix multiplication
- FFT(Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time

Closest Pair

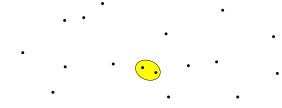
Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest



 $\bullet\,$ Trivial algorithm: $O(n^2)$ running time

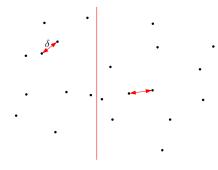
• Divide: Divide the points into two halves via a vertical line

•

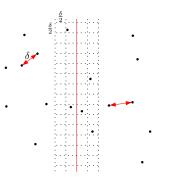
٠

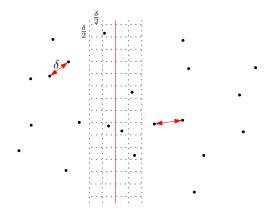
• •

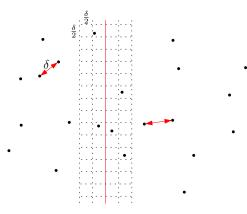
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively



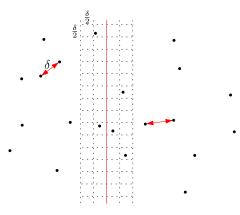
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half



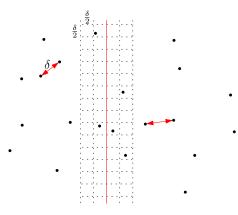




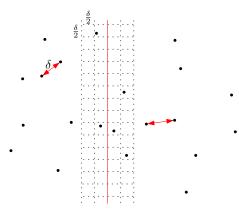
• Each box contains at most one pair



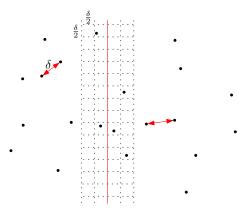
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby



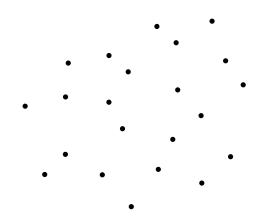
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)

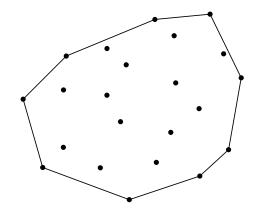


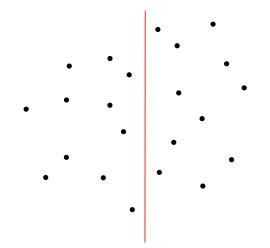
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)

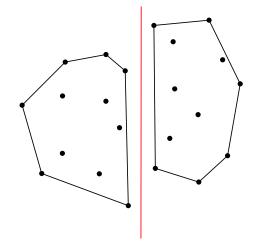


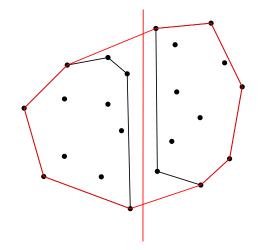
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$











Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B**Output:** C = AB

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

1: for
$$i \leftarrow 1$$
 to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$

6: **return** *C*

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

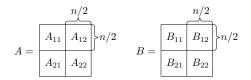
1: for
$$i \leftarrow 1$$
 to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$

6: **return** *C*

• running time = $O(n^3)$

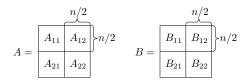
Try to Use Divide-and-Conquer

. . .



- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A, B) recursively calls matrix_multiplication (A_{11}, B_{11}) , matrix_multiplication (A_{12}, B_{21}) ,

Try to Use Divide-and-Conquer



- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A, B) recursively calls matrix_multiplication (A_{11}, B_{11}) , matrix_multiplication (A_{12}, B_{21}) , ...
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$
- $T(n) = O(n^3)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$

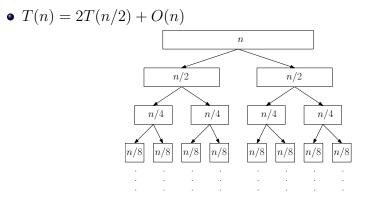
- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

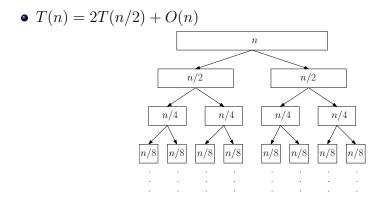
Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
 - Computing n-th Fibonacci Number

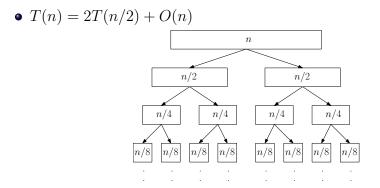
- The recursion-tree method
- The master theorem

•
$$T(n) = 2T(n/2) + O(n)$$

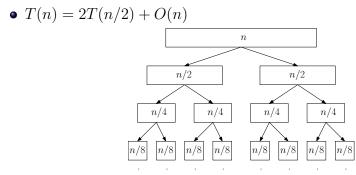




• Each level takes running time O(n)



- Each level takes running time O(n)
- There are $O(\lg n)$ levels



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

•
$$T(n) = 3T(n/2) + O(n)$$

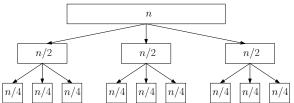
•
$$T(n) = 3T(n/2) + O(n)$$

n

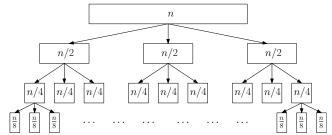
۲

$$T(n) = 3T(n/2) + O(n)$$

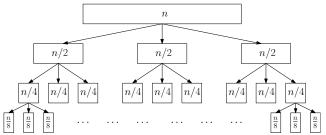
•
$$T(n) = 3T(n/2) + O(n)$$



•
$$T(n) = 3T(n/2) + O(n)$$

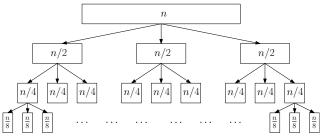


•
$$T(n) = 3T(n/2) + O(n)$$



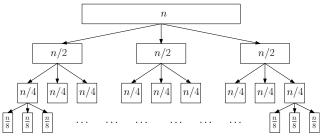
• Total running time at level *i*?

•
$$T(n) = 3T(n/2) + O(n)$$



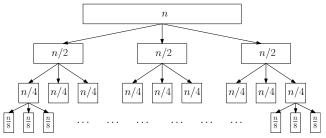
• Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$

•
$$T(n) = 3T(n/2) + O(n)$$



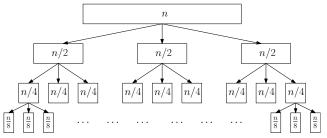
- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level?

•
$$T(n) = 3T(n/2) + O(n)$$



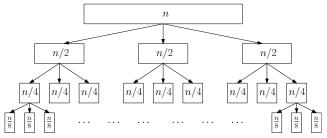
- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$

•
$$T(n) = 3T(n/2) + O(n)$$



- Total running time at level *i*? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

•
$$T(n) = 3T(n/2) + O(n)$$



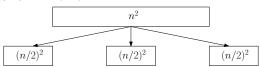
- Total running time at level *i*? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

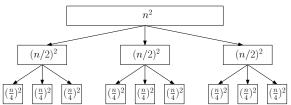
$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$

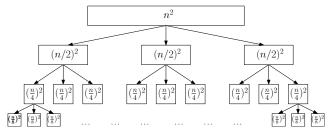
•
$$T(n) = 3T(n/2) + O(n^2)$$

• $T(n) = 3T(n/2) + O(n^2)$

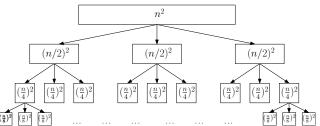
 n^2





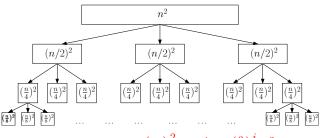


• $T(n) = 3T(n/2) + O(n^2)$

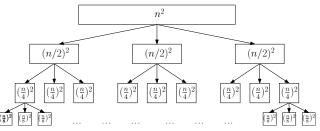


• Total running time at level *i*?

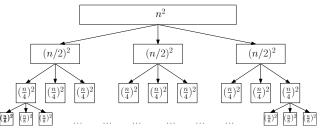
• $T(n) = 3T(n/2) + O(n^2)$



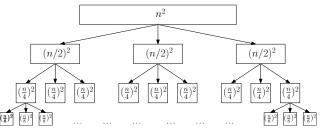
• Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$



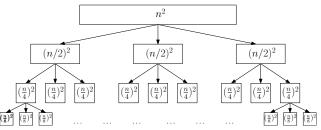
- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level?



- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$

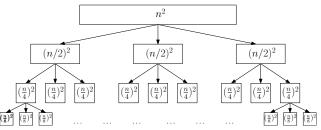


- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?



- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =$$



- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)				$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} ?? & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ & \text{ if } c = \lg_b a \\ & \text{ if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ ?? & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ \red{eq: red} & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

• Ex: T(n) = 3T(n/2) + O(n). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

• Ex: T(n) = 3T(n/2) + O(n). Case 1.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

• Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

• Ex:
$$T(n) = 3T(n/2) + O(n)$$
. Case 1. $T(n) = O(n^{\lg_2 3})$

• Ex:
$$T(n) = T(n/2) + O(1)$$
. Case 2. $T(n) = O(\lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

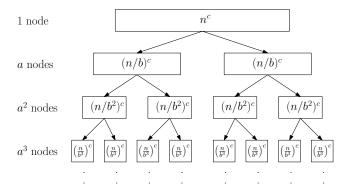
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

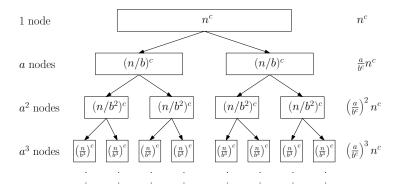
• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

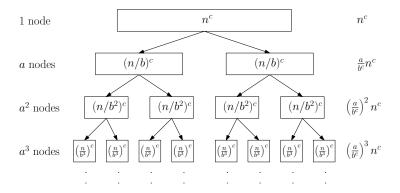
 $T(n) = aT(n/b) + O(n^c)$



$$T(n) = aT(n/b) + O(n^c)$$

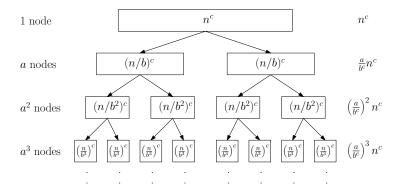


$$T(n) = aT(n/b) + O(n^c)$$



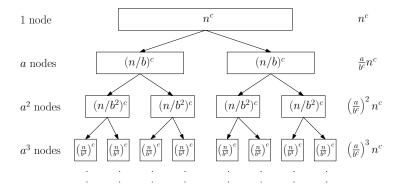
• $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$

 $T(n) = aT(n/b) + O(n^c)$



• $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$ • $c = \lg_b a$: all levels have same time: $n^c \lg_b n = O(n^c \lg n)$

$$T(n) = aT(n/b) + O(n^c)$$



c < lg_b a : bottom-level dominates: (^a/_{bc})^{lg_b n} n^c = n^{lg_b a}
c = lg_b a : all levels have same time: n^c lg_b n = O(n^c lg n)
c > lg_b a : top-level dominates: O(n^c)

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0

Output: F_n

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return $\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return $\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return $\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

• Running time is at least $\Omega(F_n)$

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return $\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$

2:
$$F[1] \leftarrow 1$$

3: for
$$i \leftarrow 2$$
 to n do

$$4: \qquad F[i] \leftarrow F[i-1] + F[i-2]$$

5: return F[n]

• Dynamic Programming

Computing F_n : Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$

2:
$$F[1] \leftarrow 1$$

3: for
$$i \leftarrow 2$$
 to n do

$$4: \qquad F[i] \leftarrow F[i-1] + F[i-2]$$

5: return F[n]

- Dynamic Programming
- Running time = ?

Computing F_n : Reasonable Algorithm

Fib(n)

1: $F[0] \leftarrow 0$

2:
$$F[1] \leftarrow 1$$

3: for
$$i \leftarrow 2$$
 to n do

$$4: \qquad F[i] \leftarrow F[i-1] + F[i-2]$$

5: return F[n]

- Dynamic Programming
- Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\dots$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $3: R \leftarrow R \times R$
- 4: if *n* is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

$\mathsf{Fib}(n)$

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return *M*[1][1]

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $3: R \leftarrow R \times R$
- 4: if *n* is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

$\mathsf{Fib}(n)$

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return *M*[1][1]

• Recurrence for running time?

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if *n* is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

$\mathsf{Fib}(n)$

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return *M*[1][1]
- Recurrence for running time? T(n) = T(n/2) + O(1)

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if *n* is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

5: return R

$\mathsf{Fib}(n)$

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return *M*[1][1]
- Recurrence for running time? T(n) = T(n/2) + O(1)

•
$$T(n) = O(\lg n)$$

Q: How many bits do we need to represent F(n)?

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

Q: How many bits do we need to represent F(n)?

 $\mathbf{A:} \ \Theta(n)$

• We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time
- Even printing F(n) requires time much larger than $O(\lg n)$

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time
- Even printing F(n) requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n , we need $O(\lg n)$ basic arithmetic operations on integers

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

• Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$
- Usually, designing better algorithm for "combine" step is key to improve running time