
CSE 431/531: Algorithm Analysis and Design (Fall 2021)

Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/37

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees



3/37

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs



4/37

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6

V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}
E: pairwise relationships among V ;

(undirected) graphs: relationship is symmetric, E contains subsets of
size 2
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}



5/37

Abuse of Notations

For (undirected) graphs, we often use (i, j) to denote the set
{i, j}.
We call (i, j) an unordered pair; in this case (i, j) = (j, i).

1

2 3

4 5

7

8

6

E = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8),
(4, 5), (5, 6), (7, 8)}



6/37

Social Network : Undirected

Transition Graph : Directed

Road Network : Directed or Undirected

Internet : Directed or Undirected



7/37

Representation of Graphs

1

2 3

4 5

7

8

6

2 3

1 3

1 2

2 5

5

3 8

8

3 7

2 3

5 7

4 5

4 6

1:

2:

3:

4:

5:

6:

7:

8:

Adjacency matrix

n× n matrix, A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists

For every vertex v, there is a linked list containing all neighbours of v.



8/37

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n− 1 ≤ m ≤ n(n− 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) ∈ E O(1) O(du)

time to list all neighbours of v O(n) O(dv)



9/37

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees



10/37

Connectivity Problem

Input: graph G = (V,E), (using linked lists)

two vertices s, t ∈ V
Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)



11/37

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 ∪ L1 ∪ · · · ∪ Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6



12/37

Implementing BFS using a Queue

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head ≥ tail do
4: v ← queue[tail], tail← tail + 1
5: for all neighbours u of v do
6: if u is “unvisited” then
7: head← head+ 1, queue[head] = u
8: mark u as “visited”

Running time: O(n+m).



13/37

Example of BFS via Queue

1

2 3

4 5

7

8

6

head

tail

v

2 3 4 5 7 8 61



14/37

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6



15/37

Implementing DFS using Recurrsion

DFS(s)

1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if u is unvisited then recursive-DFS(u)



16/37

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees



17/37

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) ∈ E, we have either u ∈ L, v ∈ R
or v ∈ L, u ∈ R.



18/37

Testing Bipartiteness

Taking an arbitrary vertex s ∈ V
Assuming s ∈ L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component



19/37

Test Bipartiteness

bad edges!



20/37

Testing Bipartiteness using BFS

BFS(s)

1: head← 1, tail← 1, queue[1]← s
2: mark s as “visited” and all other vertices as “unvisited”
3: color[s]← 0
4: while head ≥ tail do
5: v ← queue[tail], tail← tail + 1
6: for all neighbours u of v do
7: if u is “unvisited” then
8: head← head+ 1, queue[head] = u
9: mark u as “visited”
10: color[u]← 1− color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit



21/37

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v ∈ V do
3: if v is “unvisited” then
4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)



22/37

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees



23/37

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function π : V → {1, 2, 3 · · · , n}, so that

if (u, v) ∈ E then π(u) < π(v)

1

2

3

4 5

6 7

89



24/37

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89



25/37

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0



26/37

topological-sort(G)

1: let dv ← 0 for every v ∈ V
2: for every v ∈ V do
3: for every u such that (v, u) ∈ E do
4: du ← du + 1

5: S ← {v : dv = 0}, i← 0
6: while S 6= ∅ do
7: v ← arbitrary vertex in S, S ← S \ {v}
8: i← i+ 1, π(v)← i
9: for every u such that (v, u) ∈ E do
10: du ← du − 1
11: if du = 0 then add u to S

12: if i < n then output “not a DAG”

S can be represented using a queue or a stack

Running time = O(n+m)



27/37

S as a Queue or a Stack

DS Queue Stack

Initialization head← 0, tail← 1 top← 0

Non-Empty? head ≥ tail top > 0

Add(v) head← head+ 1
S[head]← v

top← top+ 1
S[top]← v

Retrieve v v ← S[tail]
tail← tail + 1

v ← S[top]
top← top− 1



28/37

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

head

a b c d ef g

tail



29/37

Outline

1 Graphs

2 Connectivity and Graph Traversal
Testing Bipartiteness

3 Topological Ordering

4 Properties of BFS and DFS trees



30/37

Properties of a BFS Tree

Given a BFS tree T of a connected graph G

Can there be a vertical edge
(u, v), u ≥ 2 levels above v?

No. v should be a child of u

Can there be a horizontal edge
(u, v) u ≥ 2 levels above v?

No. v should be a child of u.

Can there be a horizontal edge
(u, v), where u is 1 level above
v, but v’s parent is to the right
of u?

No. v should be a child of u.



31/37

Properties of a BFS Tree

Given a BFS tree T of a connected graph G, other than the tree
edges, we only have horizontal edges (u, v), where

either u and v are at the same
level

or u is 1 level above v, and v’s
parent is to the left of u, (or
vice versa)



32/37

Properties of a DFS Tree

Given a tree DFS tree T of a graph (connected) G,

Can there be a horizontal edge
(u, v)?

No.

All non-tree edges are vertical
edges.

A vertical edge (u, v) and its
the edges in the path from u to
v in T form a cycle; we call it a
canonical cycle.



33/37

Properties of a DFS Tree

Lemma If G contains a cycle,
then it has a canonical cycle.

Proof.
If G contains a cycle, then it
must have at least non-tree
edge.

W.r.t DFS tree T , we can only
have vertical + tree edges

∃ at least one vertical edge

There is a canonical cycle

There might or might not be non-canonical ones.



34/37

Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices
can be reached from the starting vertex s∗

Can there be a horizontal
(directed) edge (u, v) where u
is visited before v?

No.

However, there can be
horizontal edges (u, v) where u
is visited after v.

s∗



35/37

Properties of a DFS Tree Over a Directed Graph

Given a tree DFS tree T of a directed graph G, assuming all vertices
can be reached from the starting vertex s∗

Other than tree edges, there
are two types of edges:

vertical edges directed to
ancestors
horizontal edges (u, v) where u
is visited after v.

An vertical edge (u, v) and the
tree edges in the tree path
from v to u form a cycle, and
we call it a canonical cycle.

s∗



36/37

Properties of a DFS Tree Over a Directed Graph

Lemma If there is a cycle in the
directed graph G, then there must
be a canonical one.

Proof.
Focus on tree edges and
horizontal edges

post-order-traversal of T gives
a reversed topological ordering

Without vertical edges, G has
no cycles

s∗

Again, there might be non-canonical cycles.



37/37

Cycle Detection Using DFS in Directed Graphs

Algorithm 1 Check-Cycle-Directed
1: add a source s∗ to G and edges from s∗ to all other vertices.
2: visited← boolean array over V , with visited[v] = false,∀v
3: instack ← boolean array over V , with instack[v] = false,∀v
4: DFS(s∗)
5: return “no cycle”

Algorithm 2 DFS(v)

1: visited[v]← true, instack[v]← true
2: for every outgoing edge (v, u) of v do
3: if inqueue[u] then . Find a vertical edge
4: exit the whole algorithm, by returning “there is a cycle”
5: else if visited[u] = false then
6: DFS(u)

7: instack[v]← false


	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering
	Properties of BFS and DFS trees

