CSE 431/531: Algorithm Analysis and Design (Spring 2018) Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

Topological Ordering

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

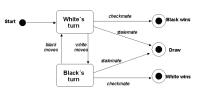
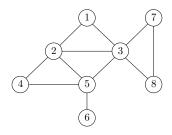


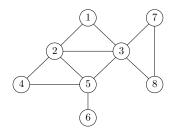
Figure: Transition Graphs

(Undirected) Graph G = (V, E)



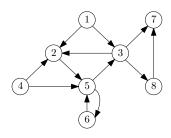
- V: set of vertices (nodes);
- E: pairwise relationships among V;
 - ullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph G = (V, E)



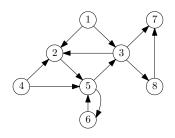
- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph G = (V, E)



- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs

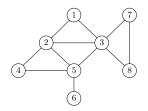
Directed Graph G = (V, E)



- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

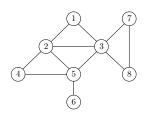
- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

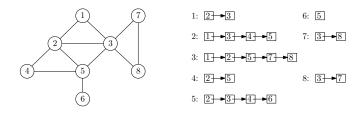
Representation of Graphs



	1	2	3	4	5	6	7	8
1	0 1 1 0 0 0 0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - ullet A is symmetric if graph is undirected

Representation of Graphs



- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of v.

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v)\in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

Topological Ordering

Input: graph G = (V, E), (using linked lists)

two vertices $s,t\in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)

Input: graph G = (V, E), (using linked lists)

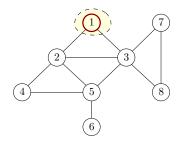
two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

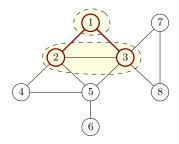
- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

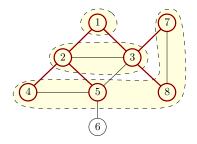
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



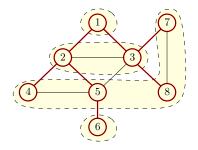
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



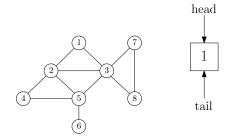
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

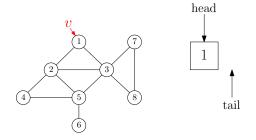


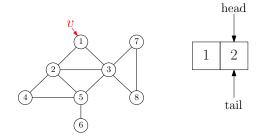
Implementing BFS using a Queue

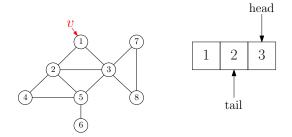
$\mathsf{BFS}(s)$

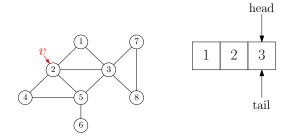
- mark s as "visited" and all other vertices as "unvisited"
- while head > tail
- $v \leftarrow queue[tail], tail \leftarrow tail + 1$
- \bullet for all neighbours u of v
- $\mathbf{6}$ if u is "unvisited" then
- $\bullet \qquad head \leftarrow head + 1, queue[head] = u$
- \bullet mark u as "visited"
 - Running time: O(n+m).

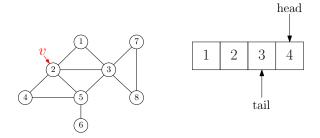


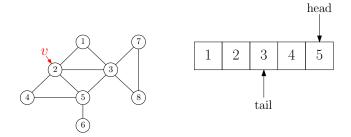


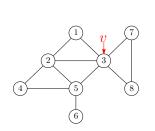


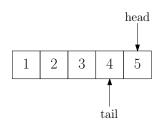


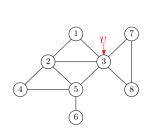


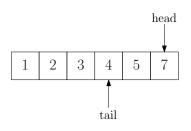


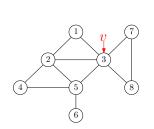


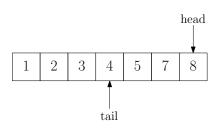


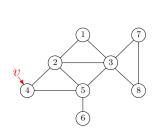


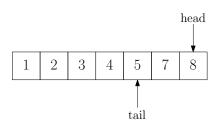


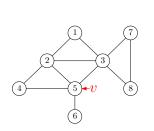


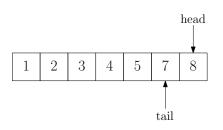


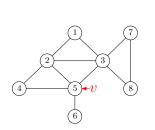


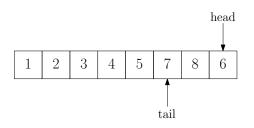


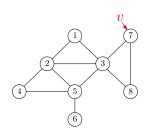


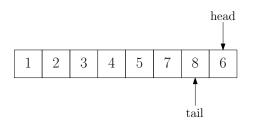


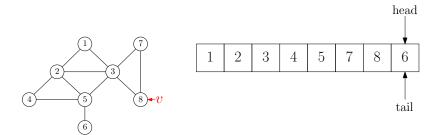


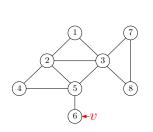


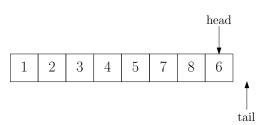






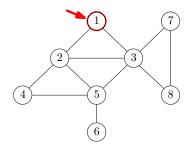




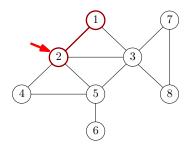


- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

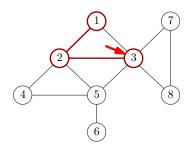
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



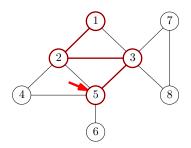
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



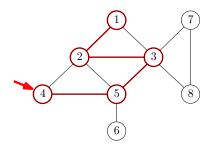
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



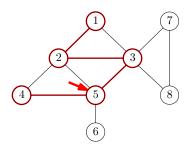
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



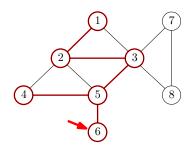
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



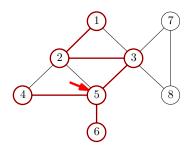
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



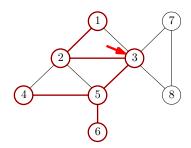
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



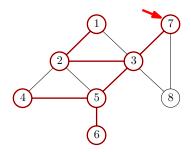
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



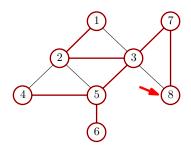
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



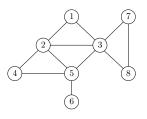
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using a Stack

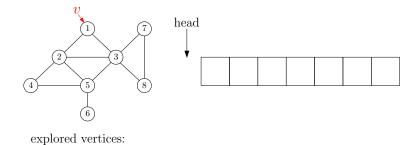
$\mathsf{DFS}(s)$

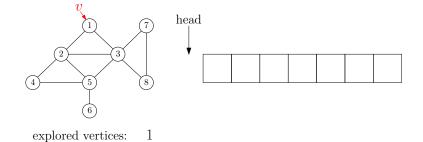
- $\bullet head \leftarrow 1, stack[1] \leftarrow s$
- mark all vertices as "unexplored"
- $v \leftarrow stack[head], head \leftarrow head 1$
- \bullet if v is unexplored then
- \bullet mark v as "explored"
- for all neighbours u of v
- \bullet if u is not explored then
- Running time: O(n+m).

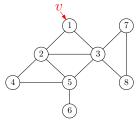


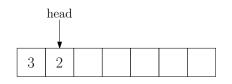


explored vertices:

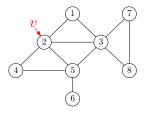


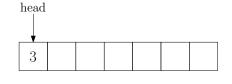




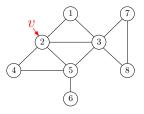


explored vertices:

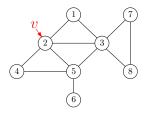




explored vertices:



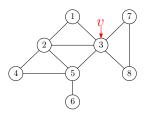
explored vertices: 1 2



3 5 4 3

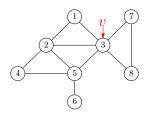
head

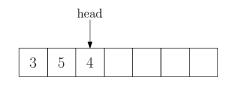
explored vertices: 1 2



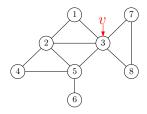
3 5 4

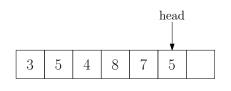
explored vertices: 1 2



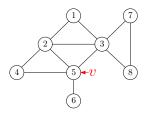


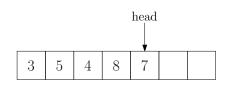
explored vertices: 1 2 3



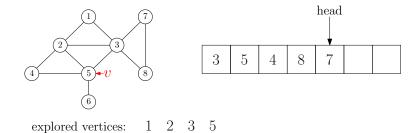


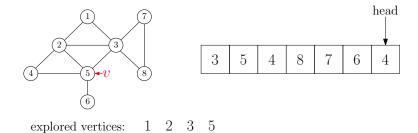
explored vertices: 1 2 3

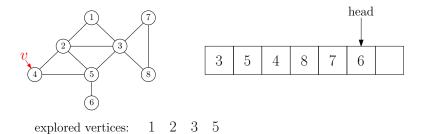


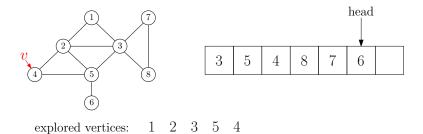


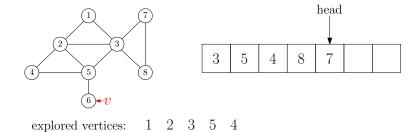
explored vertices: 1 2 3

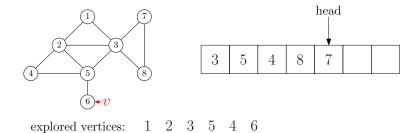


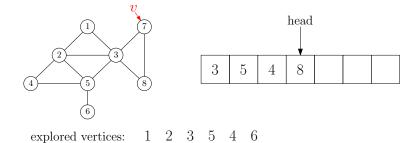


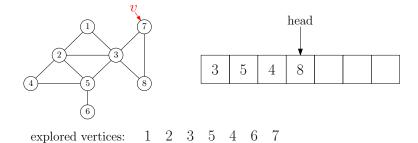


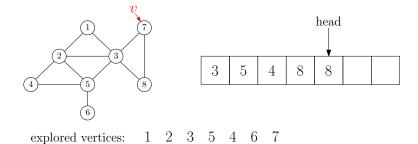


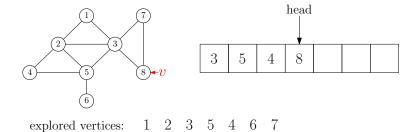


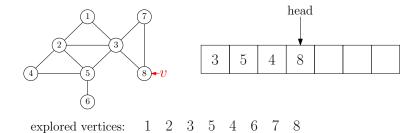


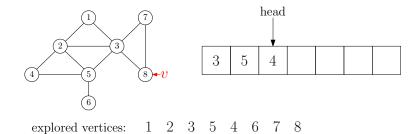


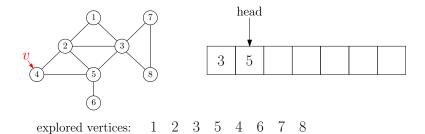


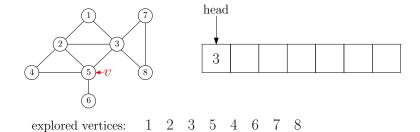


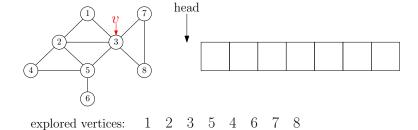












Implementing DFS using Recurrsion

DFS(s)

- mark all vertices as "unexplored"
- \circ recursive-DFS(s)

recursive-DFS(v)

- lacktriangledown if v is explored then return
- $oldsymbol{o}$ mark v as "explored"
- $oldsymbol{3}$ for all neighbours u of v
- recursive-DFS(u)

Outline

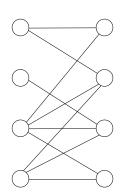
Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

Topological Ordering

Testing Bipartiteness: Applications of BFS

Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.



ullet Taking an arbitrary vertex $s \in V$

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

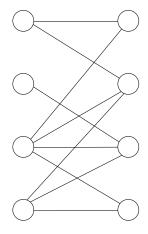
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L

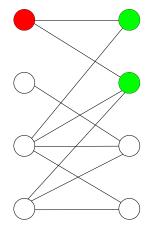
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- • •

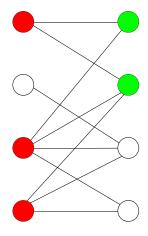
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- . . .
- Report "not a bipartite graph" if contradiction was found

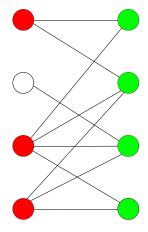
- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- · · ·
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

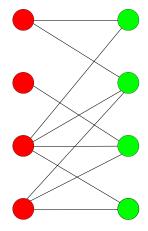


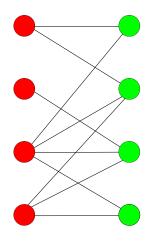


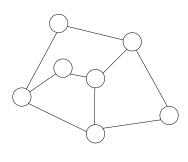


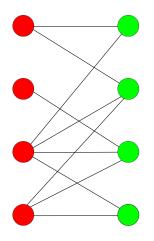


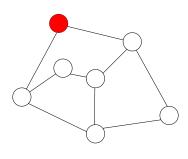


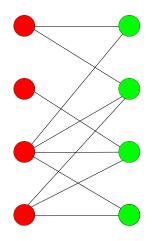


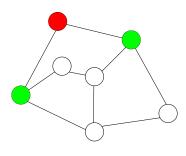


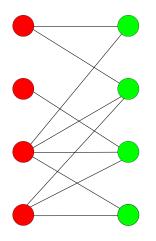


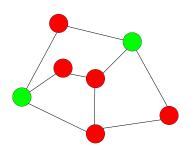


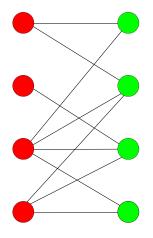


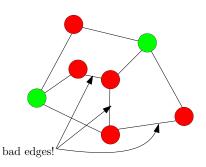












Testing Bipartiteness using BFS

$\mathsf{BFS}(s)$

- $\bullet \ head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- $oldsymbol{2}$ mark s as "visited" and all other vertices as "unvisited"
- \odot while head \geq tail
- $v \leftarrow queue[tail], tail \leftarrow tail + 1$
- for all neighbours u of v
- \bullet if u is "unvisited" then
- $\bullet \quad head \leftarrow head + 1, queue[head] = u$
- \bullet mark u as "visited"

Testing Bipartiteness using BFS

```
test-bipartiteness(s)
\bullet head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
a mark s as "visited" and all other vertices as "unvisited"
  color[s] \leftarrow 0 
 while head > tail
       v \leftarrow queue[tail], tail \leftarrow tail + 1
6
       for all neighbours u of v
          if u is "unvisited" then
 7
             head \leftarrow head + 1, queue[head] = u
 8
 9
             mark u as "visited"
             color[u] \leftarrow 1 - color[v]
 10
          elseif color[u] = color[v] then
•
             print("G is not bipartite") and exit
 12
```

Testing Bipartiteness using BFS

- mark all vertices as "unvisited"
- \bullet if v is "unvisited" then
- test-bipartiteness(v)
- print("G is bipartite")

Testing Bipartiteness using BFS

- mark all vertices as "unvisited"
- $\textbf{②} \ \text{ for each vertex } v \in V$
- \bullet if v is "unvisited" then
- test-bipartiteness(v)
- print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Testing Bipartiteness using BFS

- mark all vertices as "unvisited"
- $\textbf{②} \ \text{ for each vertex } v \in V$
- \bullet if v is "unvisited" then
- \bullet test-bipartiteness(v)
- print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Homework problem: using DFS to implement test-bipartiteness.

Outline

Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

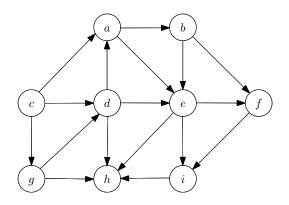
Topological Ordering

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

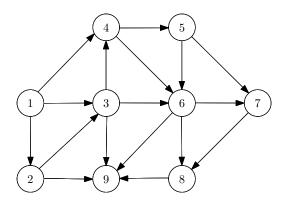


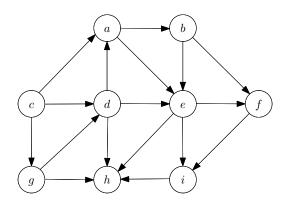
Topological Ordering Problem

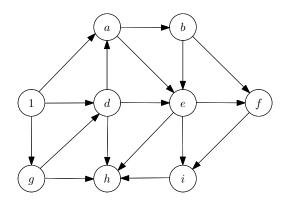
Input: a directed acyclic graph (DAG) G = (V, E)

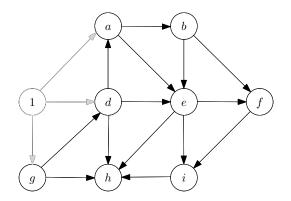
Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

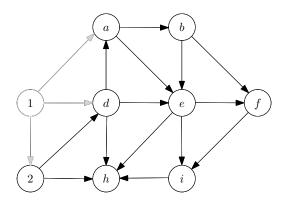
• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

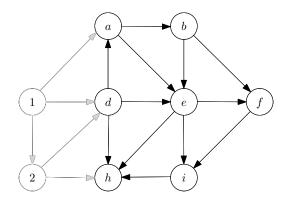


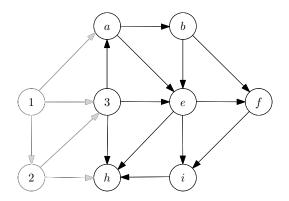


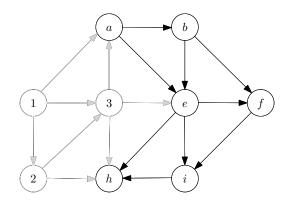


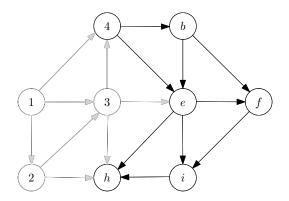


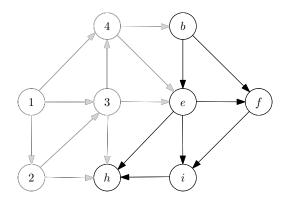


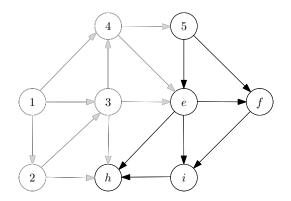


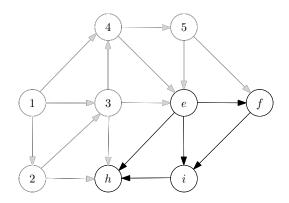


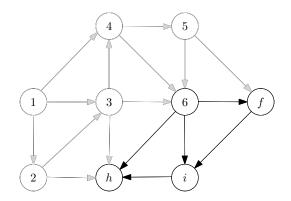


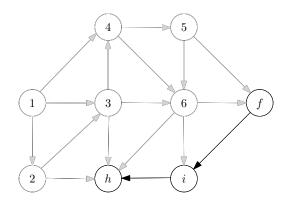


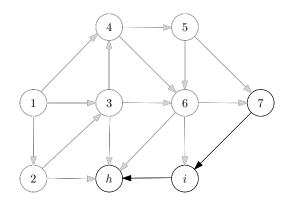


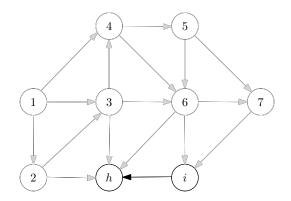


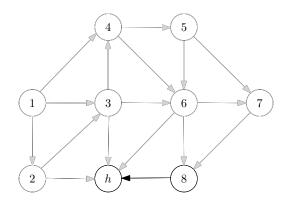


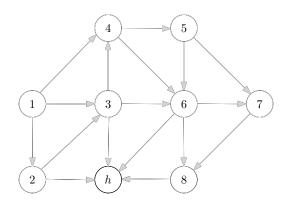


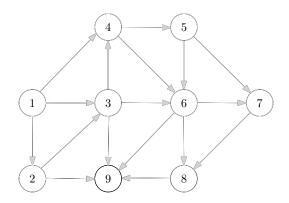


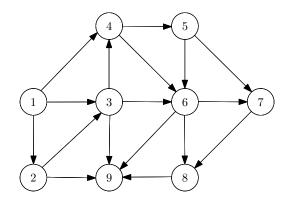












• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- ullet Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

${\sf topological}{\sf -sort}(G)$

- let $d_v \leftarrow 0$ for every $v \in V$
- \bullet for every $v \in V$
- for every u such that $(v, u) \in E$
- $d_u \leftarrow d_u + 1$

• while $S \neq \emptyset$

- **5** $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- $i \leftarrow i + 1, \pi(v) \leftarrow i$
- for every u such that $(v, u) \in E$
- $0 d_u \leftarrow d_u 1$
- $oldsymbol{0}$ if i < n then output "not a DAG"
 - $\bullet\ S$ can be represented using a queue or a stack
 - Running time = O(n+m)