CSE 431/531: Algorithm Analysis and Design (Fall 2021) NP-Completeness

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $=$ Polynomial Time

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $=$ Polynomial Time

- For natural problems, if there is an $O\left(n^{k}\right)$-time algorithm, then k is small, say 4

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- For natural problems, if there is an $O\left(n^{k}\right)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega\left(2^{n^{c}}\right)$ for some c

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $=$ Polynomial Time

- For natural problems, if there is an $O\left(n^{k}\right)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega\left(2^{n^{c}}\right)$ for some c
- Do not need to worry about the computational model

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Summary

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

- The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle
Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle
Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle
Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the size of the maximum independent set of G

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem
Input: graph $G=(V, E)$
Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.
Output: whether the boolean formula is satisfiable

- Example: $\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)\right)$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.
Output: whether the boolean formula is satisfiable

- Example: $\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)\right)$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula
- Formula Satisfiablity is NP-hard

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

- When we define the P and NP, we only consider decision problems.

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X^{\prime} of the problem. If we have a polynomial time algorithm for the decision version X^{\prime}, we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph $G=(V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L

Optimization to Decision

Shortest Path

Input: graph $G=(V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L
Maximum Independent Set
Input: a graph G and a bound k
Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be encoded as a binary string.

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String:

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 111101

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 11110111110001

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 111101111100011111000011000001

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 111101111100011111000011000001 1100001101

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 111101111100011111000011000001 110000110111111111000001

Encoding

The input of an problem will be encoded as a binary string.

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- $(0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- $(0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$
- Encode the sequence into a binary string as before

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Set

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Define Problem as a Set

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, $A(s)=1$ if and only if $s \in X$.

Define Problem as a Set

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, $A(s)=1$ if and only if $s \in X$.

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most $p(|s|)$ steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Certifier for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_{1} and G_{2},
Output: whether two graphs are isomorphic to each other

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_{1} and G_{2},
Output: whether two graphs are isomorphic to each other

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_{1} and G_{2},
Output: whether two graphs are isomorphic to each other

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_{1} and G_{2},
Output: whether two graphs are isomorphic to each other

- What is the certificate?

Graph Isomorphism

Graph Isomorphism

Input: two graphs G_{1} and G_{2},
Output: whether two graphs are isomorphic to each other

- What is the certificate?
- What is the certifier?

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Hamiltonian Cycle \in NP

- Input: Graph G

Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G

Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p

Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- |encoding $(S) \mid \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S is an HC in G

Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- |encoding $(S) \mid \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time

Hamiltonian Cycle \in NP

- Input: Graph G
- Certificate: a sequence S of edges in G
- |encoding $(S) \mid \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S is an HC in G
- Clearly, B runs in polynomial time
- $G \in \mathrm{HC} \quad \Longleftrightarrow \quad \exists S, B(G, S)=1$

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V
- Certificate: a 1-1 function $f: V \rightarrow V$

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V
- Certificate: a 1-1 function $f: V \rightarrow V$
- \mid encoding $(f) \mid \leq p\left(\left|\operatorname{encoding}\left(G_{1}, G_{2}\right)\right|\right)$ for some polynomial function p

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V
- Certificate: a 1-1 function $f: V \rightarrow V$
- |encoding $(f) \mid \leq p\left(\left|\operatorname{encoding}\left(G_{1}, G_{2}\right)\right|\right)$ for some polynomial function p
- Certifier $B: B\left(\left(G_{1}, G_{2}\right), f\right)=1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_{1} \Leftrightarrow(f(u), f(v)) \in E_{2}$.

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V
- Certificate: a 1-1 function $f: V \rightarrow V$
- |encoding $(f) \mid \leq p\left(\left|\operatorname{encoding}\left(G_{1}, G_{2}\right)\right|\right)$ for some polynomial function p
- Certifier $B: B\left(\left(G_{1}, G_{2}\right), f\right)=1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_{1} \Leftrightarrow(f(u), f(v)) \in E_{2}$.
- Clearly, B runs in polynomial time

Graph Isomorphism \in NP

- Input: two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ on V
- Certificate: a 1-1 function $f: V \rightarrow V$
- |encoding $(f) \mid \leq p\left(\left|\operatorname{encoding}\left(G_{1}, G_{2}\right)\right|\right)$ for some polynomial function p
- Certifier $B: B\left(\left(G_{1}, G_{2}\right), f\right)=1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_{1} \Leftrightarrow(f(u), f(v)) \in E_{2}$.
- Clearly, B runs in polynomial time
- $\left(G_{1}, G_{2}\right) \in \mathrm{GI} \quad \Longleftrightarrow \quad \exists f, B\left(\left(G_{1}, G_{2}\right), f\right)=1$

Maximum Independent Set \in NP

- Input: graph $G=(V, E)$ and integer k

Maximum Independent Set \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k

Maximum Independent Set \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p

Maximum Independent S et $\in N P$

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G

Maximum Independent S et $\in N P$

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

Maximum Independent Set \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $(G, k) \in \mathrm{MIS} \quad \Longleftrightarrow \quad \exists S, B((G, k), S)=1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 1 ?

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 1 ?

- Is Circuit-Sat \in NP?

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

HC

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\mathrm{HC}} \in$ Co-NP

The Complexity Class Co-NP

Def. For a problem X, the problem \bar{X} is the problem such that $s \in \bar{X}$ if and only if $s \notin X$.

Def. Co-NP is the set of decision problems X such that $\bar{X} \in \mathrm{NP}$.

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP
- Indeed, Tautology = Formula-Unsat

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP
- $P \subseteq N P \cap$ Co-NP (see soon)

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP
- $P \subseteq N P \cap$ Co-NP (see soon)
- If a natural problem X is in NP \cap Co-NP, then it is likely that $X \in P$

Prime

Prime

Input: an integer $q \geq 2$
Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] Prime \in NP
- $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP (see soon)
- If a natural problem X is in NP \cap Co-NP, then it is likely that $X \in P$
- [AKS 2002] Prime $\in \mathrm{P}$
$P \subseteq N P$
- Let $X \in \mathrm{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

- Let $X \in \mathrm{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- Let $X \in \mathrm{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- The certificate is an empty string

$P \subseteq N P$

- Let $X \in \mathrm{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $P \subseteq N P$

$P \subseteq N P$

- Let $X \in \mathrm{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathrm{NP}$ and $\mathrm{P} \subseteq \mathrm{NP}$
- Similarly, $\mathrm{P} \subseteq$ Co-NP, thus $\mathrm{P} \subseteq$ NP \cap Co-NP

Is $P=N P ?$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $\mathrm{P} \neq \mathrm{NP}$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $\mathrm{P} \neq \mathrm{NP}$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $\mathrm{P} \neq \mathrm{NP}$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $\mathrm{P} \neq \mathrm{NP}$, then $\mathrm{HC} \notin \mathrm{P}$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $\mathrm{P} \neq \mathrm{NP}$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq N P$, then $H C \notin P$
- HC $\notin P$, unless $P=N P$

Is NP = Co-NP?

- Again, a big open problem

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe NP $=$ Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathrm{NP} \Longleftrightarrow \bar{X} \in$ Co-NP and $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP

$$
\mathrm{P}=\mathrm{NP}=\mathrm{Co}-\mathrm{NP}
$$

- People commonly believe: we are in the 4th scenario

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP

(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Summary

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_{P} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

 Input: $G=(V, E)$ and $s, t \in V$Output: whether there is a Hamiltonian path from s to t in G

Lemma $H P \leq_{p} H C$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

 Input: $G=(V, E)$ and $s, t \in V$Output: whether there is a Hamiltonian path from s to t in G

Lemma $H P \leq_{p} H C$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $H P \leq_{p} H C$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

 Input: $G=(V, E)$ and $s, t \in V$Output: whether there is a Hamiltonian path from s to t in G

Lemma $H P \leq_{p} H C$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-hard if
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove $P=$ NP (if you believe it), you only need to give an efficient algorithm for any NP-complete problem

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove $P=N P$ (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
- If you believe $\mathrm{P} \neq \mathrm{NP}$, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Summary

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit
Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in$ NP can be reduced to Circuit-Sat.

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

- Then, we can show that any problem $Y \in$ NP can be reduced to Circuit-Sat.
- We prove $\mathrm{HC} \leq_{P}$ Circuit-Sat as an example.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check-HC (G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check-HC (G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check-HC (G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in$ NP

- Let check- $\mathrm{Y}(s, t)$ be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in$ NP

- Let check-Y (s, t) be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Summary

Summary

- We consider decision problems
- Inputs are encoded as $\{0,1\}$-strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P=N P$
- Unless $P=N P$, a NP-complete problem can not be solved in polynomial time

Summary

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \mathrm{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions

