CSE 431/531: Algorithm Analysis and Design (Fall 2021) Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

- Graphs
- Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- 4) Properties of BFS and DFS trees

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

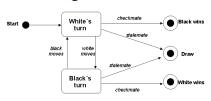
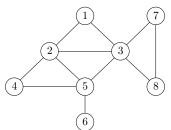


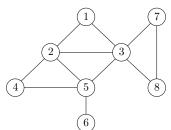
Figure: Transition Graphs

(Undirected) Graph G = (V, E)



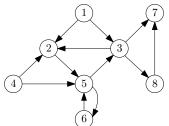
- *V*: set of vertices (nodes);
- E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph G = (V, E)



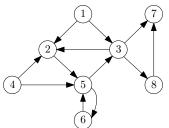
- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$

Directed Graph G = (V, E)



- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- \bullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs

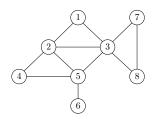
Directed Graph G = (V, E)



- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- \bullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

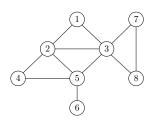
- For (undirected) graphs, we often use (i,j) to denote the set $\{i,j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph: Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

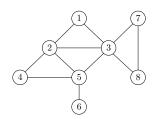
Representation of Graphs



	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3				0				
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
 - $\bullet \ n \times n$ matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - $\bullet \ A$ is symmetric if graph is undirected

Representation of Graphs



```
1: 2 - 3 6: 5
2: 1 - 3 - 4 - 5 7: 3 - 8
3: 1 - 2 - 5 - 7 - 8
4: 2 - 5 8: 3 - 7
5: 2 - 3 - 4 - 6
```

- Adjacency matrix
 - ullet n imes n matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbours of v.

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- 1 Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- Properties of BFS and DFS trees

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)

Input: graph G = (V, E), (using linked lists)

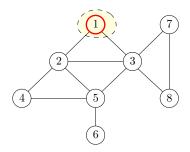
two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

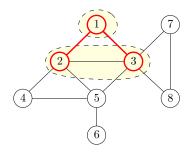
- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

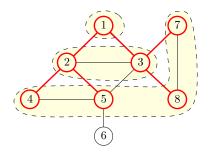
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



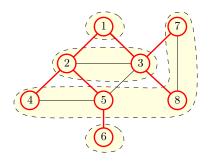
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



Implementing BFS using a Queue

```
BFS(s)

1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \geq tail do

4: v \leftarrow queue[tail], tail \leftarrow tail + 1

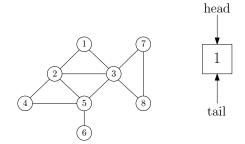
5: for all neighbours u of v do

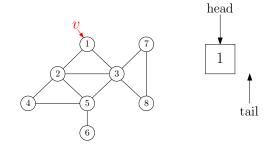
6: if u is "unvisited" then

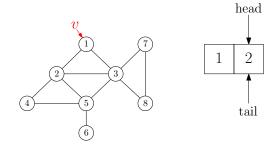
7: head \leftarrow head + 1, queue[head] = u

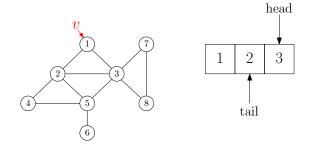
8: mark u as "visited"
```

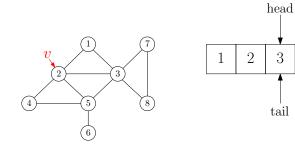
• Running time: O(n+m).

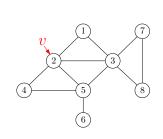


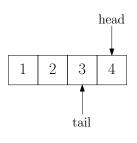


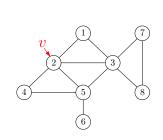


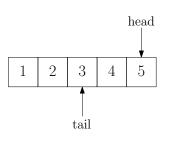


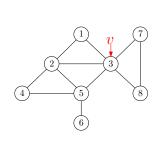


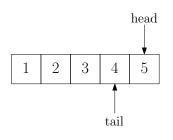


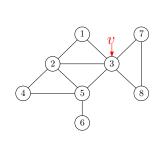


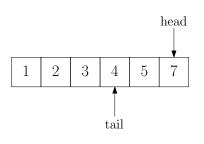


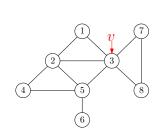


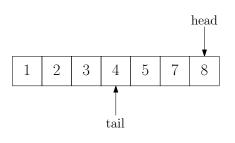


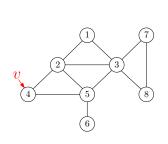


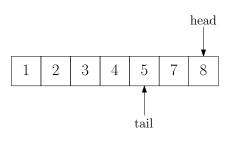


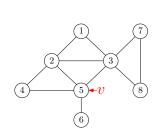


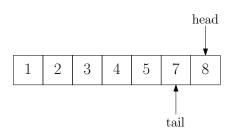


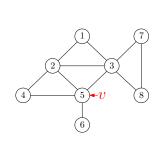


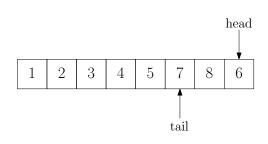


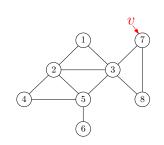


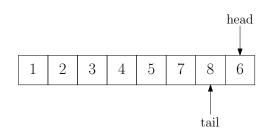


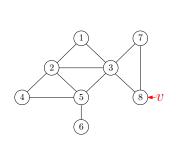


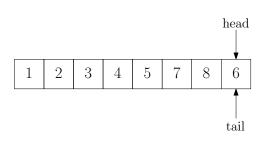


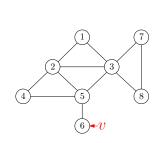


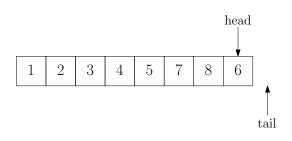






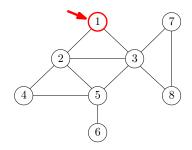




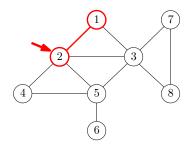


- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

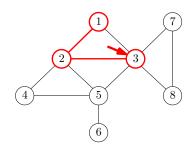
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



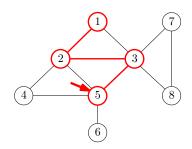
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



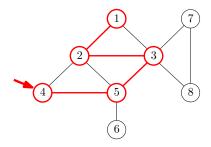
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



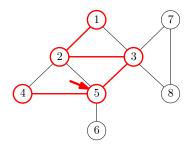
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



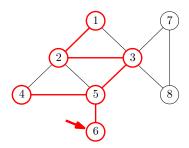
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



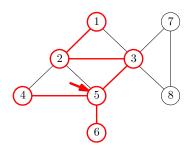
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



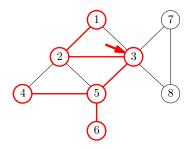
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



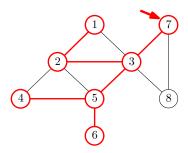
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



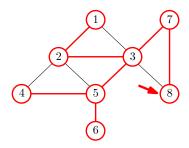
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

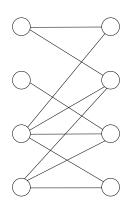
- 1: mark v as "visited"
- 2: **for** all neighbours u of v **do**
- 3: **if** u is unvisited **then** recursive-DFS(u)

Outline

- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- Properties of BFS and DFS trees

Testing Bipartiteness: Applications of BFS

Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.



 $\bullet \ \ {\it Taking an arbitrary vertex} \ s \in V$

- ullet Taking an arbitrary vertex $s \in V$
- ullet Assuming $s \in L$ w.l.o.g

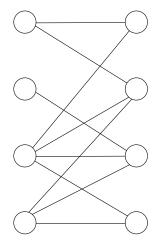
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R

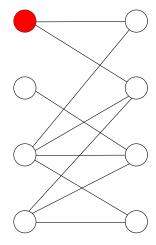
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- \bullet Neighbors of neighbors of s must be in L

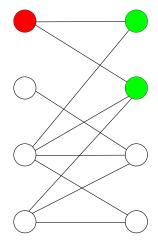
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- • •

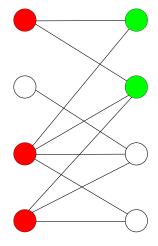
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- . .
- Report "not a bipartite graph" if contradiction was found

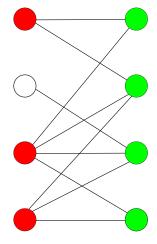
- ullet Taking an arbitrary vertex $s \in V$
- ullet Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- . .
- Report "not a bipartite graph" if contradiction was found
- \bullet If G contains multiple connected components, repeat above algorithm for each component

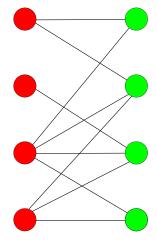


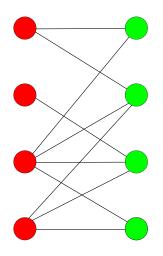


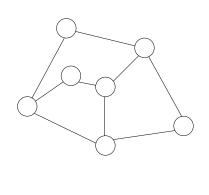


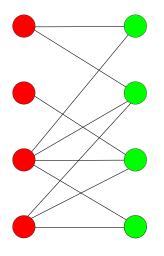


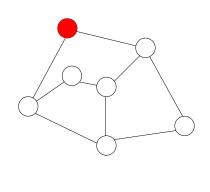


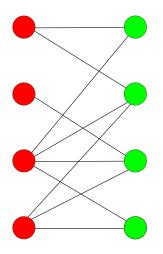


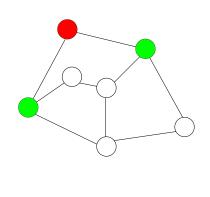


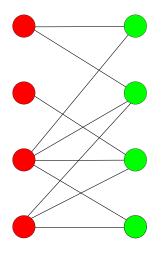


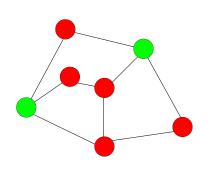


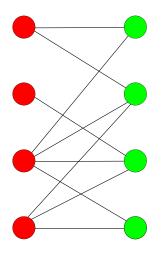


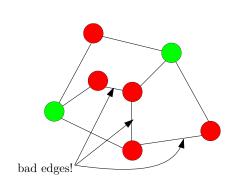












$\mathsf{BFS}(s)$

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \geq tail do

4: v \leftarrow queue[tail], tail \leftarrow tail + 1

5: for all neighbours u of v do

6: if u is "unvisited" then

7: head \leftarrow head + 1, queue[head] = u

8: mark u as "visited"
```

```
test-bipartiteness(s)
 1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
 2: mark s as "visited" and all other vertices as "unvisited"
 3: color[s] \leftarrow 0
 4: while head > tail do
        v \leftarrow queue[tail], tail \leftarrow tail + 1
 5:
        for all neighbours u of v do
 6:
             if u is "unvisited" then
 7:
                 head \leftarrow head + 1, queue[head] = u
 8:
                 mark u as "visited"
 9:
                 color[u] \leftarrow 1 - color[v]
10:
             else if color[u] = color[v] then
11:
                 print("G is not bipartite") and exit
12:
```

```
1: mark all vertices as "unvisited"

2: for each vertex v \in V do

3: if v is "unvisited" then

4: test-bipartiteness(v)

5: print("G is bipartite")
```

```
1: mark all vertices as "unvisited" 
2: for each vertex v \in V do
```

3: **if** v is "unvisited" **then**

4: test-bipartiteness(v)5: print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Outline

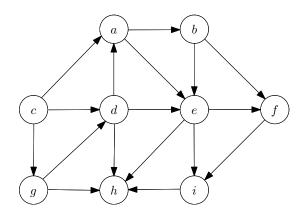
- Graphs
- Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering
- Properties of BFS and DFS trees

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

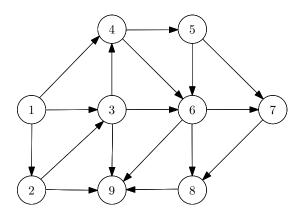


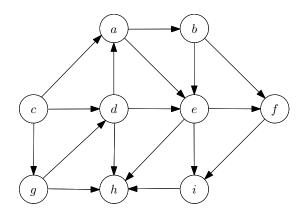
Topological Ordering Problem

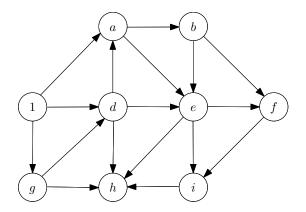
Input: a directed acyclic graph (DAG) G = (V, E)

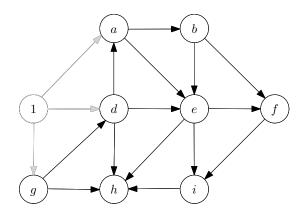
Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

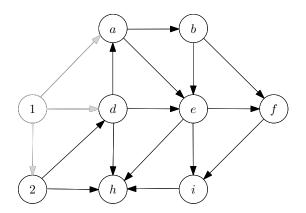
• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

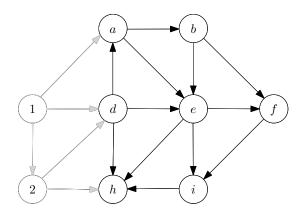


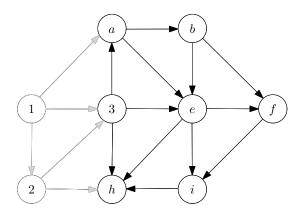


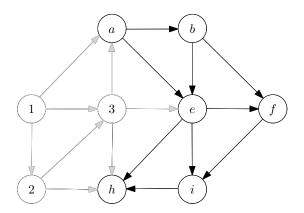


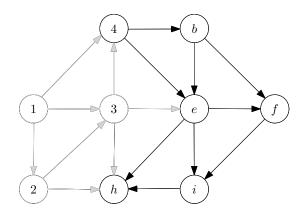




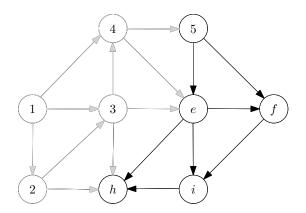


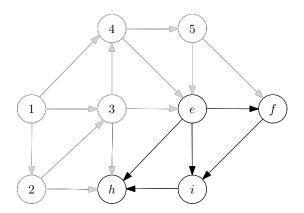


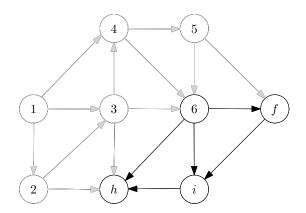


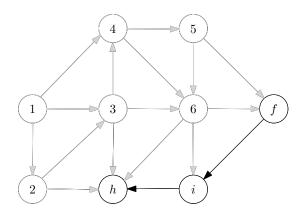


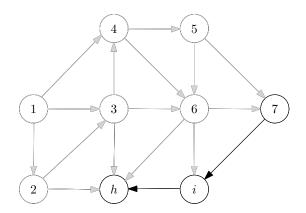


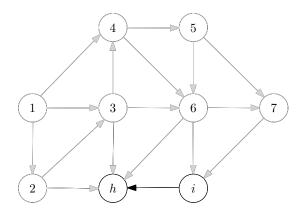


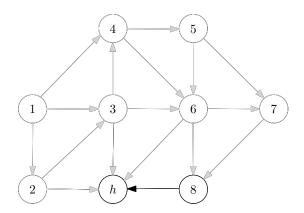


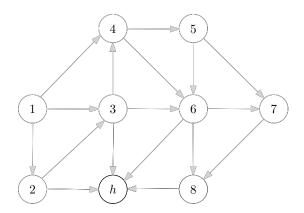


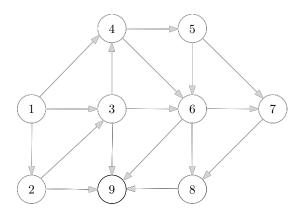


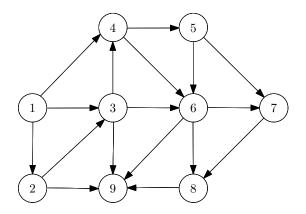












• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

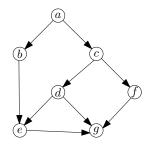
- Use linked-lists of outgoing edges
- ullet Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

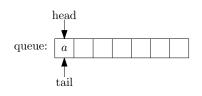
topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: **for** every $v \in V$ **do**
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \ \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- if $d_u = 0$ then add u to S
- 12: if i < n then output "not a DAG"
- S can be represented using a queue or a stack
- Running time = O(n+m)

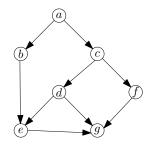
${\cal S}$ as a Queue or a Stack

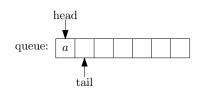
DS	Queue	Stack
Initialization	$head \leftarrow 0$, $tail \leftarrow 1$	$top \leftarrow 0$
Non-Empty?	$head \ge tail$	top > 0
Add(v)	$\begin{aligned} head &\leftarrow head + 1 \\ S[head] &\leftarrow v \end{aligned}$	$ top \leftarrow top + 1 $ $S[top] \leftarrow v $
Retrieve v	$v \leftarrow S[tail] \\ tail \leftarrow tail + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$



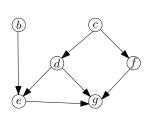


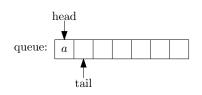
	a	b	c	d	e	f	g
degree	0	1	1	1	2	1	3



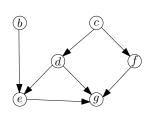


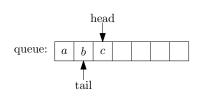
	a	b	c	d	e	f	g
degree	0	1	1	1	2	1	3



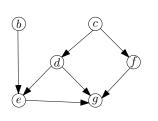


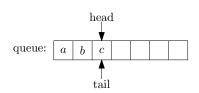
	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3



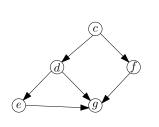


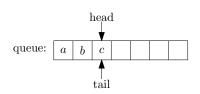
	a	$\mid b \mid$	c	d	e	f	g
degree	0	0	0	1	2	1	3



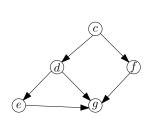


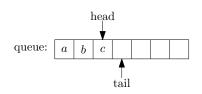
	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3



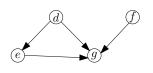


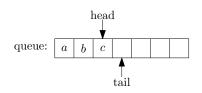
	a	$\mid b \mid$	c	d	e	f	g
degree	0	0	0	1	1	1	3



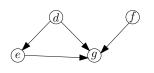


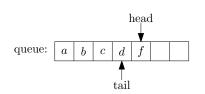
	a	b	c	d	e	f	g
degree	0	0	0	1	1	1	3

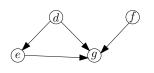


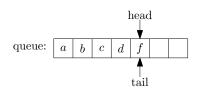


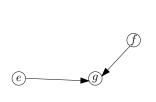
	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

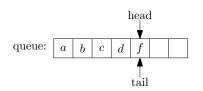


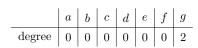


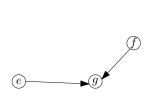


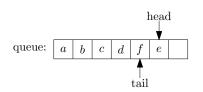




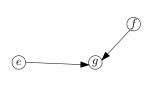


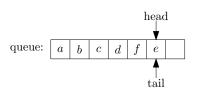


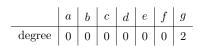


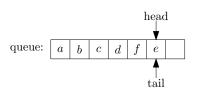


	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

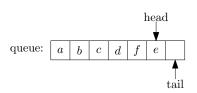




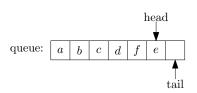


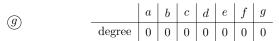


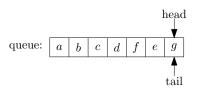
	a	b	c	d	e	\int	g
degree	0	0	0	0	0	0	1

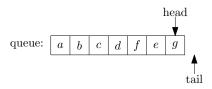


	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1



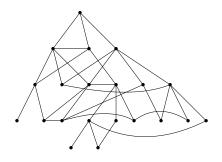


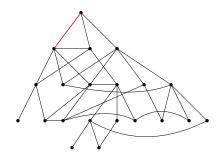


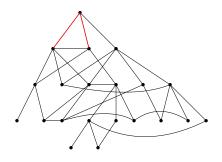


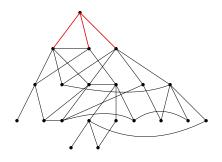
Outline

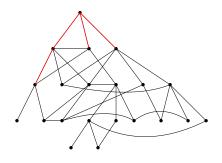
- Graphs
- Connectivity and Graph Traversal
 - Testing Bipartiteness
- 3 Topological Ordering
- Properties of BFS and DFS trees

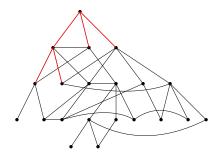


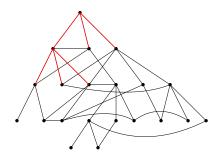


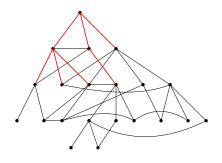


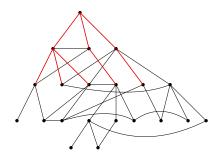


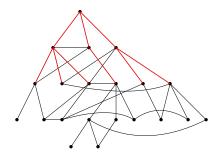


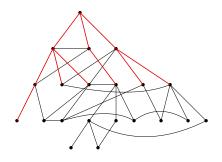


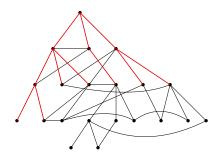


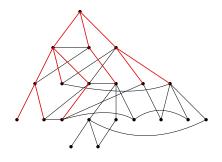


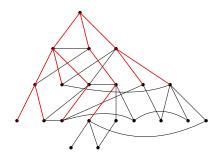


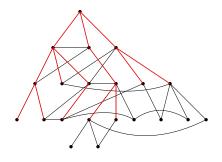


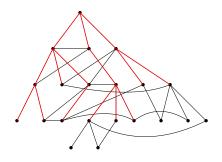


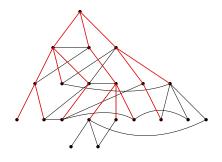


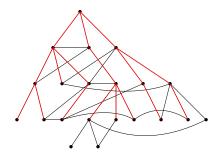


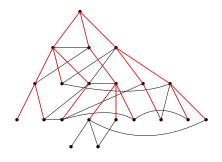


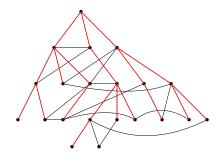


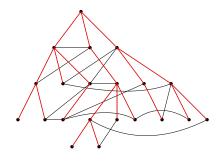






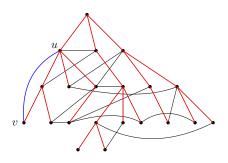




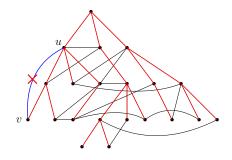


Given a BFS tree T of a connected graph G

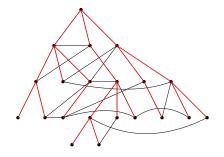
• Can there be a vertical edge (u, v), $u \ge 2$ levels above v?



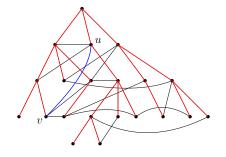
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u



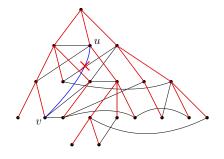
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u



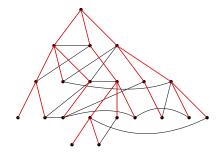
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?



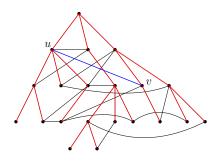
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?
- ullet No. v should be a child of u.



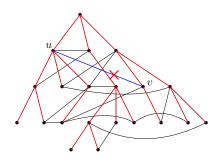
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?
- ullet No. v should be a child of u.



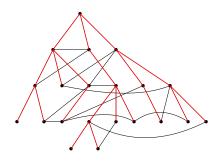
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?
- ullet No. v should be a child of u.
- Can there be a horizontal edge (u, v), where u is 1 level above v, but v's parent is to the right of u?



- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?
- ullet No. v should be a child of u.
- Can there be a horizontal edge (u, v), where u is 1 level above v, but v's parent is to the right of u?
- ullet No. v should be a child of u.

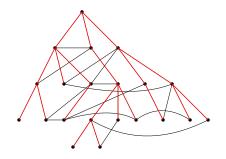


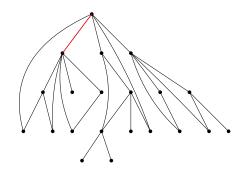
- Can there be a vertical edge (u, v), $u \ge 2$ levels above v?
- ullet No. v should be a child of u
- Can there be a horizontal edge (u, v) $u \ge 2$ levels above v?
- No. v should be a child of u.
- Can there be a horizontal edge (u, v), where u is 1 level above v, but v's parent is to the right of u?
- ullet No. v should be a child of u.

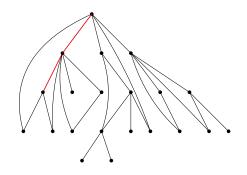


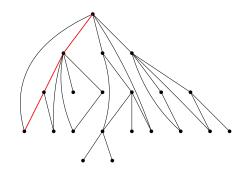
Given a BFS tree T of a connected graph G, other than the tree edges, we only have horizontal edges (u,v), where

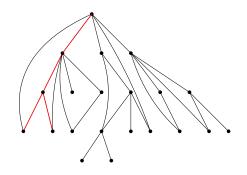
- ullet either u and v are at the same level
- or u is 1 level above v, and v's parent is to the left of u, (or vice versa)

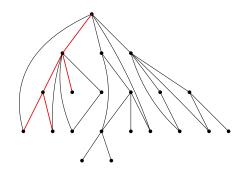


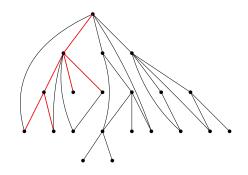


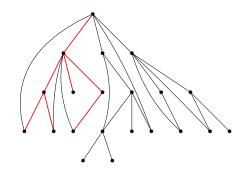


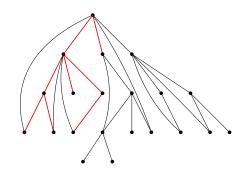


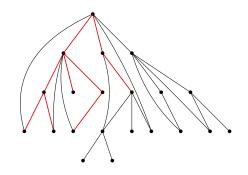


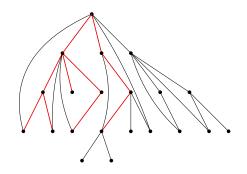


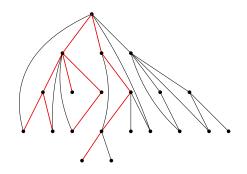


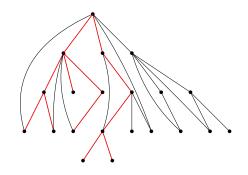


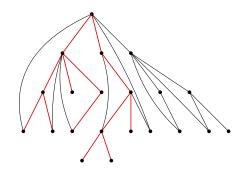


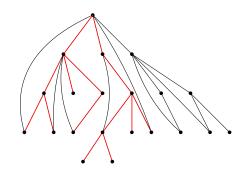


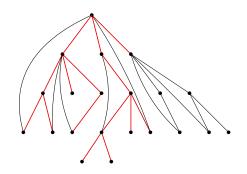


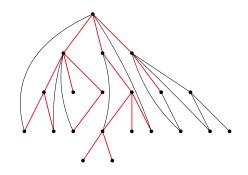


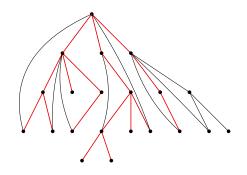


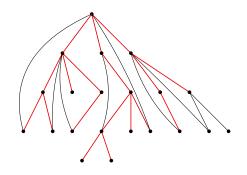


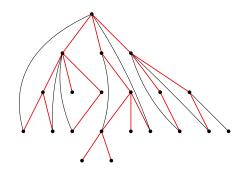


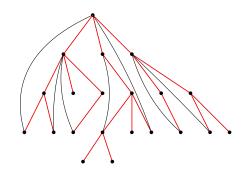






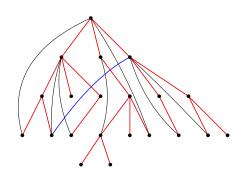




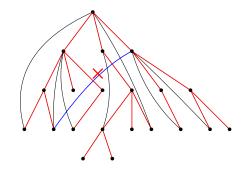


Given a tree DFS tree T of a graph (connected) G,

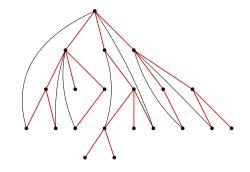
• Can there be a horizontal edge (u,v)?



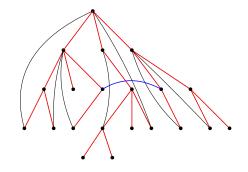
- ullet Can there be a horizontal edge (u,v)?
- No.



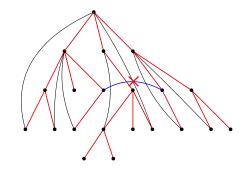
- $\bullet \ \, {\rm Can \ there \ be \ a \ horizontal \ edge} \\ (u,v)?$
- No.



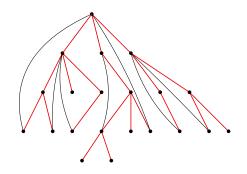
- $\bullet \ \, {\rm Can \ there \ be \ a \ horizontal \ edge} \\ (u,v)?$
- No.



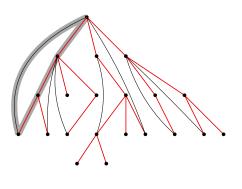
- ullet Can there be a horizontal edge (u,v)?
- No.



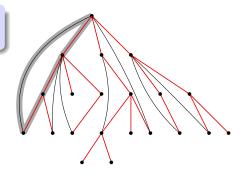
- Can there be a horizontal edge (u,v)?
- No.
- All non-tree edges are vertical edges.



- Can there be a horizontal edge (u,v)?
- No.
- All non-tree edges are vertical edges.
- A vertical edge (u,v) and its the edges in the path from u to v in T form a cycle; we call it a canonical cycle.



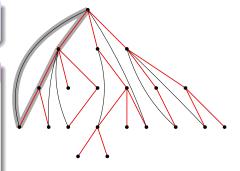
Lemma If G contains a cycle, then it has a canonical cycle.



Lemma If G contains a cycle, then it has a canonical cycle.

Proof.

- If G contains a cycle, then it must have at least non-tree edge.
- W.r.t DFS tree T, we can only have vertical + tree edges
- ullet at least one vertical edge
- There is a canonical cycle

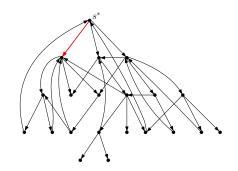


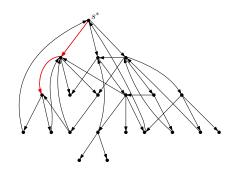
Lemma If G contains a cycle, then it has a canonical cycle.

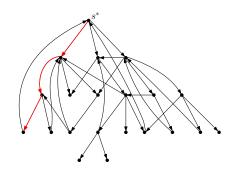
Proof.

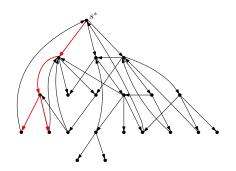
- If G contains a cycle, then it must have at least non-tree edge.
- W.r.t DFS tree T, we can only have vertical + tree edges
- ∃ at least one vertical edge
- There is a canonical cycle

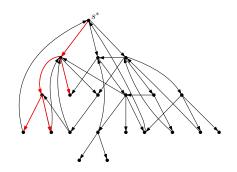
There might or might not be non-canonical ones.

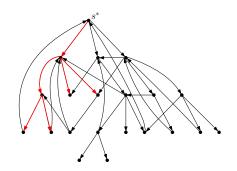


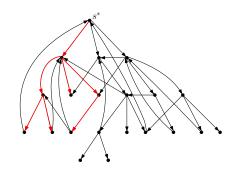


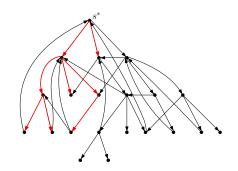


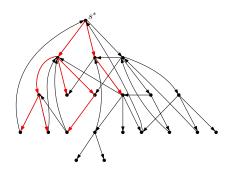


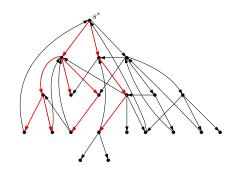


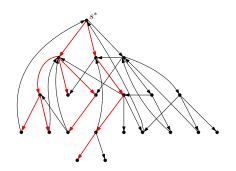


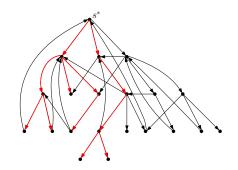


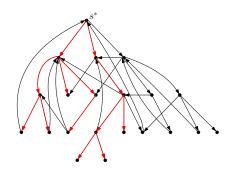


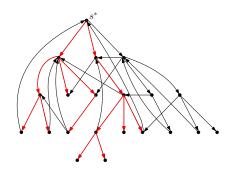


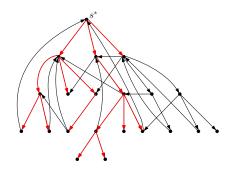


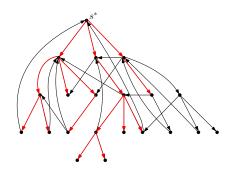


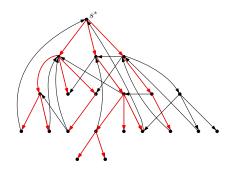


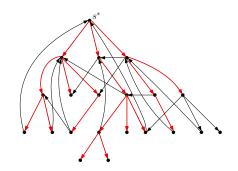


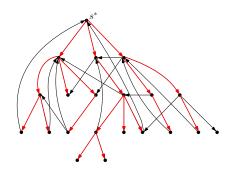


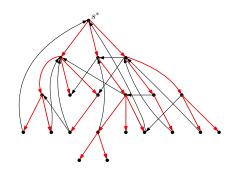






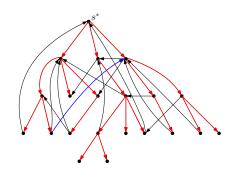




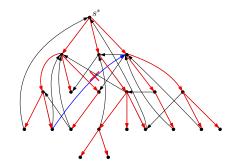


Given a tree DFS tree T of a directed graph G, assuming all vertices can be reached from the starting vertex s^{\ast}

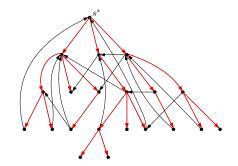
 Can there be a horizontal (directed) edge (u, v) where u is visited before v?



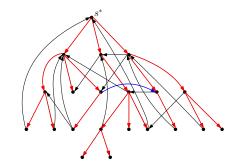
- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.



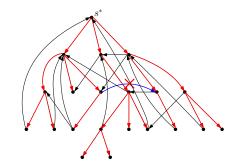
- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.



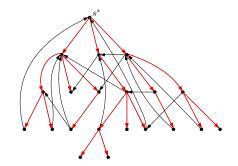
- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.



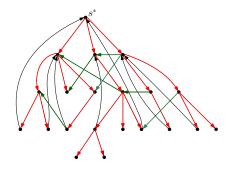
- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.

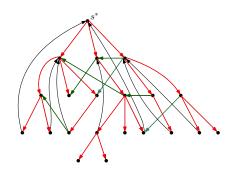


- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.

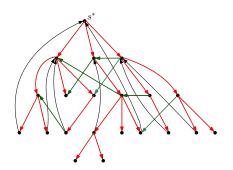


- Can there be a horizontal (directed) edge (u, v) where u is visited before v?
- No.
- However, there can be horizontal edges (u, v) where u is visited after v.

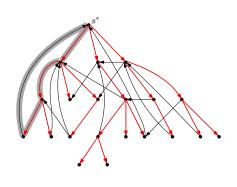




- Other than tree edges, there are two types of edges:
 - vertical edges directed to ancestors
 - horizontal edges (u, v) where u is visited after v.

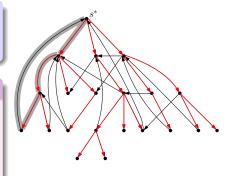


- Other than tree edges, there are two types of edges:
 - vertical edges directed to ancestors
 - horizontal edges (u, v) where u
 is visited after v.
- An vertical edge (u, v) and the tree edges in the tree path from v to u form a cycle, and we call it a canonical cycle.



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

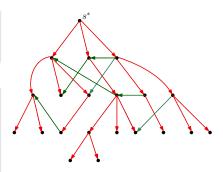
Proof.



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.

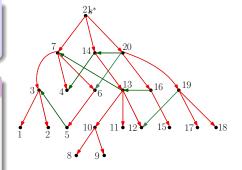
 Focus on tree edges and horizontal edges



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.

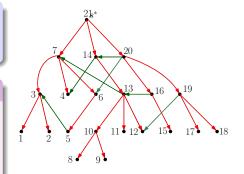
- Focus on tree edges and horizontal edges
- ullet post-order-traversal of T gives a reversed topological ordering



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.

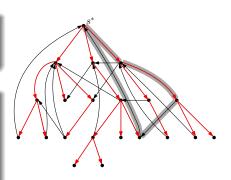
- Focus on tree edges and horizontal edges
- post-order-traversal of T gives a reversed topological ordering
- ullet Without vertical edges, G has no cycles



Lemma If there is a cycle in the directed graph G, then there must be a canonical one.

Proof.

- Focus on tree edges and horizontal edges
- post-order-traversal of T gives a reversed topological ordering
- ullet Without vertical edges, G has no cycles



• Again, there might be non-canonical cycles.

Cycle Detection Using DFS in Directed Graphs

Algorithm 1 Check-Cycle-Directed

- 1: add a source s^* to G and edges from s^* to all other vertices.
- 2: $visited \leftarrow \mathsf{boolean}$ array over V, with $visited[v] = false, \forall v$
- 3: $instack \leftarrow \text{boolean array over } V$, with $instack[v] = false, \forall v$
- 4: $\mathsf{DFS}(s^*)$
- 5: **return** "no cycle"

Algorithm 2 DFS(v)

- 1: $visited[v] \leftarrow true, instack[v] \leftarrow true$
 - 2: for every outgoing edge $(\boldsymbol{v},\boldsymbol{u})$ of \boldsymbol{v} do
 - 3: **if** inqueue[u] **then** \triangleright Find a vertical edge
 - 4: exit the whole algorithm, by returning "there is a cycle"
- 5: **else if** visited[u] = false **then**
- 6: $\mathsf{DFS}(u)$
- 7: $instack[v] \leftarrow false$