CSE 431/531: Algorithm Analysis and Design (Fall 2021) Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

Properties of BFS and DFS trees

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

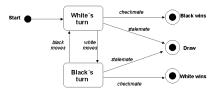
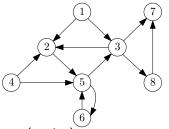


Figure: Transition Graphs

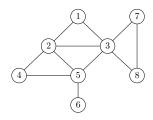
(Undirected) Graph G = (V, E)



- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, ${\cal E}$ contains subsets of size 2
 - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},$ $\{4,5\},\{5,6\},\{7,8\}\}$

Abuse of Notations

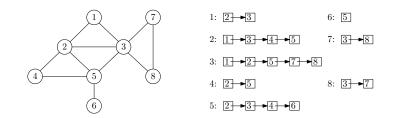
- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs



- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - $\bullet \ A$ is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of v.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \leq m \leq n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

Connectivity Problem

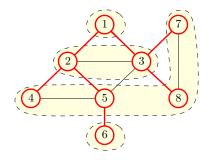
Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



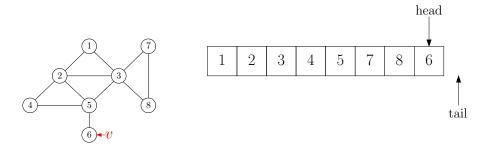
$\mathsf{BFS}(s)$

1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$ 2: mark s as "visited" and all other vertices as "unvisited" 3: while head \geq tail do 4: $v \leftarrow queue[tail], tail \leftarrow tail + 1$ 5: for all neighbours u of v do 6: if u is "unvisited" then 7: head \leftarrow head + 1, queue[head] = u

8: mark *u* as "visited"

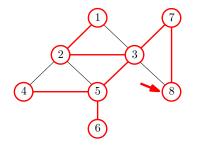
• Running time: O(n+m).

Example of BFS via Queue



Depth-First Search (DFS)

- \bullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using Recurrsion

DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbours u of v do
- 3: **if** u is unvisited **then** recursive-DFS(u)

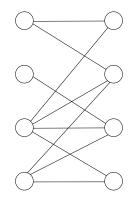
Outline

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.

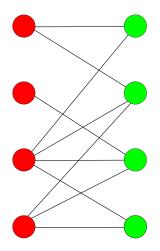


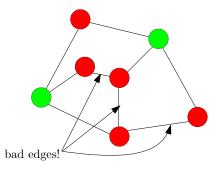
- Taking an arbitrary vertex $s \in V$
- \bullet Assuming $s \in L$ w.l.o.g
- $\bullet\,$ Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

o . . .

- Report "not a bipartite graph" if contradiction was found
- $\bullet~$ If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness





19/37

Testing Bipartiteness using BFS

$\mathsf{BFS}(s)$

8:

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: $color[s] \leftarrow 0$
- 4: while head \geq tail do
- 5: $v \leftarrow queue[tail], tail \leftarrow tail + 1$
- 6: for all neighbours u of v do
- 7: **if** u is "unvisited" **then**
 - $head \leftarrow head + 1, queue[head] = u$
- 9: mark *u* as "visited"

10:
$$color[u] \leftarrow 1 - color[v]$$

- 11: else if color[u] = color[v] then
- 12: print("G is not bipartite") and exit

Testing Bipartiteness using BFS

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

Outline

Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

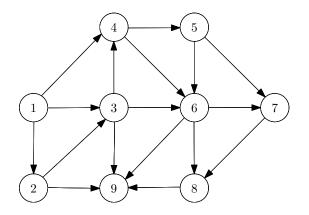
Properties of BFS and DFS trees

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

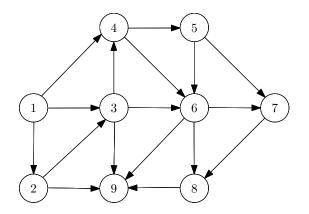
Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$



Topological Ordering

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.



• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

topological-sort(G)

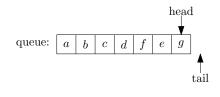
1:	let $d_v \leftarrow 0$ for every $v \in V$
	for every $v \in V$ do
3:	for every u such that $(v, u) \in E$ do
4:	$d_u \leftarrow d_u + 1$
5:	$S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
6:	while $S \neq \emptyset$ do
7:	$v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
8:	$i \leftarrow i+1$, $\pi(v) \leftarrow i$
9:	for every u such that $(v, u) \in E$ do
10:	$d_u \leftarrow d_u - 1$
11:	if $d_u = 0$ then add u to S
12:	if $i < n$ then output "not a DAG"

 $\bullet \ S$ can be represented using a queue or a stack

• Running time =
$$O(n+m)$$

DS	Queue	Stack
Initialization	$head \leftarrow 0, tail \leftarrow 1$	$top \leftarrow 0$
Non-Empty?	$head \geq tail$	top > 0
Add(v)	$\begin{array}{l} head \leftarrow head + 1 \\ S[head] \leftarrow v \end{array}$	$\begin{array}{l} top \leftarrow top + 1 \\ S[top] \leftarrow v \end{array}$
Retrieve v	$v \leftarrow S[tail] \\ tail \leftarrow tail + 1$	$\begin{array}{c} v \leftarrow S[top] \\ top \leftarrow top - 1 \end{array}$

Example



Outline

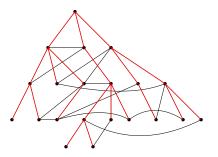
Connectivity and Graph TraversalTesting Bipartiteness

3 Topological Ordering

Properties of a BFS Tree

Given a BFS tree T of a connected graph ${\cal G}$

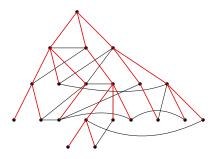
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- $\bullet~{\rm No.}~v$ should be a child of u
- Can there be a horizontal edge $(u, v) \ u \ge 2$ levels above v?
- No. v should be a child of u.
- Can there be a horizontal edge (u, v), where u is 1 level above v, but v's parent is to the right of u?
- No. v should be a child of u.



Properties of a BFS Tree

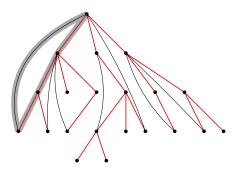
Given a BFS tree T of a connected graph G, other than the tree edges, we only have horizontal edges (u, v), where

- either u and v are at the same level
- or *u* is 1 level above *v*, and *v*'s parent is to the left of *u*, (or vice versa)



Given a tree DFS tree T of a graph (connected) G,

- Can there be a horizontal edge (u, v)?
- No.
- All non-tree edges are vertical edges.
- A vertical edge (u, v) and its the edges in the path from u to v in T form a cycle; we call it a canonical cycle.



Properties of a DFS Tree

Lemma If G contains a cycle, then it has a canonical cycle.

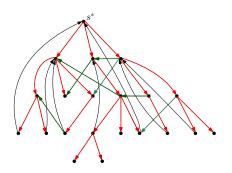
Proof.

- If G contains a cycle, then it must have at least non-tree edge.
- W.r.t DFS tree *T*, we can only have vertical + tree edges
- \bullet \exists at least one vertical edge
- There is a canonical cycle

• There might or might not be non-canonical ones.

Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^\ast

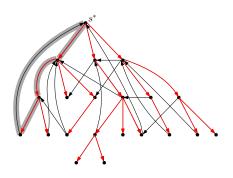
- Can there be a horizontal (directed) edge (u, v) where uis visited before v?
- No.
- However, there can be horizontal edges (u, v) where uis visited after v.



Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^{\ast}

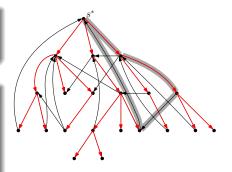
- Other than tree edges, there are two types of edges:
 - vertical edges directed to ancestors
 - horizontal edges (u, v) where u is visited after v.
- An vertical edge (u, v) and the tree edges in the tree path from v to u form a cycle, and we call it a canonical cycle.



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.

- Focus on tree edges and horizontal edges
- post-order-traversal of T gives a reversed topological ordering
- Without vertical edges, G has no cycles



Cycle Detection Using DFS in Directed Graphs

Algorithm 1 Check-Cycle-Directed

- 1: add a source s^\ast to G and edges from s^\ast to all other vertices.
- 2: $visited \leftarrow boolean array over V$, with $visited[v] = false, \forall v$
- 3: $instack \leftarrow boolean array over V$, with $instack[v] = false, \forall v$
- 4: $\mathsf{DFS}(s^*)$
- 5: return "no cycle"

Algorithm 2 DFS(v)

- 1: $visited[v] \leftarrow true, instack[v] \leftarrow true$
- 2: for every outgoing edge $\left(v,u\right)$ of v do
- 3: **if** inqueue[u] **then** \triangleright Find a vertical edge
- 4: exit the whole algorithm, by returning "there is a cycle"
- 5: else if visited[u] = false then
- 6: $\mathsf{DFS}(u)$
- 7: $instack[v] \leftarrow false$