CSE 431/531: Algorithm Analysis and Design (Fall 2021) Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

CSE 431/531: Algorithm Analysis and Design

- Course Webpage (contains schedule, policies, homeworks and slides): http://www.cse.buffalo.edu/~shil/courses/CSE531/
- Please sign up course on Piazza via link on course webpage
 - announcements, polls, asking/answering questions

CSE 431/531: Algorithm Analysis and Design

- Time & Location : 5:30pm-6:45pm, Davis 101
- Hybrid mode
 - Session 1: In person on Tuesdays, Remote on Thursdays
 - Session 2: Remote on Tuesdays, In person on Thursdays
- Instructor:
 - Shi Li, shil@buffalo.edu
- TAs:
 - Xiaoyu Zhang, Charles Wiechec, Yunus Esencayi

- Get vaccinated
- Wear a mask

What do I do if I don't feel well?

- Your safety and the safety of your class-mates comes first
- Follow UB procedure
- Do not come to class- just send me an email, and we can meet on Zoom temporarily while you sort things out- even if is false alarm!
- Your privacy will be protected to the extent that is reasonably possible

You should already have/know:

- Mathematical Background
 - basic reasoning skills, inductive proofs
- Basic data Structures
 - linked lists, arrays
 - stacks, queues
- Some Programming Experience
 - Python, C, C++ or Java

- Classic algorithms for classic problems
 - $\bullet\,$ Sorting, shortest paths, minimum spanning tree, \cdots
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - • •
- NP-completeness

 \bullet 75 Minutes/Lecture \times 29 Lectures

Introduction	3 lectures
Graph Basics	2 lectures
Greedy Algorithms	5 lectures
Divide and Conquer	5 lectures
Dynamic Programming	5 lectures
Graph Algorithms	5 lectures
NP-Completeness	3 lectures
Final Review	1 lecture

Textbook (Highly Recommended):

• <u>Algorithm Design</u>, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

• Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
 - Sections for each lecture can be found on the course webpage.
- Slides are posted on course webpage. They may get updated before the classes start.
- In last lecture of a major topic (Greedy Algorithms, Divide and Conquer, Dynamic Programming, Graph Algorithms), I will discuss exercise problems, which will be posted on the course webpage before class.

- 40% for theory homeworks
 - $\bullet~8~\text{points}~\times~5$ theory homeworks
- 20% for programming problems
 - 10 points \times 2 programming assignments
- 40% for final exam

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm course webpages
- Copy solutions from other students

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs

- You have 1 "late credit", using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted

• Final Exam will be closed-book

Academic Integrity (AI) Policy for the Course

- minor violation:
 - $\bullet~0$ score for the involved homework/prog. assignment, and
 - 1-letter grade down
- 2 minor violations = 1 major violation
 - failure for the course
 - case will be reported to the department and university
 - further sanctions may include a dishonesty mark on transcript or expulsion from university

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Greatest Common Divisor

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

Example:

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

Sorting

- **Input:** sequence of n numbers (a_1, a_2, \cdots, a_n)
- **Output:** a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
- Algorithms: insertion sort, merge sort, quicksort, ...

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

• Algorithm: Dijkstra's algorithm

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code:

$\mathsf{Euclidean}(a, b)$

- 1: while b > 0 do
- $2: \quad (a,b) \leftarrow (b,a \mod b)$
- 3: **return** *a*

C++ program:

- int Euclidean(int a, int b){
- int c;

۲

۲

۲

۵

• }

$$\mathsf{c}=\mathsf{b};$$

$$\mathsf{b}=\mathsf{a}~\%$$
 b;

$$a = c;$$

return a;

}

Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
 - Iundamental
 - It is fun!

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

• At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15 iteration 2: 12, 53, 35, 21, 59, 15 iteration 3: 12, 35, 53, 21, 59, 15 iteration 4: 12, 21, 35, 53, 59, 15 iteration 5: 12, 21, 35, 53, 59, 15 iteration 6: 12, 15, 21, 35, 53, 59

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

$\begin{array}{ll} \text{insertion-sort}(A,n) \\ 1: \ \text{for } j \leftarrow 2 \ \text{to } n \ \text{do} \\ 2: & key \leftarrow A[j] \\ 3: & i \leftarrow j-1 \\ 4: & \text{while } i > 0 \ \text{and } A[i] > key \ \text{do} \\ 5: & A[i+1] \leftarrow A[i] \\ 6: & i \leftarrow i-1 \\ 7: & A[i+1] \leftarrow key \end{array}$

•
$$j = 6$$

• $key = 15$
12 15 21 35 53 59
 \uparrow_i

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Correctness
- Running time

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15after j = 2 : 12, 53, 35, 21, 59, 15after j = 3 : 12, 35, 53, 21, 59, 15after j = 4 : 12, 21, 35, 53, 59, 15after j = 5 : 12, 21, 35, 53, 59, 15after j = 6 : 12, 15, 21, 35, 53, 59

Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - $\bullet\,$ Running time for size n= worst running time over all possible arrays of length n

Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

• Focus on growth of running-time as a function, not any particular value.

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$
- $n^2/100 3n + 10 = O(n^2)$

Asymptotic Analysis: O-notation

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - $\bullet\,$ program 1 requires 10 instructions, or 10^{-8} seconds
 - ${\, {\rm \bullet}\,}$ program 2 requires 2 instructions, or 10^{-9} seconds
 - they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation
- Algorithm 1 runs in time ${\cal O}(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- \bullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- \bullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

Asymptotic Analysis of Insertion Sort

- Worst-case running time for iteration j of the outer loop? Answer: ${\cal O}(j)$
- Total running time = $\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ = $O(\frac{n(n+1)}{2} 1) = O(n^2)$

Computation Model

- Random-Access Machine (RAM) model
 - reading and writing $\boldsymbol{A}[j]$ takes $\boldsymbol{O}(1)$ time
- $\bullet\,$ Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c\log n$ bits, $c\geq 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes ${\cal O}(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

• Remember to sign up for Piazza.

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

Asymptotically Positive Functions

- **Def.** $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No
- We only consider asymptotically positive functions.

O-Notation: Asymptotic Upper Bound

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

O-Notation: Asymptotic Upper Bound

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

Proof.

Let
$$c = 4$$
 and $n_0 = 50$, for every $n > n_0 = 50$, we have,
 $3n^2 + 2n - c(n^2 - 10n) = 3n^2 + 2n - 4(n^2 - 10n)$
 $= -n^2 + 40n \le 0.$
 $3n^2 + 2n \le c(n^2 - 10n)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $\bullet \ n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

Conventions

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following equalities are wrong:
- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

Ω -Notation: Asymptotic Lower Bound

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

Ω -Notation: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n 10)$

•
$$3n^2 - n + 10 = \Omega(n^2 - 20)$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$

⊖-Notation: Asymptotic Tight Bound

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

⊖-Notation: Asymptotic Tight Bound

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

•
$$2^{n/3+100} = \Theta(2^{n/3})$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	

Theorem
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Asymptotic NotationsO Ω Θ Comparison Relations \leq \geq =

Trivial Facts on Comparison Relations

- $\bullet \ a \leq b \ \Leftrightarrow \ b \geq a$
- $\bullet \ a=b \ \Leftrightarrow \ a\leq b \text{ and } a\geq b$
- $\bullet \ a \leq b \text{ or } a \geq b$

Correct Analogies

- $\bullet \ f(n) = O(g(n)) \ \Leftrightarrow \ g(n) = \Omega(f(n))$
- $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(f(n))$

$$f(n) = n^2$$

 $g(n) = egin{cases} 1 & ext{if } n ext{ is odd} \ n^3 & ext{if } n ext{ is even} \end{cases}$

Recall: Informal way to define O-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot),$ nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2 10n 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is ${\cal O}(n^4)$.
- We say: the running time of the insertion sort algorithm is ${\cal O}(n^2)$ and the bound is tight.
- $\bullet~$ We do not use Ω and Θ very often when we upper bound running times.

Exercise

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
log n	log	Voc	Voc	Vac
$\log_2 n$	$\log_{10} n$	res	res	res
$\frac{\log_2 n}{\log^{10} n}$	$\frac{\log_{10} n}{n^{0.1}}$	Yes	No	No
$\frac{\frac{\log_2 n}{\log^{10} n}}{2^n}$	$\frac{\frac{10g_{10}n}{n^{0.1}}}{2^{n/2}}$	Yes No	No Yes	No No

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

Asymptotic NotationsO Ω Θ oComparison Relations \leq \geq =<

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

O(n) (Linear) Running Time

Computing the sum of \boldsymbol{n} numbers

 $\mathsf{sum}(A,n)$

- 1: $S \leftarrow 0$
- 2: for $i \leftarrow 1$ to n
- 3: $S \leftarrow S + A[i]$
- 4: return S

O(n) (Linear) Running Time

• Merge two sorted arrays

length n_1 and n_2	
1: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$	
2: while $i \leq n_1$ and $j \leq n_2$ do	
3: if $B[i] \leq C[j]$ then	
4: append $B[i]$ to A ; $i \leftarrow i+1$	
5: else	
6: append $C[j]$ to $A; j \leftarrow j+1$	
7: if $i \leq n_1$ then append $B[in_1]$ to A	
8: if $j \leq n_2$ then append $C[jn_2]$ to A	
9: return A	

Running time = O(n) where $n = n_1 + n_2$.

merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: **else**

4:
$$B \leftarrow \mathsf{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$$

5:
$$C \leftarrow \text{merge-sort} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], n - \lfloor n/2 \rfloor \right)$$

6: return merge $(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)$

$O(n \log n)$ Running Time

• Merge-Sort

- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

closest-pair(x, y, n)

1:
$$bestd \leftarrow \infty$$

2: for $i \leftarrow 1$ to $n - 1$ do
3: for $j \leftarrow i + 1$ to n do
4: $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5: if $d < bestd$ then
6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$
7: return $(besti, bestj)$

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n\times n$

matrix-multiplication (A, B, n)

- 1: $C \leftarrow \text{matrix of size } n \times n$, with all entries being 0
- 2: for $i \leftarrow 1$ to n do
- 3: for $j \leftarrow 1$ to n do
- 4: for $k \leftarrow 1$ to n do
- 5: $C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$

6: **return** *C*

$O(n^k)$ Running Time for Integer $k \ge 4$

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph G = (V, E)

Output: whether there is an independent set of size k

$O(n^k)$ Running Time for Integer $k \ge 4$

Independent Set of Size k

Input: graph G = (V, E)

Output: whether there is an independent set of size k

independent-set(G = (V, E))

1: for every set
$$S \subseteq V$$
 of size k do

2:
$$b \leftarrow \mathsf{true}$$

3: for every
$$u, v \in S$$
 do

4: if
$$(u, v) \in E$$
 then $b \leftarrow$ false

- 5: if b return true
- 6: return false

Running time = $O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)

Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

max-independent-set (G = (V, E))

1: $R \leftarrow \emptyset$

2: for every set
$$S \subseteq V$$
 do

3: $b \leftarrow \mathsf{true}$

- 4: for every $u, v \in S$ do
- 5: if $(u, v) \in E$ then $b \leftarrow$ false
- 6: if b and |S| > |R| then $R \leftarrow S$

7: return R

Running time = $O(2^n n^2)$.

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem

Input: a graph with *n* vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

$\mathsf{Hamiltonian}(G = (V, E))$

- 1: for every permutation (p_1, p_2, \cdots, p_n) of V do
- 2: $b \leftarrow \mathsf{true}$
- 3: for $i \leftarrow 1$ to n-1 do
- 4: if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow$ false
- 5: if $(p_n, p_1) \notin E$ then $b \leftarrow$ false
- 6: if b then return (p_1, p_2, \cdots, p_n)
- 7: return "No Hamiltonian Cycle"

Running time = $O(n! \times n)$

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

Running time = $O(\log n)$

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n^2)n = O(n\log n)$
- $n\log n = O(n^2)$
- $n^2 = O(n!)n^2 = O(2^n)$
- $2^n = O(n!)2^n = O(e^n)$
- $e^n = O(n!)$
- $n! = O(n^n)$

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time ${\cal O}(n^2)$
- $\bullet\,$ Cubic time $O(n^3)$
- \bullet Polynomial time: ${\cal O}(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- \bullet However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large *n*, algorithm with lower order running time beats algorithm with higher order running time.