CSE 431/531: Algorithm Analysis and Design (Fall 2021) Graph Algorithms

Lecturer: Shi Li

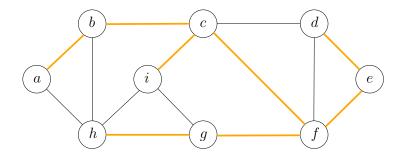
Department of Computer Science and Engineering University at Buffalo

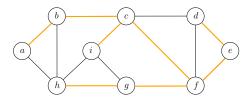
Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

Def. Given a connected graph G = (V, E), a spanning tree T = (V, F) of G is a sub-graph of G that is a tree including all vertices V.





Lemma Let T = (V, F) be a subgraph of G = (V, E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- $\bullet~T$ has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

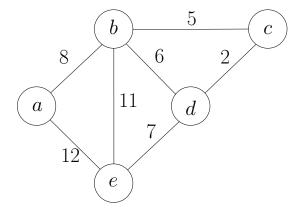
Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

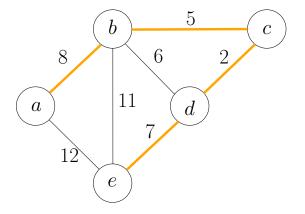
Output: the spanning tree T of G with the minimum total weight



Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight



Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

 $\mbox{Def.}~$ A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

 $\mbox{Def.}~$ A choice is "safe" if there is an optimum solution that is "consistent" with the choice

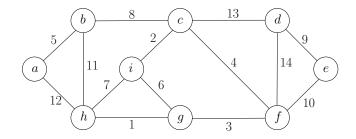
Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

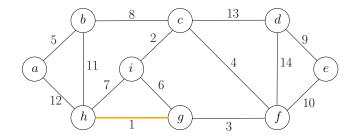
Outline

1 Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall



Q: Which edge can be safely included in the MST?

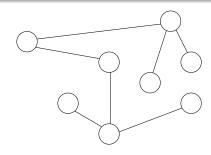


Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

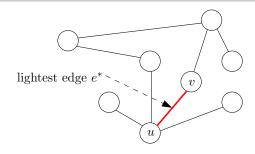
Proof.

 $\bullet\,$ Take a minimum spanning tree T



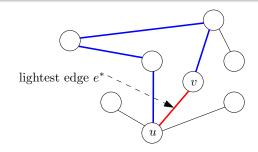
Proof.

- $\bullet\,$ Take a minimum spanning tree T
- \bullet Assume the lightest edge e^{\ast} is not in T



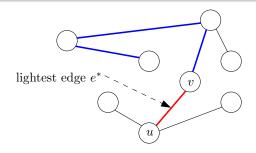
Proof.

- $\bullet\,$ Take a minimum spanning tree T
- \bullet Assume the lightest edge e^{\ast} is not in T
- $\bullet\,$ There is a unique path in T connecting u and v



Proof.

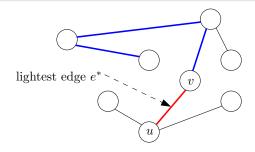
- $\bullet\,$ Take a minimum spanning tree T
- \bullet Assume the lightest edge e^{\ast} is not in T
- $\bullet\,$ There is a unique path in T connecting u and v
- $\bullet\,$ Remove any edge e in the path to obtain tree T'

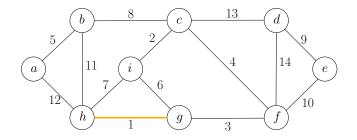


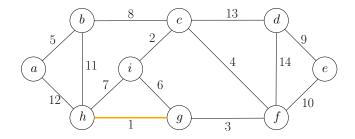
Proof.

- $\bullet\,$ Take a minimum spanning tree T
- \bullet Assume the lightest edge e^{\ast} is not in T
- $\bullet\,$ There is a unique path in T connecting u and v
- $\bullet\,$ Remove any edge e in the path to obtain tree T'

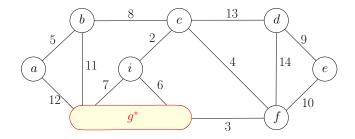
 $\bullet \ w(e^*) \leq w(e) \implies w(T') \leq w(T): \ T' \text{ is also a MST}$



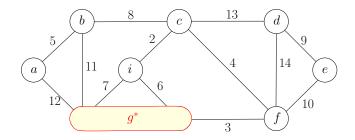




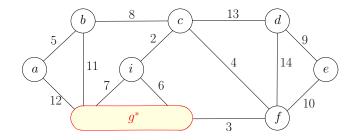
 \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)

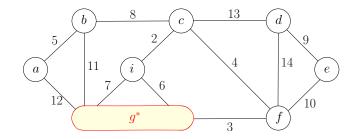


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)

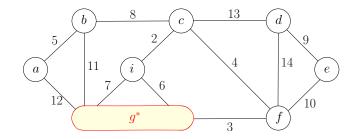


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

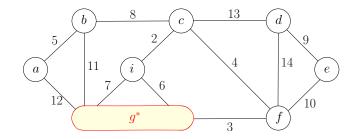




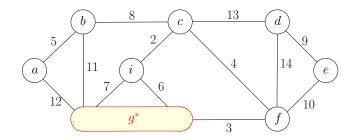
 $\bullet \mbox{ Remove } u$ and v from the graph, and add a new vertex u^*



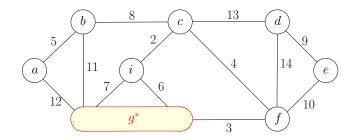
- $\bullet\,$ Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E



- $\bullet\,$ Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- \bullet For every edge $(u,w)\in E, w\neq v,$ change it to (u^*,w)



- Remove u and v from the graph, and add a new vertex u*
 Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v,w) \in E, w \neq u,$ change it to (u^*,w)



- Remove u and v from the graph, and add a new vertex u^*
- $\bullet \ {\rm Remove} \ {\rm all} \ {\rm edges} \ (u,v) \ {\rm from} \ E$
- \bullet For every edge $(u,w)\in E, w\neq v,$ change it to (u^*,w)
- For every edge $(v,w) \in E, w \neq u,$ change it to (u^*,w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- **(**) Choose the lightest edge e^* , add e^* to the spanning tree
- **②** Contract e^* and update G be the contracted graph

Repeat the following step until G contains only one vertex:

- **(**) Choose the lightest edge e^* , add e^* to the spanning tree
- **②** Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

Repeat the following step until G contains only one vertex:

- **(**) Choose the lightest edge e^* , add e^* to the spanning tree
- **②** Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

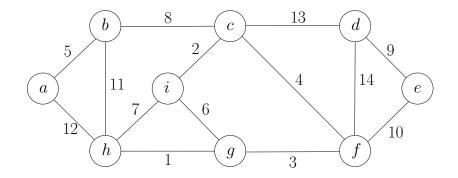
A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

$\mathsf{MST}\text{-}\mathsf{Greedy}(G, w)$

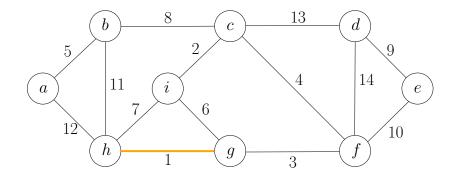
1:
$$F \leftarrow \emptyset$$

- 2: sort edges in ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 3: for each edge (u, v) in the order do
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$

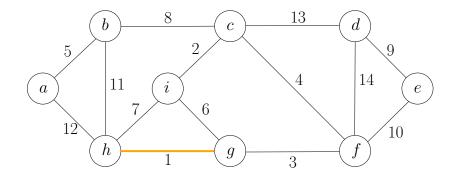
6: return (V, F)



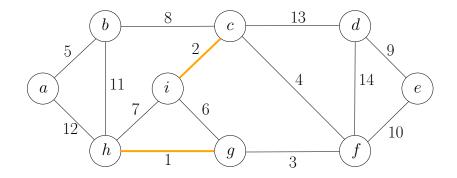
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



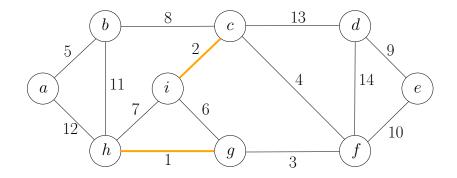
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



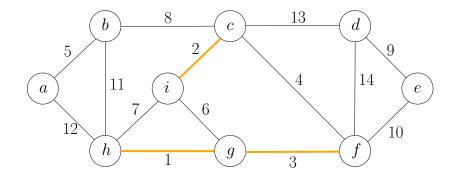
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



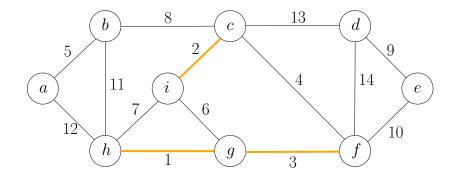
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



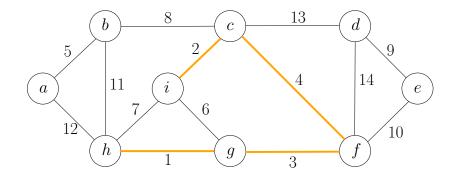
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



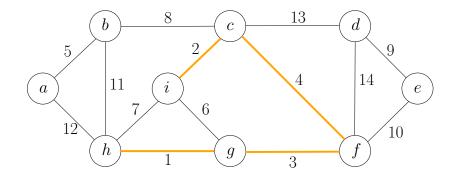
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



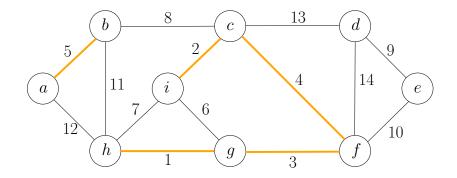
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



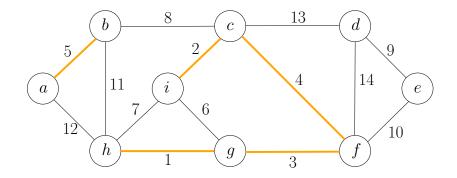
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



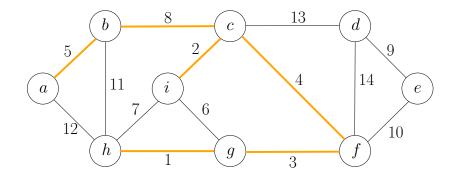
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



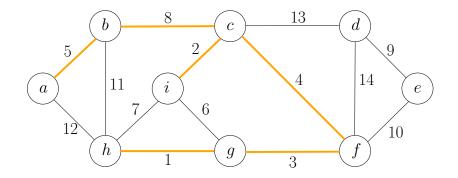
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



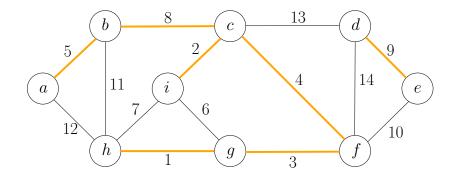
Sets: $\{a, b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



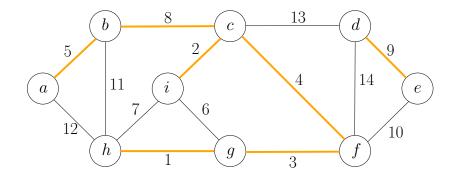
Sets: $\{a, b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



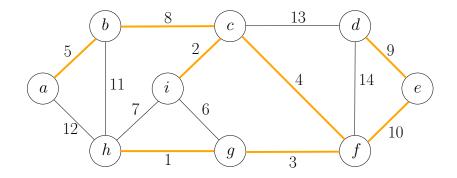
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



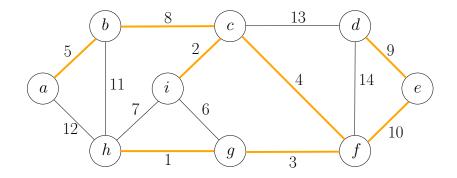
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$



Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$



Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal(G, w)

1:
$$F \leftarrow \emptyset$$

$$2: \ \mathcal{S} \leftarrow \{\{v\} : v \in V\}$$

- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u, v) \in E$ in the order do

5:
$$S_u \leftarrow \text{the set in } \mathcal{S} \text{ containing } u$$

6:
$$S_v \leftarrow \text{the set in } \mathcal{S} \text{ containing } v$$

7: **if**
$$S_u \neq S_v$$
 then

8:
$$F \leftarrow F \cup \{(u, v)\}$$

9:
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$$

10: return (V, F)

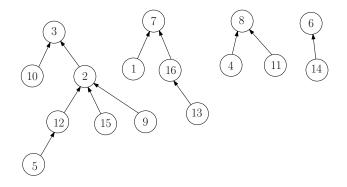
Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)1: $F \leftarrow \emptyset$ 2: $\mathcal{S} \leftarrow \{\{v\} : v \in V\}$ 3: sort the edges of E in non-decreasing order of weights w4: for each edge $(u, v) \in E$ in the order do $S_u \leftarrow$ the set in S containing u 5: $S_v \leftarrow$ the set in \mathcal{S} containing v 6: if $S_u \neq S_v$ then 7: $F \leftarrow F \cup \{(u, v)\}$ 8: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_n\} \setminus \{S_n\} \cup \{S_n \cup S_n\}$ 9: 10: return (V, F)

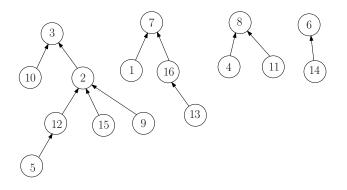
Use union-find data structure to support **2**, **5**, **6**, **7**, **9**.

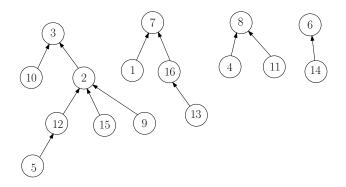
- $\bullet~V:$ ground set
- We need to maintain a partition of V and support following operations:
 - Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

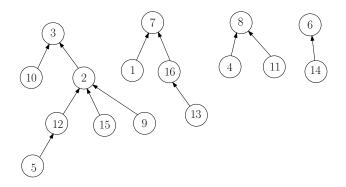


• par[i]: parent of *i*, $(par[i] = \bot$ if *i* is a root).

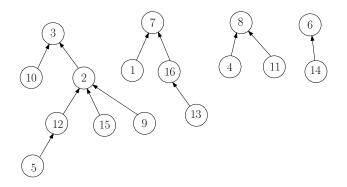




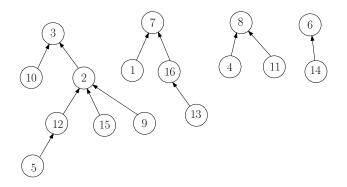
• Q: how can we check if u and v are in the same set?



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).

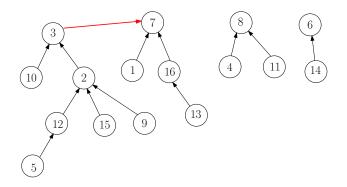


- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u



19/87

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and $r': par[r] \leftarrow r'$.



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and $r': par[r] \leftarrow r'$.

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: return root(par[v])

root(v)

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: **return** root(par[v])

• Problem: the tree might too deep; running time might be large

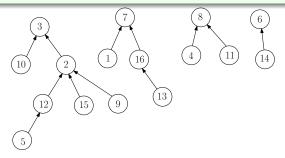
- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: **return** root(par[v])

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

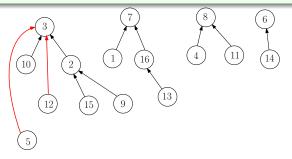
: if $par[v] = \bot$ then
$extrm v = else = par[v] \leftarrow root(par[v])$ $extrm return par[v]$

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: return par[v]



- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: return par[v]



1: $F \leftarrow \emptyset$ 2: $S \leftarrow \{\{v\} : v \in V\}$ 3: sort the edges of E in non-decreasing order of weights w4: for each edge $(u, v) \in E$ in the order do 5: $S_u \leftarrow$ the set in S containing u6: $S_v \leftarrow$ the set in S containing v7: if $S_u \neq S_v$ then 8: $F \leftarrow F \cup \{(u, v)\}$ 9: $S \leftarrow S \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$

10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v) \in E$ in the order do
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v) \in E$ in the order do
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

• 2,5,6,7,9 takes time $O(m\alpha(n))$

• $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v) \in E$ in the order do
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

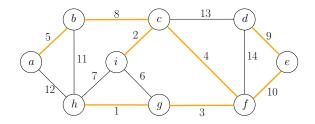
10: return (V, F)

• 2,5,6,7,9 takes time $O(m\alpha(n))$

- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.
- Running time = time for $\mathbf{3} = O(m \lg n)$.

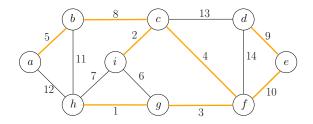
Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



Assumption Assume all edge weights are different.

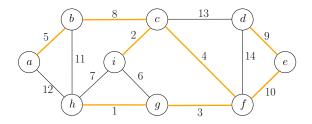
Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



• (i,g) is not in the MST because of cycle (i,c,f,g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



(i,g) is not in the MST because of cycle (i, c, f, g)
(e, f) is in the MST because no such cycle exists

Outline

Minimum Spanning Tree Kruskal's Algorithm Reverse-Kruskal's Algorithm Prim's Algorithm

Single Source Shortest Paths
 Dijkstra's Algorithm

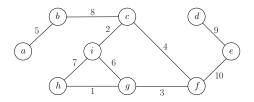
3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

• Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree

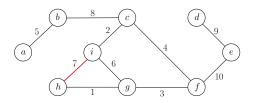
- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



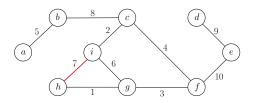
Q: Which edge can be safely excluded from the MST?

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



- **Q:** Which edge can be safely excluded from the MST?
- A: The heaviest non-bridge edge.

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

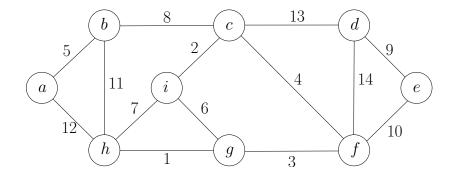
Def. A bridge is an edge whose removal disconnects the graph.

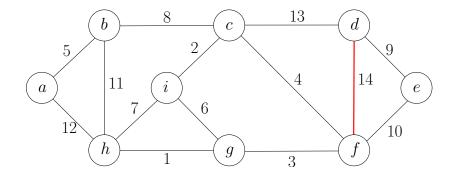
Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

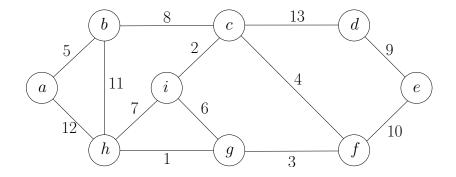
$\mathsf{MST-Greedy}(G, w)$

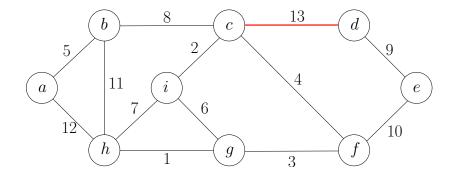
- 1: $F \leftarrow E$
- 2: sort E in non-increasing order of weights
- 3: for every e in this order do
- 4: if $(V, F \setminus \{e\})$ is connected then
- 5: $F \leftarrow F \setminus \{e\}$

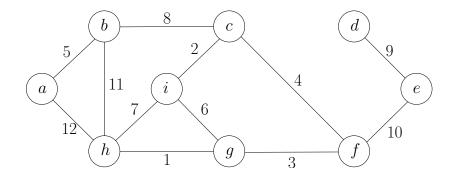
6: return (V, F)

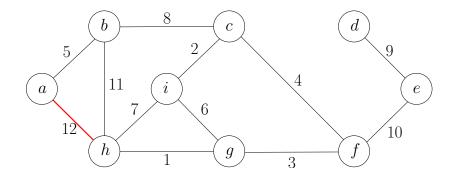


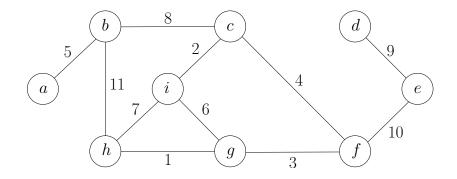


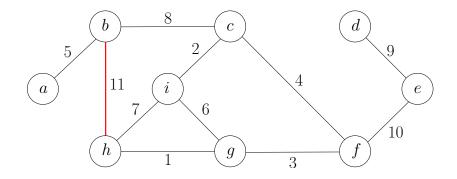


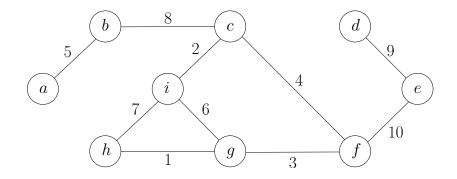


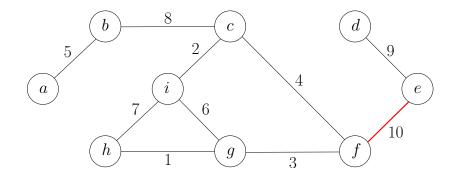


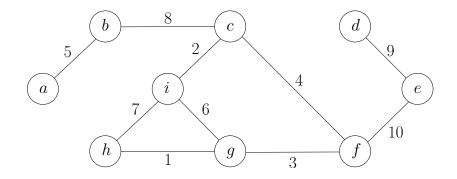


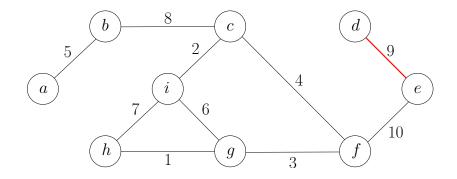


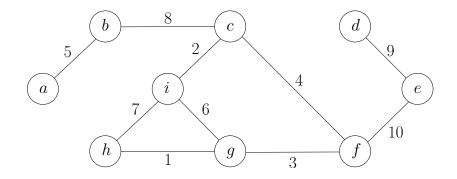


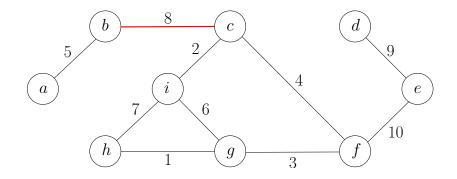


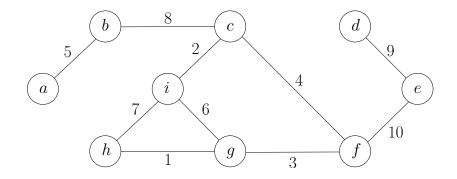


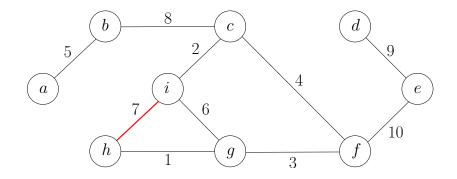


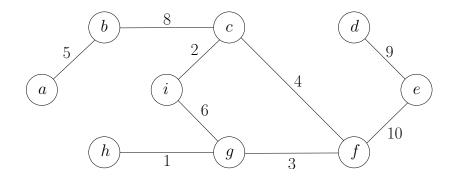


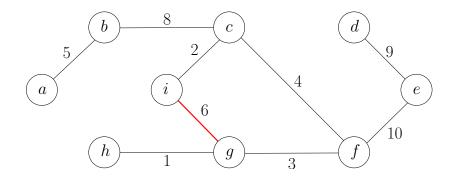


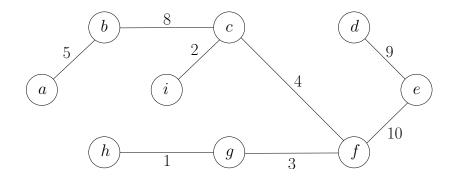












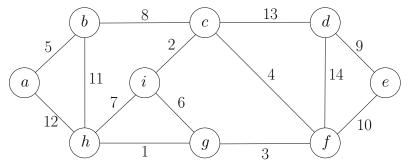
Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

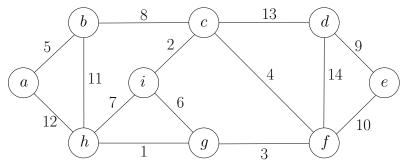
Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



Design Greedy Strategy for MST

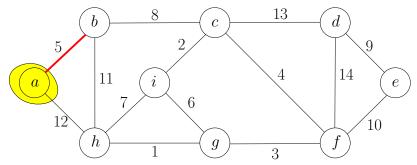
• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



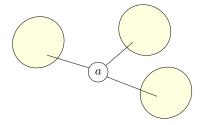
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

Design Greedy Strategy for MST

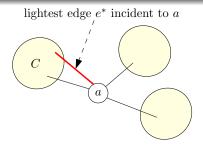
• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



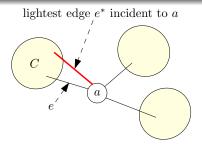
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.



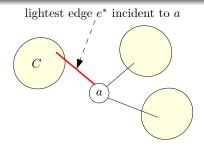
- $\bullet~ {\rm Let}~ T$ be a ${\rm MST}$
- $\bullet\,$ Consider all components obtained by removing a from T



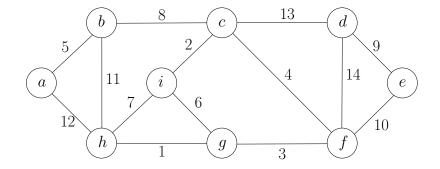
- $\bullet~ {\rm Let}~ T$ be a ${\rm MST}$
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C

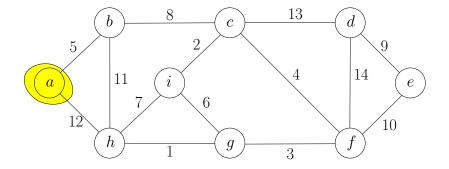


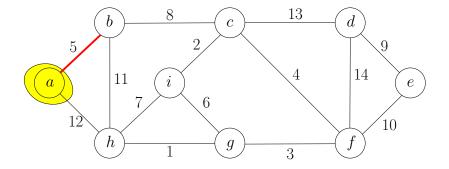
- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- $\bullet \ \mbox{Let} \ e \ \mbox{be}$ the edge in T connecting $a \ \mbox{to} \ C$

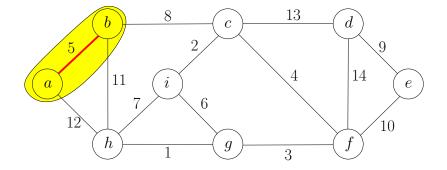


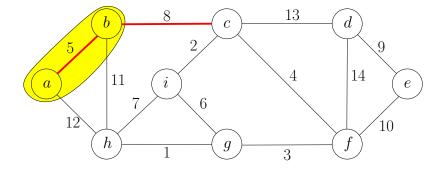
- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- $\bullet \ \mbox{Let} \ e \ \mbox{be}$ the edge in T connecting $a \ \mbox{to} \ C$
- $\bullet~T'=T\setminus\{e\}\cup\{e^*\}$ is a spanning tree with $w(T')\leq w(T)$

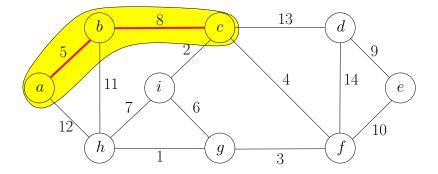


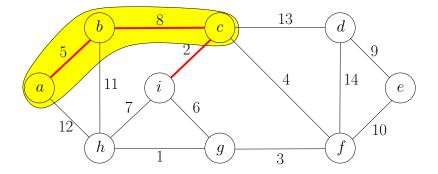


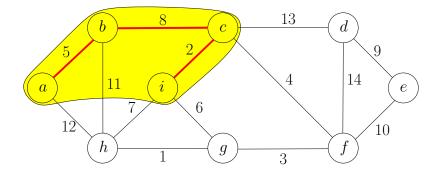


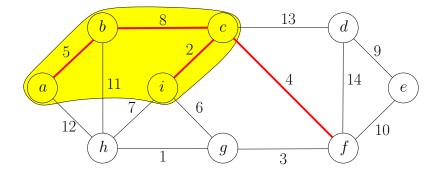


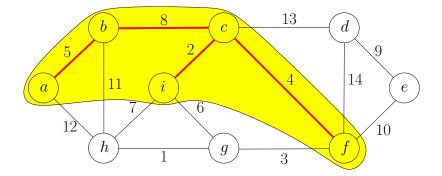


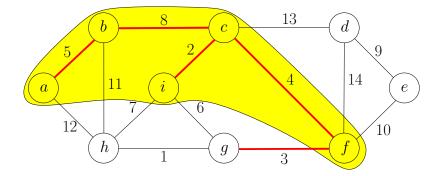


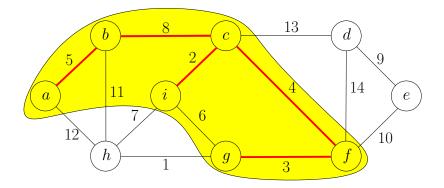


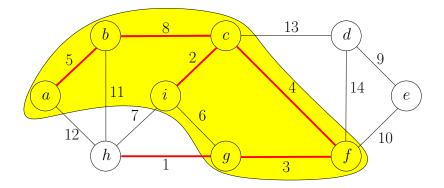


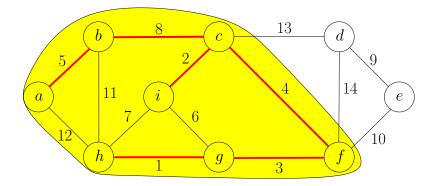


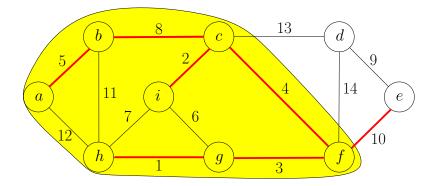


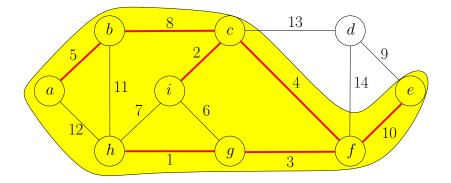


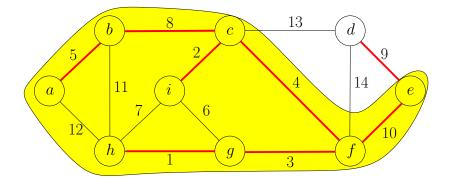


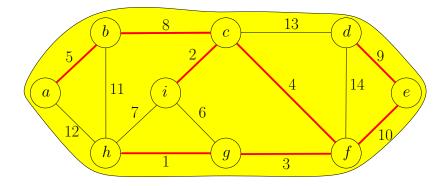












$\mathsf{MST-Greedy1}(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- 2: $F \leftarrow \emptyset$
- 3: while $S \neq V$ do
- 4: $(u, v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S,$ where $u \in S$ and $v \in V \setminus S$
- 5: $S \leftarrow S \cup \{v\}$
- $6: \qquad F \leftarrow F \cup \{(u, v)\}$
- 7: return (V, F)

$\mathsf{MST-Greedy1}(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- 2: $F \leftarrow \emptyset$
- 3: while $S \neq V$ do
- 4: $(u, v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S$, where $u \in S$ and $v \in V \setminus S$
- 5: $S \leftarrow S \cup \{v\}$
- $6: \qquad F \leftarrow F \cup \{(u, v)\}$

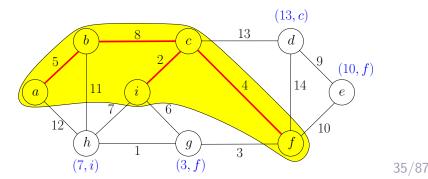
7: return (V, F)

• Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

 d(v) = min_{u∈S:(u,v)∈E} w(u, v): the weight of the lightest edge between v and S
 π(v) = arg min_{u∈S:(u,v)∈E} w(u, v): (π(v), v) is the lightest edge between v and S



Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

• $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$$
:
 $(\pi(v),v)$ is the lightest edge between v and S

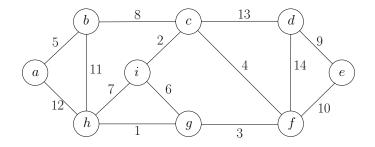
In every iteration

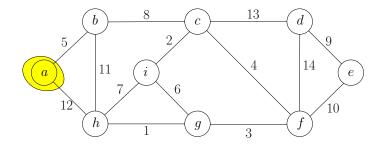
- Pick $u \in V \setminus S$ with the smallest d(u) value
- $\bullet \mbox{ Add } (\pi(u), u) \mbox{ to } F$
- Add u to S, update d and π values.

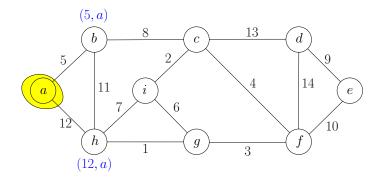
Prim's Algorithm

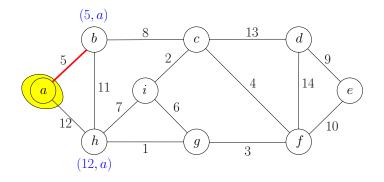
$\mathsf{MST-Prim}(G, w)$

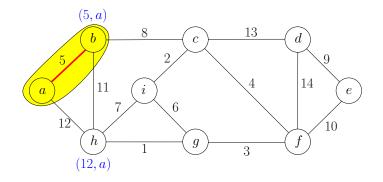
1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: while $S \neq V$ do $u \leftarrow$ vertex in $V \setminus S$ with the minimum d(u)4: $S \leftarrow S \cup \{u\}$ 5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 6: if w(u, v) < d(v) then 7: $d(v) \leftarrow w(u, v)$ 8: $\pi(v) \leftarrow u$ 9: 10: return $\{(u, \pi(u)) | u \in V \setminus \{s\}\}$

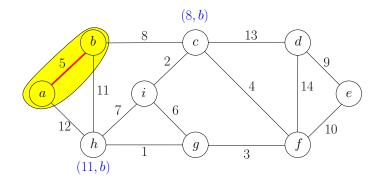


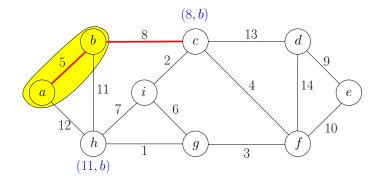


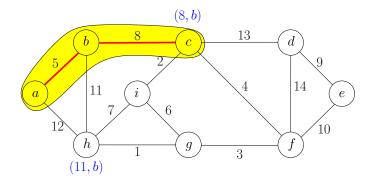


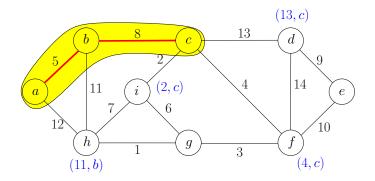


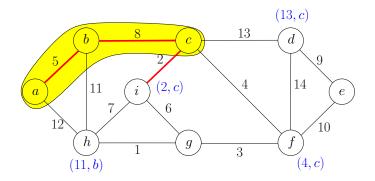


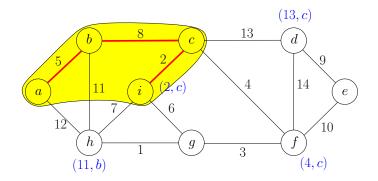


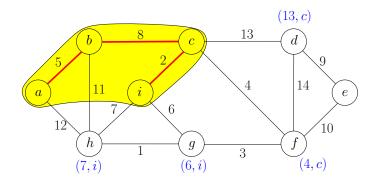


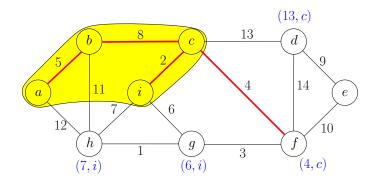


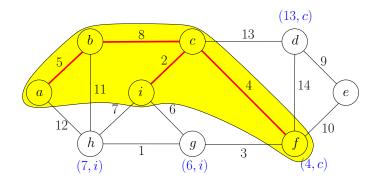


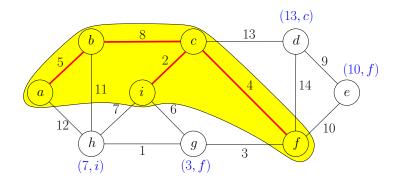


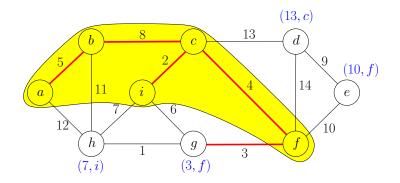


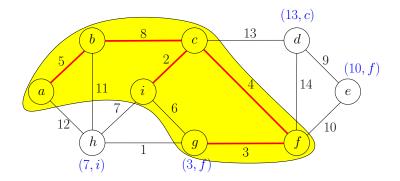


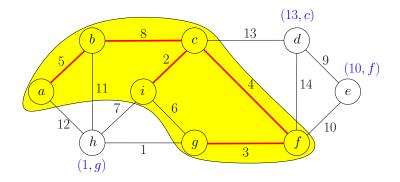


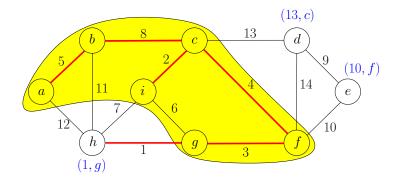


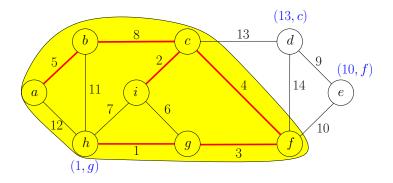


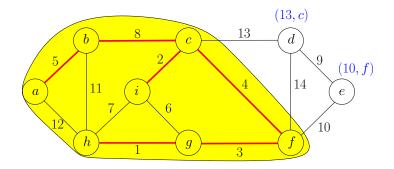


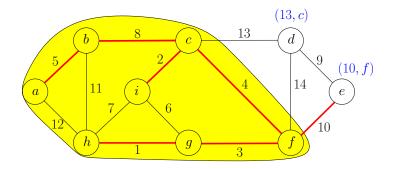


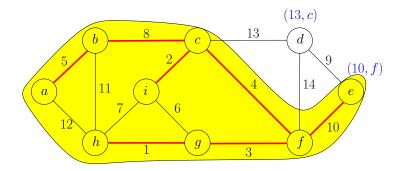


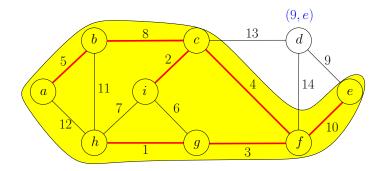


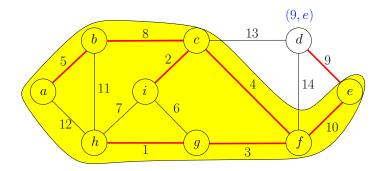


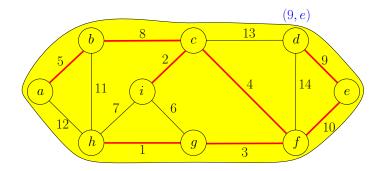


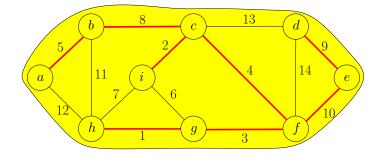












For every $v \in V \setminus S$ maintain

• $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$$
:
 $(\pi(v),v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value
- $\bullet \mbox{ Add } (\pi(u), u) \mbox{ to } F$
- Add u to S, update d and π values.

For every $v \in V \setminus S$ maintain

• $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi(v) = \arg \min_{u \in S:(u,v) \in E} w(u,v)$$
:
 $(\pi(v), v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value extract_min
- $\bullet \mbox{ Add } (\pi(u), u) \mbox{ to } F$
- Add u to S, update d and π values.

decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert(v, key_value): insert an element v, whose associated key value is key_value.
- decrease_key(v, new_key_value): decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value

• • • •

Prim's Algorithm

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: 4: while $S \neq V$ do $u \leftarrow$ vertex in $V \setminus S$ with the minimum d(u)5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d(v) then 8: $d(v) \leftarrow w(u, v)$ 9: $\pi(v) \leftarrow u$ 10: 11: return $\{(u, \pi(u)) | u \in V \setminus \{s\}\}$

Prim's Algorithm Using Priority Queue

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))4: while $S \neq V$ do $u \leftarrow Q.\mathsf{extract_min}()$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d(v) then 8: $d(v) \leftarrow w(u, v), Q.\mathsf{decrease_key}(v, d(v))$ 9: $\pi(v) \leftarrow u$ 10: 11: return $\{(u, \pi(u)) | u \in V \setminus \{s\}\}$

Running Time of Prim's Algorithm Using Priority Queue

$O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

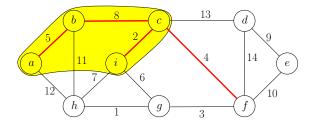
Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

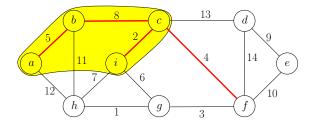
Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.



• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.



(c, f) is in MST because of cut ({a, b, c, i}, V \ {a, b, c, i})
(i, g) is not in MST because no such cut exists

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

- $\bullet \ e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- $\bullet\,$ There is a cycle in which e is the heaviest edge

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- $\bullet\,$ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

1 Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

2 Single Source Shortest Paths• Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

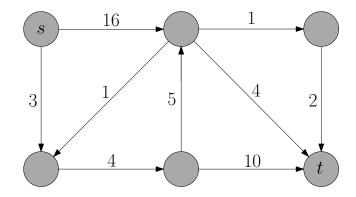
- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs

s-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: shortest path from s to t

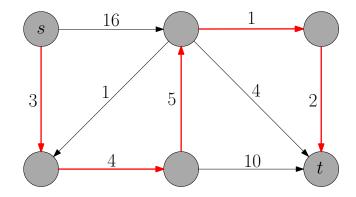
s-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: shortest path from s to t



s-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: shortest path from s to t



Single Source Shortest Paths Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

• We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

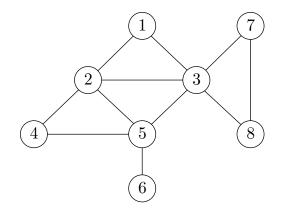
 $w: E \to \mathbb{R}_{\geq 0}$

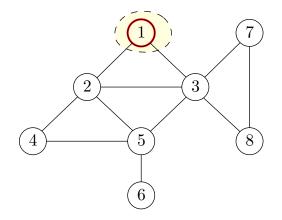
Output: shortest paths from s to all other vertices $v \in V$

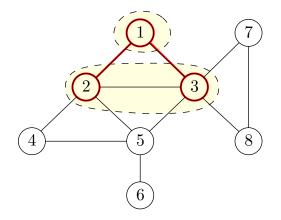
Reason for Considering Single Source Shortest Paths Problem

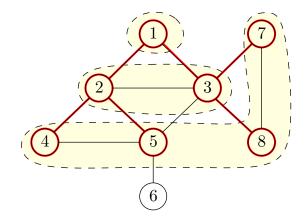
- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

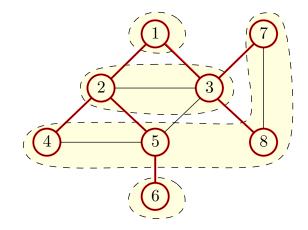
Single Source Shortest Paths Input: directed graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: $\pi(v), v \in V \setminus s$: the parent of v in shortest path tree $d(v), v \in V \setminus s$: the length of shortest path from s to v











 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi(v) \leftarrow$ vertex from which v is visited
- 4: $d(v) \leftarrow \text{index of the level containing } v$

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi(v) \leftarrow$ vertex from which v is visited
- 4: $d(v) \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS virtually
- 3: $\pi(v) \leftarrow$ vertex from which v is visited
- 4: $d(v) \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

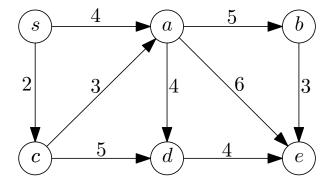
1:
$$S \leftarrow \{s\}, d(s) \leftarrow 0$$

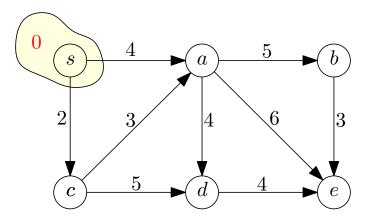
2: while
$$|S| \leq n$$
 do

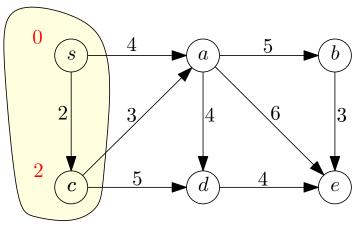
3: find a
$$v \notin S$$
 that minimizes $\min_{u \in S: (u, v) \in E} \{d(u) + w(u, v)\}$

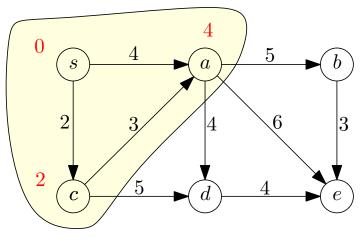
$$4: \qquad S \leftarrow S \cup \{v\}$$

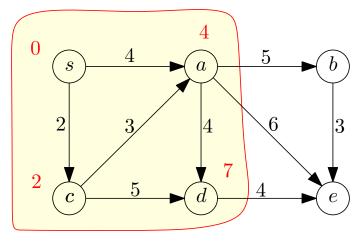
5:
$$d(v) \leftarrow \min_{u \in S:(u,v) \in E} \{ d(u) + w(u,v) \}$$

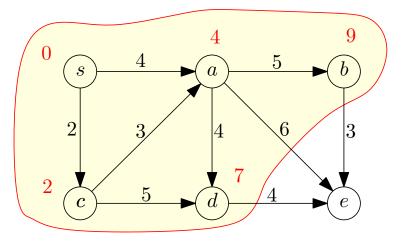


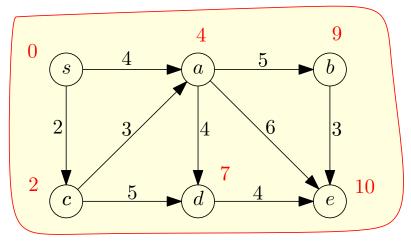












Outline

1 Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

2 Single Source Shortest Paths• Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

- 1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$
- 2: while $S \neq V$ do
- 3: $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- 4: add u to S
- 5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do

6: **if**
$$d(u) + w(u, v) < d(v)$$
 then

7:
$$d(v) \leftarrow d(u) + w(u, v)$$

8: $\pi(v) \leftarrow u$

9: return (d, π)

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

- 1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$
- 2: while $S \neq V$ do
- 3: $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- 4: add u to S
- 5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do

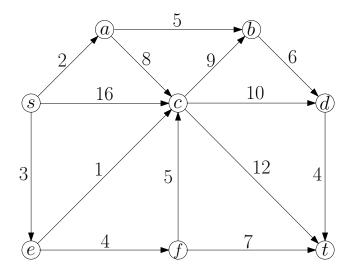
6: **if**
$$d(u) + w(u, v) < d(v)$$
 then

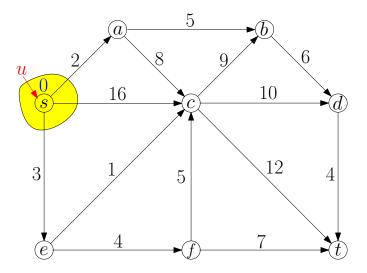
7:
$$d(v) \leftarrow d(u) + w(u, v)$$

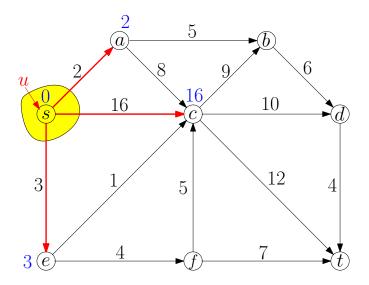
8: $\pi(v) \leftarrow u$

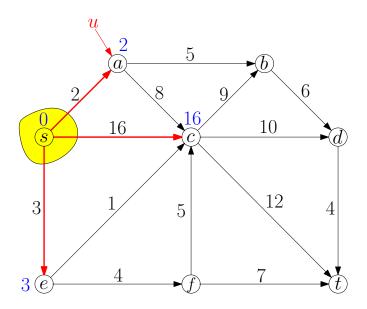
9: return (d,π)

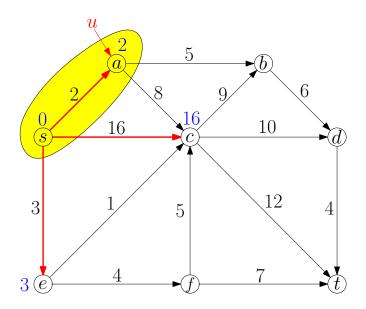
• Running time = $O(n^2)$

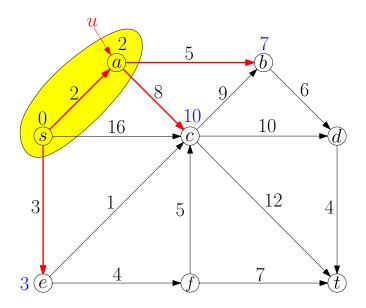


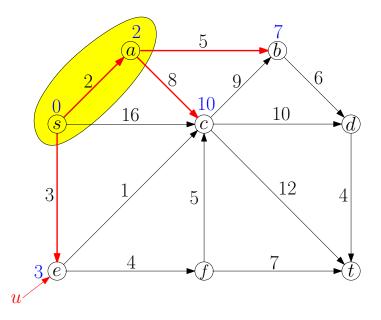


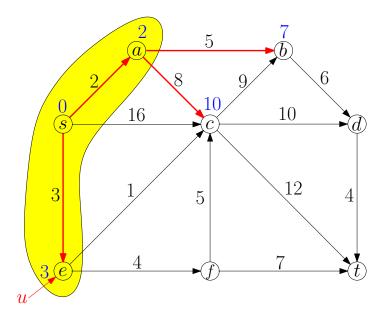


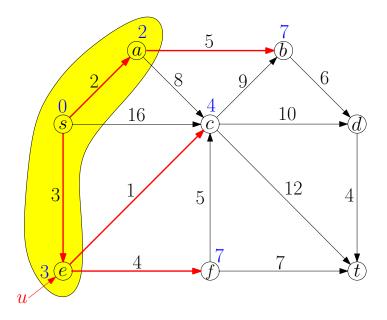


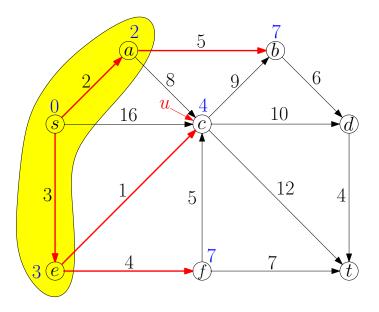


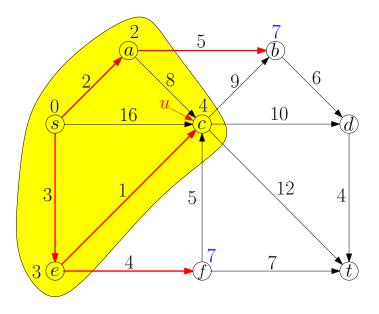


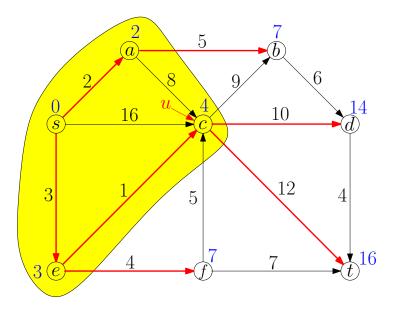


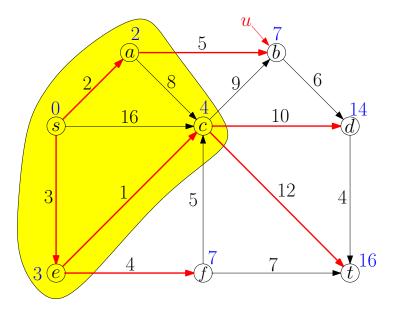


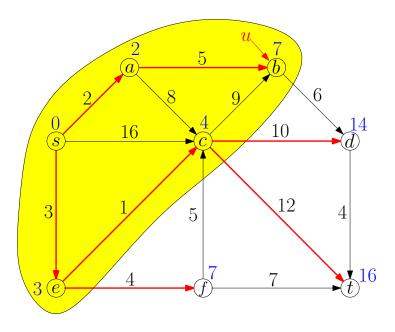


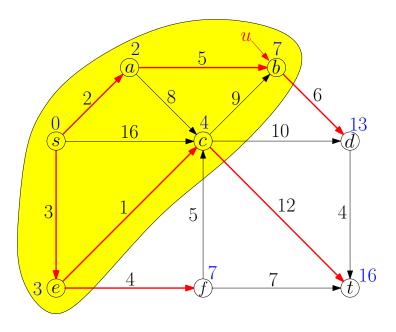


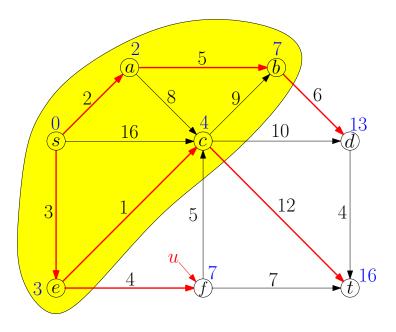


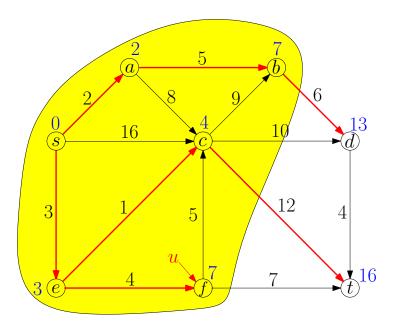


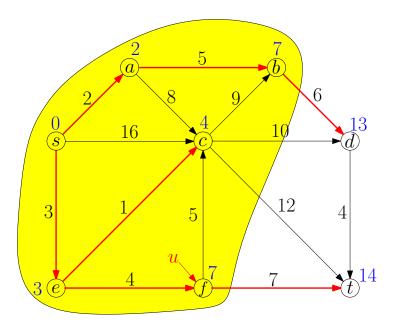


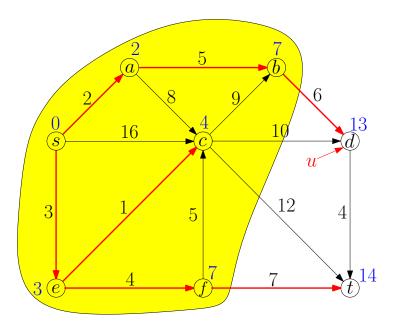


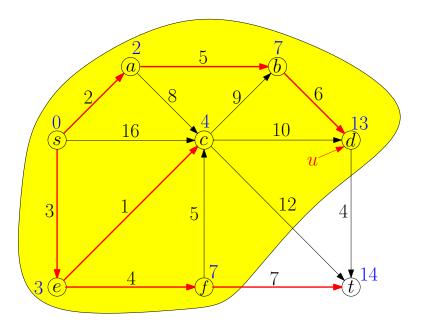


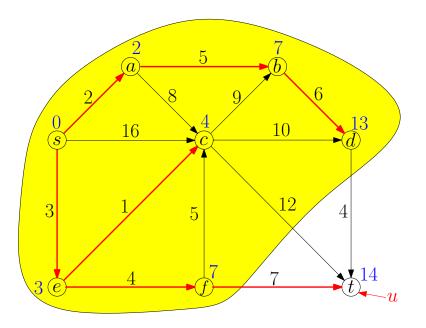


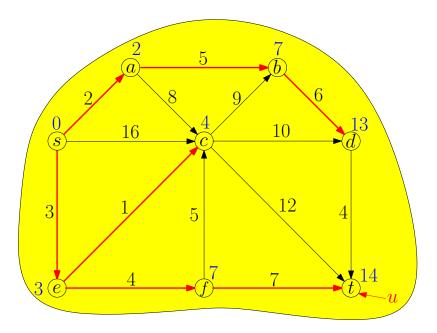












Improved Running Time using Priority Queue

Recall: Prim's Algorithm for MST

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))4: while $S \neq V$ do $u \leftarrow Q.\mathsf{extract_min}()$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d(v) then 8: $d(v) \leftarrow w(u, v), Q.\mathsf{decrease_key}(v, d(v))$ 9: $\pi(v) \leftarrow u$ 10: 11: return $\{(u, \pi(u)) | u \in V \setminus \{s\}\}$

Running time:

 $O(n) \times (\text{time for extract}_min) + O(m) \times (\text{time for decrease}_key)$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm

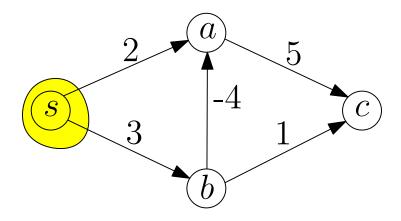
Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

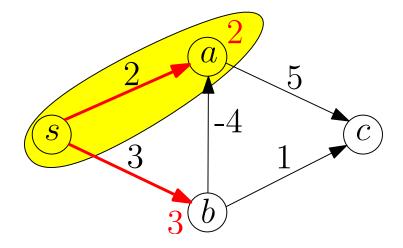
• In transition graphs, negative weights make sense

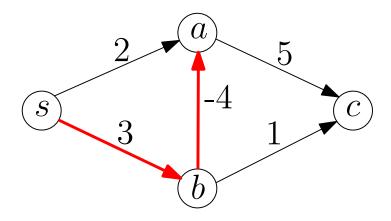
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)

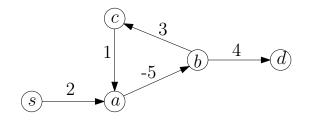
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

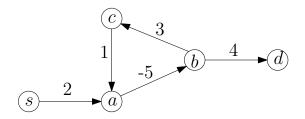


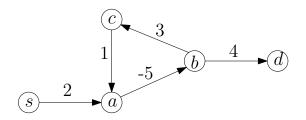


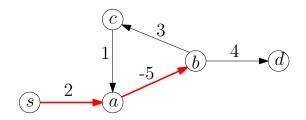


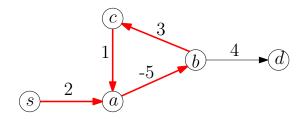


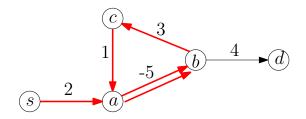


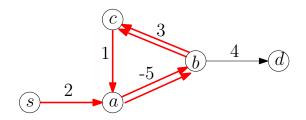


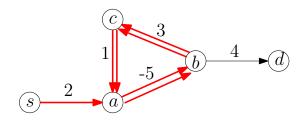


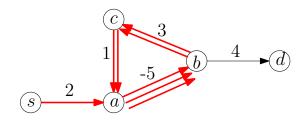


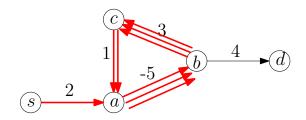


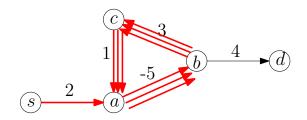


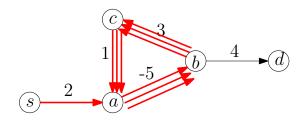






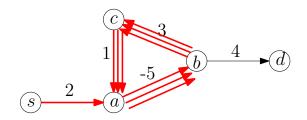






A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

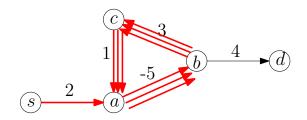


Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles



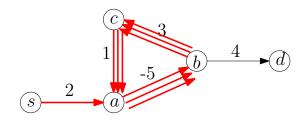
Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

• assume the input graph does not contain negative cycles, or



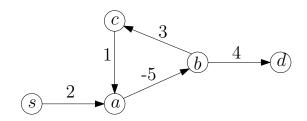
Q: What is the length of the shortest path from s to d?

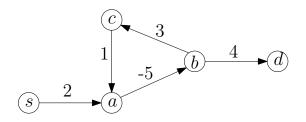
A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

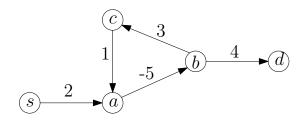
Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"



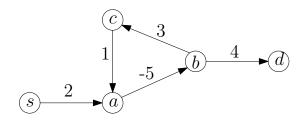


Q: What is the length of the shortest simple path from s to d?



Q: What is the length of the shortest simple path from s to d?

A: 1



Q: What is the length of the shortest simple path from s to d?

A: 1

• Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices $v \in V$

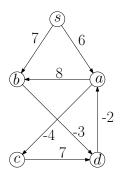
• first try: f[v]: length of shortest path from s to v

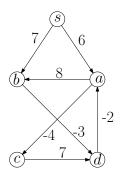
Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices $v \in V$

- first try: f[v]: length of shortest path from s to v
- issue: do not know in which order we compute f[v]'s

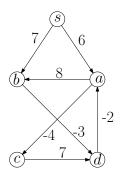
Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices $v \in V$

- first try: f[v]: length of shortest path from s to v
- \bullet issue: do not know in which order we compute $f[\boldsymbol{v}]\sp{s}$'s
- $f^{\ell}[v], \ \ell \in \{0, 1, 2, 3 \cdots, n-1\}, \ v \in V$: length of shortest path from s to v that uses at most ℓ edges

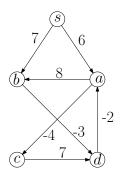




•
$$f^2[a] =$$

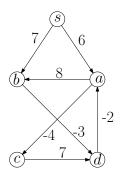


•
$$f^2[a] = 6$$



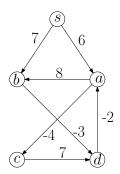
•
$$f^2[a] = 6$$

• $f^3[a] =$



•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

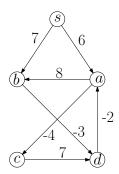


•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \langle$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

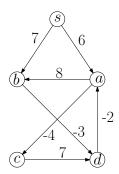


•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0 \\ \end{array}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

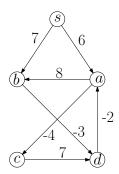


•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0\\ \infty \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

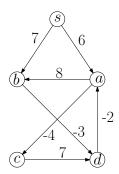


•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0\\ \infty\\ \min \begin{cases} 0\\ 0 \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



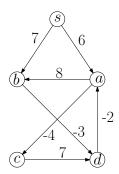
•
$$f^2[a] = 6$$

•
$$f^3[a] = 2$$

 $f^{\ell-1}[v]$

$$f^{\ell}[v] = \begin{cases} 0\\ \infty\\ \min \begin{cases} -1 \end{cases}$$

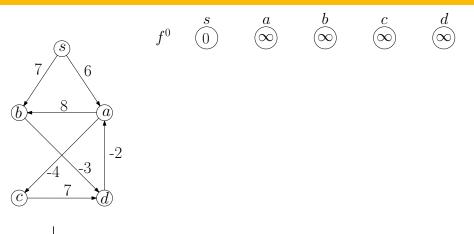
$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^2[a] = 6$$

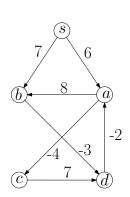
•
$$f^3[a] = 2$$

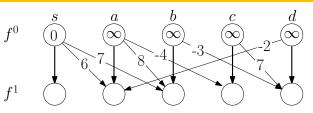
$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \min \left\{ \begin{array}{l} f^{\ell-1}[v] \\ \min_{u:(u,v)\in E} \left(f^{\ell-1}[u] + w(u,v)\right) & \ell > 0 \end{array} \right. \end{cases}$$

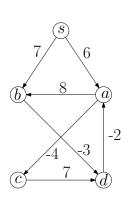


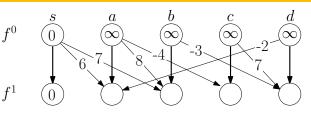
69/87

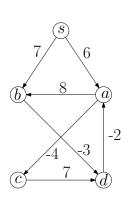
length-0 edge

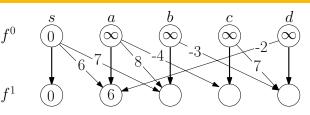


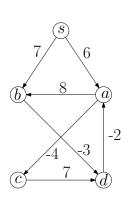


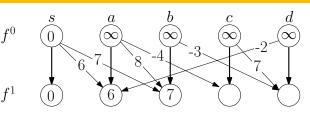


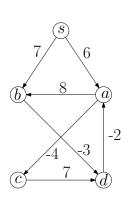


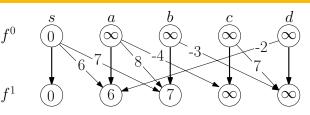


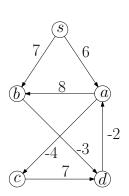


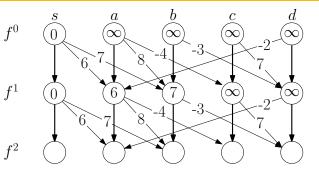




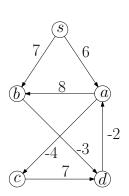


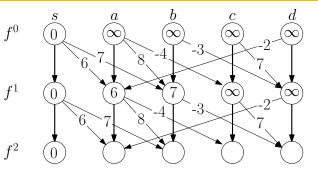




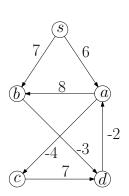


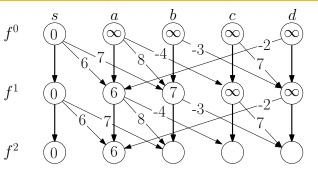
length-0 edge



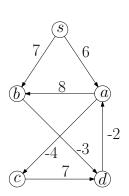


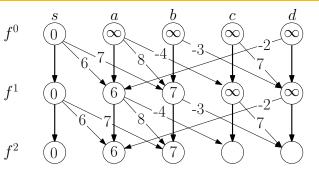
length-0 edge



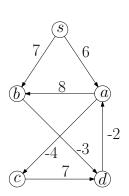


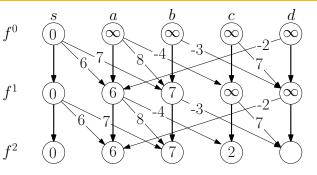
length-0 edge



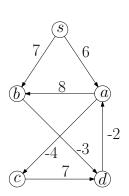


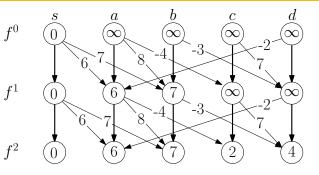
length-0 edge



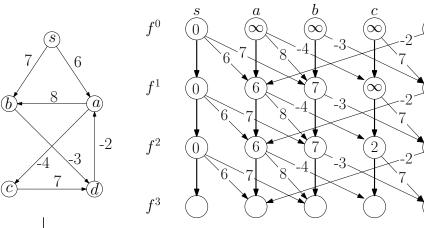


length-0 edge





length-0 edge



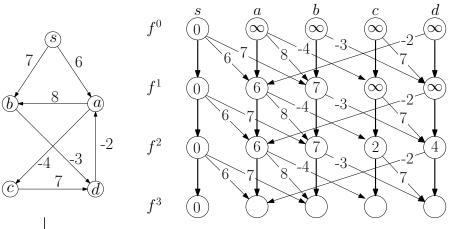
length-0 edge

d

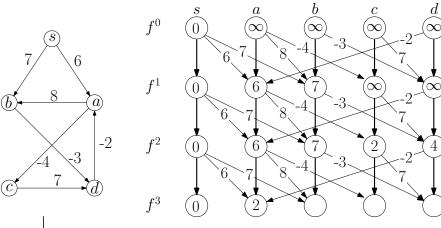
 ∞

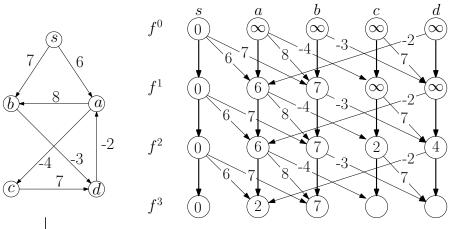
 ∞

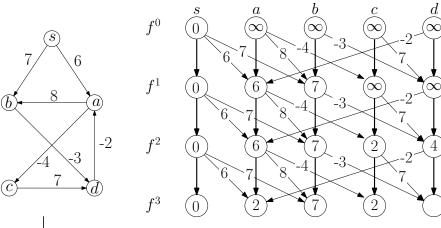
4

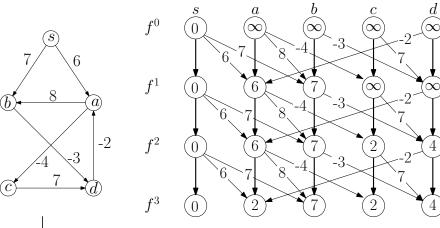


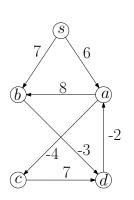
length-0 edge



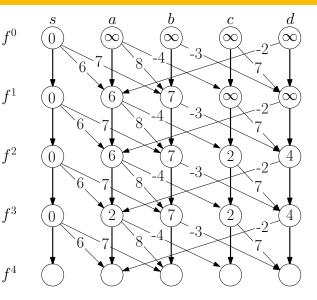


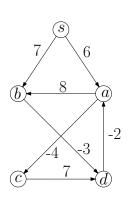




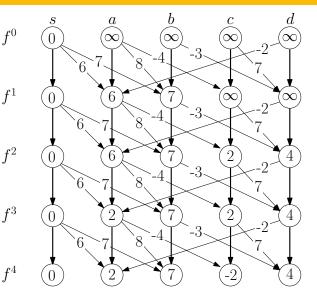


length-0 edge





length-0 edge



dynamic-programming(G, w, s)

1:
$$f^0[s] \leftarrow 0$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\ell-1} \rightarrow f^{\ell}$
4: for each $(u, v) \in E$ do
5: if $f^{\ell-1}[u] + w(u, v) < f^{\ell}[v]$ then
6: $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u, v)$
7: return $(f^{n-1}[v])_{v \in V}$

dynamic-programming(G, w, s)

1:
$$f^0[s] \leftarrow 0$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s : 2: \text{ for } \ell \leftarrow 1 \text{ to } n-1 \text{ do} \\ 3: \quad \operatorname{copy} f^{\ell-1} \rightarrow f^{\ell} \\ 4: \quad \text{for each } (u,v) \in E \text{ do} \\ 5: \quad \text{if } f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] \text{ then} \\ 6: \quad f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v) \\ 7: \quad \operatorname{metrum} (f^{n-1}[1]) \end{cases}$

7: return
$$(f^{n-1}[v])_{v \in V}$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

dynamic-programming(G, w, s)

1:
$$f^0[s] \leftarrow 0$$
 and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s :$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\ell - 1} \rightarrow f^{\ell}$
4: for each $(u, v) \in E$ do
5: if $f^{\ell - 1}[u] + w(u, v) < f^{\ell}[v]$ then
6: $f^{\ell}[v] \leftarrow f^{\ell - 1}[u] + w(u, v)$

7: return
$$(f^{n-1}[v])_{v \in V}$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n-1 \ \mathrm{edges}$

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. $\hfill\square$

dynamic-programming(G, w, s)1: $f^{\mathsf{old}}[s] \leftarrow 0$ and $f^{\mathsf{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ 2: for $\ell \leftarrow 1$ to n-1 do $copy f^{old} \rightarrow f^{new}$ 3: for each $(u, v) \in E$ do 4: if $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$ then 5: $f^{\mathsf{new}}[v] \leftarrow f^{\mathsf{old}}[u] + w(u, v)$ 6: $copy f^{new} \rightarrow f^{old}$ 7: 8: return f^{old}

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

dynamic-programming(G, w, s)1: $f^{\text{old}}[s] \leftarrow 0$ and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ 2: for $\ell \leftarrow 1$ to n-1 do $copy f^{old} \rightarrow f^{new}$ 3: for each $(u, v) \in E$ do 4: if $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$ then 5: $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$ 6: copy $f^{\text{new}} \rightarrow f^{\text{old}}$ 7: 8: return f^{old}

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

dynamic-programming(G, w, s)1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ 2: for $\ell \leftarrow 1$ to n-1 do $copv f \rightarrow f$ 3: 4: for each $(u, v) \in E$ do if f[u] + w(u, v) < f[v] then 5: $f[v] \leftarrow f[u] + w(u, v)$ 6: 7: $copv f \rightarrow f$ 8: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

dynamic-programming(G, w, s)

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

2: for $\ell \leftarrow 1$ to n-1 do

3: for each
$$(u, v) \in E$$
 do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

6: **return** *f*

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\operatorname{\mathsf{-Ford}}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n-1 do
- 3: for each $(u, v) \in E$ do

4: **if**
$$f[u] + w(u, v) < f[v]$$
 then

5:
$$f[v] \leftarrow f[u] + w(u, v)$$

6: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

1/0

Bellman-Ford
$$(G, w, s)$$

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

 \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration

 $\{s\}$

110

- 11

Bellman-Ford
$$(G, w, s)$$

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

- \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

Deliman-Ford
$$(G, w, s)$$

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

- \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, \ f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

 \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration

 $\{s\}$

- This is OK: it can only "accelerate" the process!
- After iteration $\ell, \ f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- $\bullet \ f[v]$ is always the length of some path from s to v

• After iteration ℓ :

length of shortest s-v path $\leq f[v]$ \leq length of shortest s-v path using at most ℓ edges

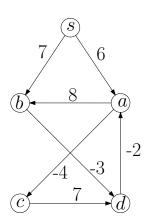
• Assuming there are no negative cycles:

length of shortest s-v path

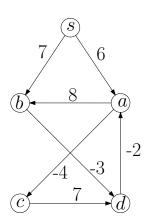
= length of shortest s-v path using at most n-1 edges

• So, assuming there are no negative cycles, after iteration n-1:

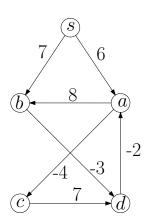
f[v] =length of shortest *s*-*v* path



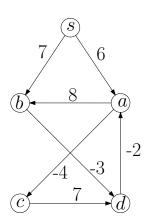
vertices	s	a	b	c	d
f	0	∞	∞	∞	∞



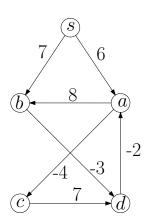
vertices	s	a	b	c	d
f	0	∞	∞	∞	∞



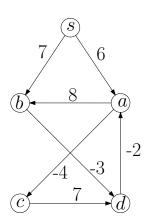
vertices	s	a	b	c	d
f	0	6	∞	∞	∞



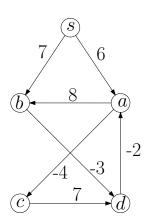
vertices	s	a	b	c	d
f	0	6	∞	∞	∞



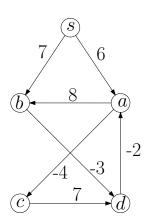
vertices	s	a	b	c	d
f	0	6	7	∞	∞



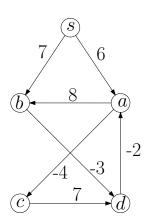
vertices	s	a	b	c	d
f	0	6	7	∞	∞



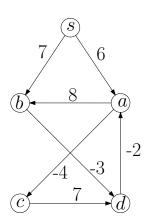
vertices	s	a	b	c	d
f	0	6	7	∞	∞



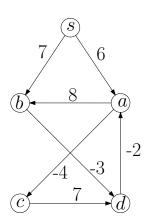
vertices	s	a	b	c	d
f	0	6	7	2	∞



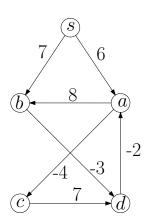
vertices	s	a	b	c	d
f	0	6	7	2	∞



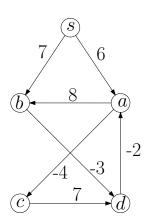
vertices	s	a	b	c	d
f	0	6	7	2	4



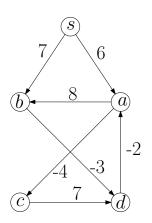
vertices	s	a	b	С	d
f	0	6	7	2	4



vertices	s	a	b	c	d
f	0	6	7	2	4

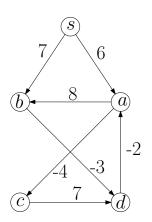


vertices	s	a	b	С	d
f	0	2	7	2	4



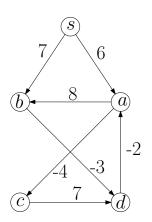
vertices	s	a	b	c	d
f	0	2	7	2	4

• end of iteration 1: 0, 2, 7, 2, 4



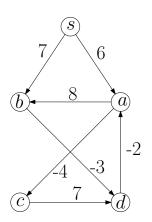
vertices	s	a	b	c	d
f	0	2	7	2	4

• end of iteration 1: 0, 2, 7, 2, 4

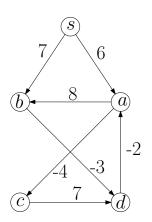


vertices	s	a	b	c	d
f	0	2	7	2	4

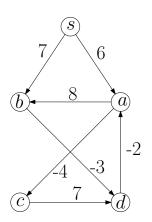
• end of iteration 1: 0, 2, 7, 2, 4



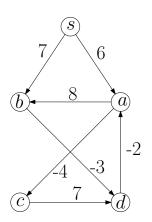
vertices	s	a	b	c	d
f	0	2	7	2	4



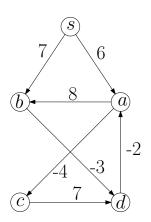
vertices	s	a	b	c	d
f	0	2	7	2	4



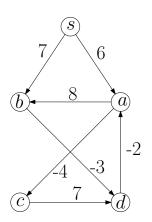
vertices	s	a	b	c	d
f	0	2	7	-2	4



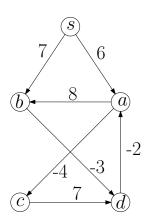
vertices	s	a	b	c	d
f	0	2	7	-2	4



vertices	s	a	b	c	d
f	0	2	7	-2	4

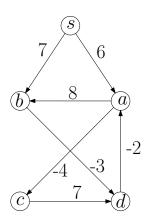


vertices	s	a	b	c	d
f	0	2	7	-2	4



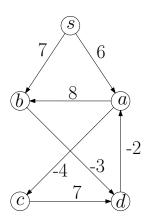
vertices	s	a	b	С	d
f	0	2	7	-2	4

end of iteration 1: 0, 2, 7, 2, 4
end of iteration 2: 0, 2, 7, -2, 4



vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4



vertices	s	a	b	С	d
f	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \leftarrow 1$ to n do
- 3: $updated \leftarrow \mathsf{false}$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

6:
$$f[v] \leftarrow f[u] + w(u, v)$$

7:
$$updated \leftarrow true$$

8: if not
$$updated$$
, then return f

9: output "negative cycle exists"

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \gets 1$ to $n \ \mathrm{do}$
- 3: $updated \leftarrow \mathsf{false}$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- 7: $updated \leftarrow true$
- 8: if not updated, then return f

9: output "negative cycle exists"

• $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

$\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1:
$$f[s] \leftarrow 0$$
 and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$

- 2: for $\ell \gets 1$ to $n \ \mathrm{do}$
- 3: $updated \leftarrow \mathsf{false}$
- 4: for each $(u, v) \in E$ do

5: **if**
$$f[u] + w(u, v) < f[v]$$
 then

- 6: $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- 7: $updated \leftarrow true$
- 8: if not updated, then return f

9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree
- Running time = O(nm)

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

1: for every starting point $s \in V$ do

2: run Bellman-Ford(G, w, s)

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

1: for every starting point $s \in V$ do

2: run Bellman-Ford(G, w, s)

• Running time = $O(n^2m)$

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs

• It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

• First try: f[i, j] is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- Issue: do not know in which order we compute f[i, j]'s

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- \bullet For simplicity, extend the w values to non-edges:

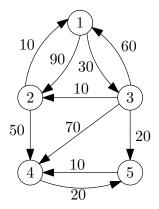
$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- \bullet Issue: do not know in which order we compute $f[i,j]{\rm 's}$
- $f^k[i, j]$: length of shortest path from i to j that only uses vertices $\{1, 2, 3, \cdots, k\}$ as intermediate vertices

Example for Definition of $f^k[i, j]$'s



- $f^{0}[1,4] = \infty$ $f^{1}[1,4] = \infty$ $f^{2}[1,4] = 140$ $f^{3}[1,4] = 90$ $f^4[1,4] = 90$ $(1 \to 3 \to 2 \to 4)$ $f^{5}[1,4] = 60$
 - $(1 \rightarrow 2 \rightarrow 4)$ $(1 \rightarrow 3 \rightarrow 2 \rightarrow 4)$ $(1 \rightarrow 3 \rightarrow 5 \rightarrow 4)$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} k = 0\\ k = 1, 2, \cdots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0 \\ k = 1, 2, \cdots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} & k = 1, 2, \cdots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} & f^{k-1}[i,j] \\ & k = 1, 2, \cdots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

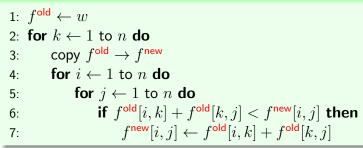
$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] \\ f^{k-1}[i,k] + f^{k-1}[k,j] \end{cases} & k = 1, 2, \cdots, n \end{cases}$$

$\mathsf{Floyd}\operatorname{-Warshall}(G,w)$

1:
$$f^{0} \leftarrow w$$

2: for $k \leftarrow 1$ to n do
3: copy $f^{k-1} \rightarrow f^{k}$
4: for $i \leftarrow 1$ to n do
5: for $j \leftarrow 1$ to n do
6: if $f^{k-1}[i,k] + f^{k-1}[k,j] < f^{k}[i,j]$ then
7: $f^{k}[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]$

$\mathsf{Floyd}\operatorname{-Warshall}(G,w)$



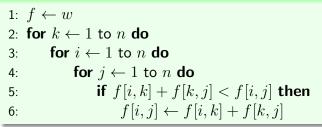
$\mathsf{Floyd}\operatorname{-Warshall}(G,w)$

1: f	$^{cold} \leftarrow w$
2: f	or $k \leftarrow 1$ to n do
3:	$copy\ f^{old} o f^{new}$
4:	for $i \leftarrow 1$ to n do
5:	for $j \leftarrow 1$ to n do
6:	if $f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j]$ then
7:	$f^{new}[i,j] \gets f^{old}[i,k] + f^{old}[k,j]$

$\mathsf{Floyd} ext{-Warshall}(G,w)$

1: j	$f \leftarrow w$
2: f	for $k \leftarrow 1$ to n do
3:	$copy\ f \to f$
4:	for $i \leftarrow 1$ to n do
5:	for $j \leftarrow 1$ to n do
6:	if $f[i,k] + f[k,j] < f[i,j]$ then
7:	$f[i,j] \leftarrow f[i,k] + f[k,j]$

$\mathsf{Floyd} ext{-Warshall}(G,w)$



$\mathsf{Floyd} ext{-Warshall}(G,w)$

1:	$f \leftarrow w$
2:	for $k \leftarrow 1$ to n do
3:	for $i \leftarrow 1$ to n do
4:	for $j \leftarrow 1$ to n do
5:	if $f[i,k] + f[k,j] < f[i,j]$ then
6:	$f[i,j] \leftarrow f[i,k] + f[k,j]$

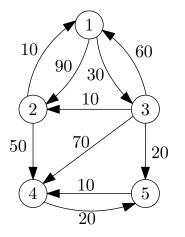
Lemma Assume there are no negative cycles in G. After iteration k, for $i, j \in V$, f[i, j] is exactly the length of shortest path from i to j that only uses vertices in $\{1, 2, 3, \dots, k\}$ as intermediate vertices.

$\mathsf{Floyd}\operatorname{-Warshall}(G,w)$

1:	$f \leftarrow w$
2:	for $k \leftarrow 1$ to n do
3:	for $i \leftarrow 1$ to n do
4:	for $j \leftarrow 1$ to n do
5:	if $f[i,k] + f[k,j] < f[i,j]$ then
6:	$f[i,j] \leftarrow f[i,k] + f[k,j]$

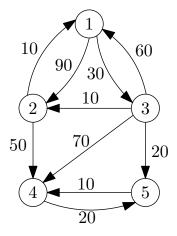
Lemma Assume there are no negative cycles in G. After iteration k, for $i, j \in V$, f[i, j] is exactly the length of shortest path from i to j that only uses vertices in $\{1, 2, 3, \dots, k\}$ as intermediate vertices.

• Running time = $O(n^3)$.



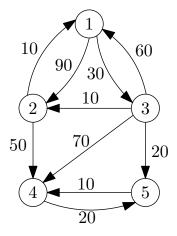
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

٩



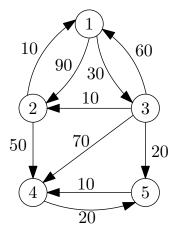
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 2, k = 1, j = 3



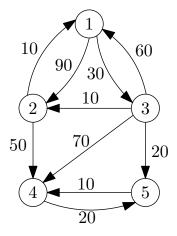
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 2$$
, $k = 1$, $j = 3$



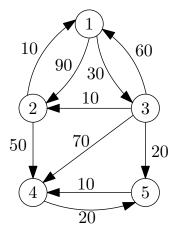
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 1$$
, $k = 2$, $j = 4$



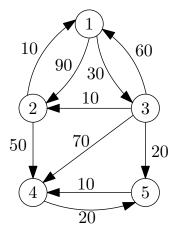
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0
				•	•

•
$$i = 1$$
, $k = 2$, $j = 4$



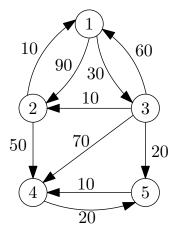
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 3$$
, $k = 2$, $j = 1$,



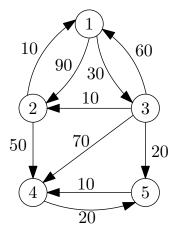
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 3$$
, $k = 2$, $j = 1$,



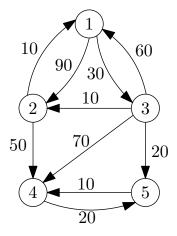
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 3$$
, $k = 2$, $j = 4$



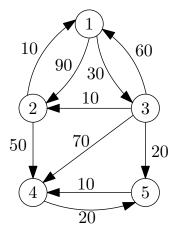
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 3$$
, $k = 2$, $j = 4$



	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

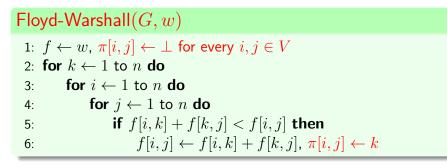
•
$$i = 1, k = 3, j = 2$$



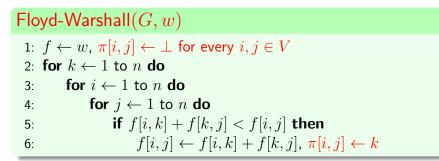
	1	2	3	4	5
1	0	40	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

•
$$i = 1$$
, $k = 3$, $j = 2$

Recovering Shortest Paths



Recovering Shortest Paths



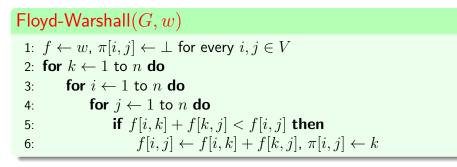
print-path(i, j)

- 1: if $\pi[i,j] = \bot$ then then
- 2: **if** $i \neq j$ **then** print(i, ", ")

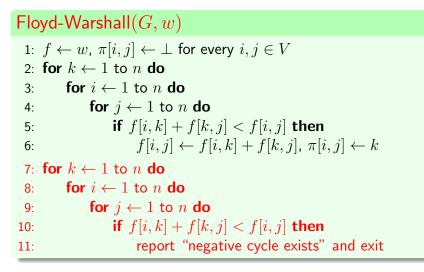
3: **else**

4: print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles



Detecting Negative Cycles



algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs