Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

2/73

Greedy Algorithm
@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time
@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Divide-and-Conquer
@ not necessarily for combinatorial optimization problems
@ trivial algorithm already runs in polynomial time
@ divide-and-conquer gives a more efficient algorithm

@ main focus of analysis: running time

Divide-and-Conquer

@ Divide: Divide instance into many smaller instances
e Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

merge-sort(A, n)

@ if n =1 then
Q@ return A
@ clse

Q@ B+ merge-sort(A[l..Ln/2J], Ln/2j>

0 (« merge—sort(A[Ln/2 |+ 1.1, Wz})
@ return merge(B, C, [n/2],[n/2])

@ Divide: trivial
e Conquer: @, @
@ Combine: @

Running Time for Merge-Sort

‘ A[L.A] ‘ ‘ Al5.8] ‘

‘A[l..Q}‘ ‘A[B.A]‘ ‘A[S..G}‘ %[7..8] ‘

@ Each level takes running time O(n)

@ There are O(lgn) levels
@ Running time = O(nlgn)

@ Better than insertion sort

Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
YT Un2)) + T([n/21) + O(m) 0> 2

@ With some tolerance of informality:

T(n) = O(1) ifn=1
e 2T (n/2) +O(n) ifn>2

@ Even simpler: T'(n) =27 (n/2) + O(n). (Implicit
assumption: T'(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlgn) (we shall
show how later)

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

8/73

Def. Given an array A of n integers, an inversion in A is a pair
(i,7) of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: an sequence A of n numbers

Output: number of inversions in A

Example:

1

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9), (15,9), (15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

Q@ c+0

Q foreveryi< l1ton—1

©Q@ foreveryj<« i+1ton

(%) if A[i] > A[j] then c<+—c+1
© return ¢

Divide-and-Conquer

e p=|n/2],B=A[l.p,C = Alp+1.n]
° #invs(A) = #invs(B) + #invs()+m
= [{(@.) : Bli] > C[jl}|

Q: How fast can we compute m, via trivial algorithm?

A: O(n?)

@ Can not improve the O(n?) time for counting inversions.

Divide-and-Conquer

e p=|n/2],B=A[l.p,C = Alp+1.n]
° #invs(A) = #invs(B) + #invs()+m
= [{(@.) : Bli] > C[jl}|

Lemma If both B and C' are sorted, then we can compute m in
O(n) time! J

Counting Inversions between B and C'

Count pairs 4, j such that Bli] > Clj]:

B:

v

3 12120| 32|48 total= 18
5 912529
+0 +2 +3+3 +5 +5
3 71819(12{20(25|29(32|48

Count Inversions between B and C'

@ Procedure that merges B and C and counts inversions
between B and (' at the same time

merge-and-count(B, C, ny, ny)

Q@ count + 0;

Q@ A—[i+1j«1

© while i <njorj<ny

Q@ ifj>nyor(i <ny and B[i] < CJj]) then
(5] append Bli] to A; i+ i+ 1
(6] count < count + (7 — 1)

Q@ else

Q append Cljlto A; j«+ j+1
o

return (A, count)

Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts
the number of inversions in A:

sort-and-count(A, n) @ Divide: trivial
Q if n =1 then e Conquer: @, @
@ return (A,0) e Combine: @, @
Q else

Q@ (B,m)«+ sort—and—count(A[l..Ln/ZH, Ln/2j>

)
Q@ (Cimy) « sort—and—count(AHn/QJ + 1..n], [n/ﬂ)
@ (A, m3) < merge-and-count(B, C, |n/2], [n/2])
o (

return (A, my + mo + ms)

sort-and-count(A, n)

Q@ ifn =1 then
@ return (A,0)
@ else

Q@ (Bymy)«+ sort—and—count(A[l..Ln/2j], Ln/2j>

)
Q@ (Cymy) « sort—and—count(AHn/QJ +1.n], (n/ﬂ)
Q@ (A, m3) < merge-and-count(B,C, |n/2], [n/2])
o (

return (A, m; + mg + ms)

@ Recurrence for the running time: T'(n) = 27'(n/2) + O(n)
@ Running time = O(nlgn)

Outline

9 Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Divide-and-Conquer
© Counting Inversions

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

18/73

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse

Combine | Merge 2 sorted arrays Trivial

Quicksort Example

Assumption We can choose median of an array of size n in

O(n) time.
29 1827564 3814519469 25|76 (15|92 |37 |17|8
29 | 38 145125 |15 |37 |17 164 |82 |75 |194(92(69 |76 |8
25 |15 | 17129 |38 45|37 |64 82|75 [94]92 |69 | 76|85

Quicksort

quicksort(A, n)
@ ifn <1 then return A
@ 2 < lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer
@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array

containing t copies of x, and Bg

Recurrence T'(n) < 2T (n/2) + O(n)
@ Running time = O(nlgn)

Assumption We can choose median of an array of size n in
O(n) time.

Q: How to remove this assumption?

A:

© There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is
complicated and not practical)

@ Choose a pivot randomly and pretend it is the median (it is
practical)

Quicksort Using A Random Pivot

quicksort(A, n)
@ ifn <1 then return A

@ z + arandom element of A (z is called a pivot)

© A, < elements in A that are less than x \\ Divide
Q@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer

@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array
containing t copies of x, and Bg

Randomized Algorithm Model

Assumption There is a procedure to produce a random real
number in [0, 1]. }

Q: Can computers really produce random numbers? J

A: No! The execution of a computer programs is deterministic!)

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

@ In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)
@ ifn <1 then return A

@ z + arandom element of A (z is called a pivot)

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer

@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array
containing t copies of x, and Bg

Lemma The expected running time of the algorithm is
O(nlgn).

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

iJ

171371529 |38|45|25|64|69|76|94|92|75|82]|85

@ To partition the array into two parts, we only need O(1)
extra space.

partition(A, ¢,)

@ p « random integer between ¢ and r, swap Alp| and A[/]
Q@ i/l j«r

© while i < j do

Q@ whilei<jand Afi] < A[j]doj<+j—1
@ swap Afi] and A[j]
Q@ whilei<jand Afi] < A[j]doi<«i+1

@ swap Afi] and A[j]

Q V«—inr«1

©Q for j < ¢ —1down to /

@ if A[j] = A[i] then ¢/ < ¢ — 1 and swap A[{'] and A[j]
@ forj<i1+1tor

@ if Alj] = A[i] then ' < " + 1 and swap A[r'] and A[j]
@ return (¢,1")

In-Place Implementation of Quick-Sort

quicksort(A, ¢, r)

Q if /> r return

@ (¢,r") < patition(A, ¢, r)
© quicksort(A, ¢, ¢/ — 1)

© quicksort(A, " + 1,7)

@ To sort an array A of size n, call quicksort(A, 1,n).

Note: We pass the array A by reference, instead of by copying.J

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling
the total size of two arrays

3 81(12]120|32|48

v

@ Divide-and-Conquer
© Counting Inversions

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

30/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
@ To sort, we are only allowed to compare two elements

@ We can not use “internal structures” of the elements

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

@ Bob has one number z in his hand, = € {1,2,3,--- , N}.

@ You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to
know z7 J

A: [log, N]. |

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?]
A: No, for comparison-based sorting algorithms.]
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 7?

A: log,n! =0O(nlgn))

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?]
A: No, for comparison-based sorting algorithms.]
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does i appear before
jin?"

Q: How many questions do you need to ask in order to get the
permutation 77

A: At least logyn! = ©(nlgn) |

@ Divide-and-Conquer
© Counting Inversions

e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

35/73

Selection Problem
Input: a set A of n numbers, and 1 <i<n
Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlgn).

@ Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)
@ ifn <1 then return A
@ 2 < lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
@ By + quicksort(Ay, Ay .size) \\ Conquer
@ Bg < quicksort(Ag, Ag.size) \\ Conquer

@ t <+ number of times = appear A

© return the array obtained by concatenating By, the array
containing t copies of x, and Bg

Selection Algorithm with Median Finder

selection(A, n, 1)
@ ifn=1then return A
@ 1 + lower median of A

© A, < elements in A that are less than x \\ Divide
@ Ap < elements in A that are greater than x \\ Divide
Q@ if i < Ay .size then

Q return selection(Ay, Ay size,) \\ Conquer

@ celseif i > n — Apg.size then
@ return selection(Ag, Ag.size,i — (n — Ag.size)) \\ Conquer
Q else return z

@ Recurrence for selection: T'(n) = T'(n/2) + O(n)
@ Solving recurrence: T'(n) = O(n)

Randomized Selection Algorithm

selection(A, n, 1)
@ if n =1 then return A
© =z + random element of A (called pivot)

© A, < elements in A that are less than x \\ Divide
Q@ Ap < elements in A that are greater than x \\ Divide
Q@ if i < Ay .size then

Q return selection(Ay, Ay size,) \\ Conquer

@ celseif i > n — Apg.size then
@ return selection(Ag, Ag.size,i — (n — Ag.size)) \\ Conquer

Q@ else return z

y

@ expected running time = O(n)

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

40/73

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(32 + 222 — 5x + 4) x (223 — 32 + 62 — 5)
= 62% — 92° + 182* — 1543

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 252

+ 823 — 1222 4 242 — 20
= 62% — 52° + 22* + 202% — 5222 + 49z — 20

e Input: (4,-5,2,3),(—5,6,—3,2)
o Output: (—20,49, 52, 20,2, —5,6)

Naive Algorithm

polynomial-multiplication(A, B, n)

Q let C[k] =0 forevery k =0,1,2,--- 2n — 2
Q@ fori«0Oton—1

Q@ forj<0Oton—1

o Cli + j] + C[i + j] + A[i] x Bl[j]

Q return C

Running time: O(n?)

42/73

Divide-and-Conquer for Polynomial Multiplication

p(r) =32° +22% — 5w+ 4 = (3 + 2)2” + (=52 + 4)
q(z) = 203 — 322 L 61 — 5 = (2$—3)x2—|— (62 — 5)

@ p(x): degree of n — 1 (assume n is even)
o p(z) = pu(x)a™? +pr(2),
@ py(x),pr(z): polynomials of degree n/2 — 1.

pg = (puz™? +pr) (quz"" + q1)
= puqur” + (pHQL + pLQH)ajn/Q +DPrqr

Divide-and-Conquer for Polynomial Multiplication

pq = (pra"” + pr) (quz™? + qr)
= purqux"” + (pHQL + pLQH>iU"/2 +PprqL

multiply(p, ¢) = multiply(pg, gu) x "
+ (multiply(pw, qr.) + multiply(pr, qn)) X «
+ multiply(pz, qz.)

n/2

@ Recurrence: T'(n) =4T(n/2) + O(n)
e T(n) =0(n?

pq = (puz™?* + pr) (quz™? + q1)
= puqur” + (PHQL + pLQH)fUn/2 +PpLqL

® puqr +prqu = (pu +pr)(qu +qr) — PrYE — PLAL

45/73

Divide-and-Conquer for Polynomial Multiplication

rg = multiply(pg, qu)
rr, = multiply(pz, qr)
multiply(p, q¢) = rg x "

+ (multiply(pyr + pr, qu + qr) — re —) X 2"
+7rL

/2

@ Solving Recurrence: T'(n) = 3T (n/2) + O(n)
e T(n) = O(n'#23) = O(n'"%)

Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A, B,n)
Q if n =1 then return (A[0]B]0])
Q@ A+ A0 ..n/2—1], Ay < A[n/2 .. n—1]
By <+ B[0..n/2—1]|,By < B[n/2 ..n—1]
C'p, < multiply(Ay, Br,n/2)
Cy < multiply(Ay, By,n/2)
Cy < multiply(Ap + Ay, By, + By, n/2)
C < array of (2n — 1) 0's
fori<-0ton—2do

Cli] « Ci] + Crli]

Cli + n] < C[i + n] + Cxgli]

Cli +n/2] < Cli+n/2] + Cyli] — CL[i] — Cyli]
return C

660000000

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
© Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

@ Computing n-th Fibonacci Number

4873

Closest pair
Convex hull
Matrix multiplication

FFT(Fast Fourier Transform): polynomial multiplication in
O(nlgn) time

Closest Pair

Input: n points in plane: (z1,y1), (T2, 52), -+, (¥n, Yn)
Output: the pair of points that are closest

@ Trivial algorithm: O(n?) running time

Divide-and-Conquer Algorithm for Closest Pair

e Divide: Divide the points into two halves via a vertical line
e Conquer: Solve two sub-instances recursively

@ Combine: Check if there is a closer pair between left-half
and right-half

Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T'(n) = 2T (n/2) + O(n)

Running time: O(nlgn)

O(nlgn)-Time Algorithm for Convex Hull

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
Q fori<1ton

Q@ forj«1ton

o Cli,j] <0

(%] fork< 1ton
(5) Cli, j] < C[i, j] + Ali, k] x Blk, j]
Q@ return C

@ running time = O(n?)

Try to Use Divide-and-Conquer

n/2 n/2
— —NM
A1 | Az }N/Q Bi1 | Bz }H/Q
A= B=
A21 A22 B21 B22

o (' — (A B+ A1eBy ABig + A1aBas)
Ao By + Aga By A1 Big + A2 Bao
e matrix_multiplication(A, B) recursively calls
matrix_multiplication(A;1, By1),
matrix_multiplication(A2, Boy),

@ Recurrence for running time: T'(n) = 8T(n/2) + O(n?)
e T'(n) =0(n?

Strassen’s Algorithm

e T(n) =8T(n/2) + O(n?)

@ Strassen’s Algorithm: improve the number of multiplications
from 8 to 7!

@ New recurrence: T'(n) = 7T(n/2) + O(n?)

@ Solving Recurrence T'(n) = O(n'°827) = O(n?8%)

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication
@ Other Classic Algorithms using Divide-and-Conquer
© Solving Recurrences

@ Computing n-th Fibonacci Number

57/73

@ The recursion-tree method
@ The master theorem

58,73

Recursion-Tree Method

e T(n)=2T(n/2)+ O(n)
| " |

/\

n/2 n/2
| . |

\

n/-l n/-l n/-l

@ Each level takes running time O(n)

@ There are O(lgn) levels
@ Running time = O(nlgn)

Recursion-Tree Method

e Total running time at level i? 2 x 3" = (%)Zn

27,
@ Index of last level? g, n

e Total running time?

lgzj (g)” =0 (” (2)1“) _ 0@%") = O(ne?),

Recursion-Tree Method

o , 2 |
e Total running time at level ¢? (ﬁ) x 3" = (3)7 n?
@ Index of last level? 1g, n

e Total running time?

lgon i
Z; (Z) n? = O(n?).

Master Theorem

Recurrences alb]|c time
T(n)=2T(n/2)+0Mm) |2|2]1|O0(nlgn)
T(n)=3T(n/2)+0(n) | 3]2]1| O(n's23)
T(n)=3T(n/2)+0MN* |3]2|2| O(n?

Theorem T'(n) =aT(n/b)+ O(n°), wherea >1,b>1,¢>0
are constants. Then,

O(n'er2) if c <lg,a
T(n) =< O(nlgn) ifc=lg,a
O(n°) if c>lgya

Theorem 7'(n) = aT(n/b) + O(n°), wherea > 1,6 >1,¢>0
are constants. Then,
O(nler @) if c <lg,a
T(n) =< O(nlgn) ifc=lg,a

O(n®) if ¢ >1g,a
e Ex: T(n) =4T(n/2) + O(n?). Case 2. T(n) = O(n*lgn)
e Ex: T(n) =3T(n/2) + O(n). Case 1. T'(n) = O(n's2?)
e Ex: T'(n) =T(n/2)+ O(1). Case 2. T'(n) = O(lgn)
e Ex: T(n) =2T(n/2) + O(n?). Case 3. T(n) = O(n?)

Proof of Master Theorem Using Recursion Tree

T(n) = aT(n/b) + O(n°)

1 node ‘ n¢ ‘ ne

a nodes

a® nodes

a® nodes

: 1
@ c <lg,a : bottom-level dominates: (l%) B e = plae
e ¢ =lg,a: all levels have same time: nlg,n = O(n°lgn)

@ ¢ > lg,a : top-level dominates: O(n°)

@ Divide-and-Conquer
© Counting Inversions

© Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem

@ Polynomial Multiplication

@ Other Classic Algorithms using Divide-and-Conquer
@ Solving Recurrences

a Computing n-th Fibonacci Number

65,73

] FO = O,Fl =1
(-] Fn = Fn—l + Fn_z,‘v’n Z 2
@ Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89, - --

Input: integer n > 0
Output: F,

66,73

Computing F}, : Stupid Divide-and-Conquer
Algorithm

Fib(n)

Q@ if n=20return 0

Q@ if n=1return 1

@ return Fib(n — 1) + Fib(n —2)

Q: Is the running time of the algorithm polynomial or
exponential in n?

A: Exponential

@ Running time is at least Q(F},)

e [, is exponential in n

Computing F},: Reasonable Algorithm

Fib(n)

Q@ F0]«+0

Q@ Il +1

© fori <« 2tondo

Q@ Fli|« Fli—1]+ F[i—2]
@ return Fn|

@ Dynamic Programming

@ Running time = O(n)

Computing F},: Even Better Algorithm

()=o) (52)
(Ff"l)m(i 0) (5)

power(n)

) 1 0
@ if n = 0 then return (0 1)

@ R < power(|n/2])

Q@ R+~ RxR

@ if nis odd then R + R X <i (1))

©Q return R)
Fib(n)

Q@ if n =0 then return 0
Q@ M < power(n —1)
@ return M[1][1]

@ Recurrence for running time? 7'(n) = 7'(n/2) + O(1)
e I'(n) =0(gn)

Running time = O(Ign): We Cheated!

Q: How many bits do we need to represent F'(n)? |

A: O(n) |

@ We can not add (or multiply) two integers of ©(n) bits in
O(1) time
@ Even printing F'(n) requires time much larger than O(lgn)

Fixing the Problem

To compute F,,, we need O(lgn) basic arithmetic operations on
integers

Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem

Summary: Divide-and-Conquer

@ Merge sort, quicksort, count-inversions, closest pair, - - -:
T(n)=2T(n/2)+O0O(n) = T(n) =0(nlgn)

@ Integer Multiplication:
T(n) =3T(n/2)+ O(n) = T(n) = O(n'e23)

@ Matrix Multiplication:
T(n)=7T(n/2)+ O(n*) = T(n) = O(n's=7)

@ Usually, designing better algorithm for “combine” step is key
to improve running time

	Divide-and-Conquer
	Counting Inversions
	Quicksort and Selection
	Quicksort
	Lower Bound for Comparison-Based Sorting Algorithms
	Selection Problem

	Polynomial Multiplication
	Other Classic Algorithms using Divide-and-Conquer
	Solving Recurrences
	Computing n-th Fibonacci Number

