CSE 431/531: Algorithm Analysis and Design (Spring 2018)

Greedy Algorithms

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo

Main Goal of Algorithm Design

- Design fast algorithms to solve problems
- Design more efficient algorithms to solve problems

Def. The goal of an optimization problem is to find a valid solution with the minimum (or maximum) cost (or value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is polynomial if $f(n)=O\left(n^{k}\right)$ for some constant $k>0$.
- convention: polynomial time $=$ efficient

Common Paradigms for Algorithm Design

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe" (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Outline

(1) Toy Examples

(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Toy Problem 1: Bill Changing

Input: Integer $A \geq 0$
Currency denominations: $\$ 1, \$ 2, \$ 5, \$ 10, \$ 20$
Output: A way to pay A dollars using fewest number of bills

Example:

- Input: 48
- Output: 5 bills, $\$ 48=\$ 20 \times 2+\$ 5+\$ 2+\$ 1$

Cashier's Algorithm
(1) while $A \geq 0$ do
(2) $a \leftarrow \max \{t \in\{1,2,5,10,20\}: t \leq A\}$
(3) pay a $\$ a$ bill
(4) $A \leftarrow A-a$

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- strategy: choose the largest bill that does not exceed A
- the strategy is "reasonable": choosing a larger bill help us in minimizing the number of bills
- The decision is irrevocable : once we choose a $\$ a$ bill, we let $A \leftarrow A-a$ and proceed to the next

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe"
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- $n_{1}, n_{2}, n_{5}, n_{10}, n_{20}$: number of $\$ 1, \$ 2, \$ 5, \$ 10, \$ 20$ bills paid
- minimize $n_{1}+n_{2}+n_{5}+n_{10}+n_{20}$ subject to

$$
n_{1}+2 n_{2}+5 n_{5}+10 n_{10}+20 n_{20}=A
$$

Obs.

- $n_{1}<2$
- $n_{1}+2 n_{2}<5$
$5 \leq A<10$: pay a $\$ 5$ bill
- $n_{1}+2 n_{2}+5 n_{5}<10$
$10 \leq A<20$: pay a $\$ 10$ bill
- $n_{1}+2 n_{2}+5 n_{5}+10 n_{10}<20 \quad 20 \leq A<\infty$: pay a $\$ 20$ bill

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe"
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: in residual problem, we need to pay $A^{\prime}=A-a$ dollars, using the fewest number of bills

Toy Example 2: Box Packing

Box Packing

Input: n boxes of capacities $c_{1}, c_{2}, \cdots, c_{n}$
m items of sizes $s_{1}, s_{2}, \cdots, s_{m}$
Can put at most 1 item in a box Item j can be put into box i if $s_{j} \leq c_{i}$
Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: $60,40,25,15,12$
- Item sizes: $\quad 45,42,20,19,16$
- Can put 3 items in boxes: $45 \rightarrow 60,20 \rightarrow 40,19 \rightarrow 25$

Box Packing: Design a Safe Strategy

Q: Take box 1 (with capacity c_{1}). Which item should we put in box 1?

A: The item of the largest size that can be put into the box.

- putting the item gives us the easiest residual problem.
- formal proof via exchanging argument: $j=$ largest item that can be put into box 1 .

- Residual task: solve the instance obtained by removing box 1 and item j

Greedy Algorithm for Box Packing

(1) $T \leftarrow\{1,2,3, \cdots, m\}$
(2) for $i \leftarrow 1$ to n do
(3) if some item in T can be put into box i, then
(4) $\quad j \leftarrow$ the largest item in T that can be put into box i
(5) $\quad \operatorname{print}($ "put item j in box i ")
(0) $T \leftarrow T \backslash\{j\}$

Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Exchanging argument: let S be an arbitrary optimum solution. If S is consistent with the greedy choice, we are done. Otherwise, modify it to another optimum solution S^{\prime} such that S^{\prime} is consistent with the greedy choice.

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code

6 Summary

Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A maximum-size subset of mutually compatible jobs

Greedy Algorithm for Interval Scheduling

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: there is an optimum solution where j is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain an new optimum schedule S^{\prime}.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: there is an optimum solution where j is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)

(1) $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
(2) while $A \neq \emptyset$
(3) $j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
(9) $S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
© return S

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)
(1) $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
(2) while $A \neq \emptyset$
(3) $j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
(9) $S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
© return S
Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time
- Clever implementation: $O(n \lg n)$ time

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)

(1) sort jobs according to f values
(2) $t \leftarrow 0, S \leftarrow \emptyset$
(3) for every $j \in[n]$ according to non-decreasing order of f_{j}
(1) if $s_{j} \geq t$ then
(-) $S \leftarrow S \cup\{j\}$
(-) $t \leftarrow f_{j}$
(1) return S

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(4) Single Source Shortest Paths
- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Spanning Tree

Def. Given a connected graph $G=(V, E)$, a spanning tree $T=(V, F)$ of G is a sub-graph of G that is a tree including all vertices V.

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;
- T is acyclic and has $n-1$ edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}
- $w\left(e^{*}\right) \leq w(e) \Longrightarrow w\left(T^{\prime}\right) \leq w(T): T^{\prime}$ is also a MST

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges parallel connecting u to v from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$
- For every edge $(v, w) \in E, w \neq u$, change it to $\left(u^{*}, w\right)$
- May create parallel edges! E.g. : two edges $\left(i, g^{*}\right)$

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

Greedy Algorithm

MST-Greedy (G, w)
(1) $F=\emptyset$
(2) sort edges in E in non-decreasing order of weights w
(3) for each edge (u, v) in the order
(4) if u and v are not connected by a path of edges in F
(5) $F=F \cup\{(u, v)\}$
(6) return (V, F)

Kruskal's Algorithm: Example

Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal (G, w)
(1) $F \leftarrow \emptyset$
(2) $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
(3) sort the edges of E in non-decreasing order of weights w
(0) for each edge $(u, v) \in E$ in the order
($S_{u} \leftarrow$ the set in \mathcal{S} containing u
(0) $S_{v} \leftarrow$ the set in \mathcal{S} containing v
(1) if $S_{u} \neq S_{v}$
(1) $F \leftarrow F \cup\{(u, v)\}$

- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
(10) return (V, F)

MST-Kruskal($G, w)$
(1) $F \leftarrow \emptyset$
(2) $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
(3) sort the edges of E in non-decreasing order of weights w
(4) for each edge $(u, v) \in E$ in the order
(5) $S_{u} \leftarrow$ the set in \mathcal{S} containing u
(0) $S_{v} \leftarrow$ the set in \mathcal{S} containing v
(1) if $S_{u} \neq S_{v}$
(8) $F \leftarrow F \cup\{(u, v)\}$
(9) $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
(10) return (V, F)

Use union-find data structure to support (2, 5, 6, 7, 9.

Union-Find Data Structure

- V : ground set
- We need to maintain a partition of V and support following operations:
- Check if u and v are in the same set of the partition
- Merge two sets in partition
- $V=\{1,2,3, \cdots, 16\}$
- Partition:

$$
\{2,3,5,9,10,12,15\},\{1,7,13,16\},\{4,8,11\},\{6,14\}
$$

- $\operatorname{par}[i]$: parent of $i,(\operatorname{par}[i]=$ nil if i is a root $)$.

Union-Find Data Structure

- Q: how can we check if u and v are in the same set?
- A: Check if $\operatorname{root}(u)=\operatorname{root}(v)$.
- root (u) : the root of the tree containing u
- Merge the trees with root r and $r^{\prime}: \operatorname{par}[r] \leftarrow r^{\prime}$.

Union-Find Data Structure

$\operatorname{root}(v)$

(1) if $\operatorname{par}[v]=$ nil then
(2) return v
(0) else
(1) return $\operatorname{root}(\operatorname{par}[v])$
$\operatorname{root}(v)$
(3) if $\operatorname{par}[v]=$ nil then
(2) return v
(3) else
(1) $\operatorname{par}[v] \leftarrow \operatorname{root}(\operatorname{par}[v])$

- return par [v]
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

Union-Find Data Structure

$\operatorname{root}(v)$
(1) if $\operatorname{par}[v]=$ nil then
(2) return v
(3) else
(4) $\operatorname{par}[v] \leftarrow \operatorname{root}(\operatorname{par}[v])$
(5) return $\operatorname{par}[v]$

MST-Kruskal(G, w)
(1) $F \leftarrow \emptyset$
(2) $\mathcal{S} \leftarrow\{\{v\}: v \in V\}$
(3) sort the edges of E in non-decreasing order of weights w
(4) for each edge $(u, v) \in E$ in the order
(5) $S_{u} \leftarrow$ the set in \mathcal{S} containing u
(c) $S_{v} \leftarrow$ the set in \mathcal{S} containing v
(1) if $S_{u} \neq S_{v}$
(8) $F \leftarrow F \cup\{(u, v)\}$
(9) $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{S_{u}\right\} \backslash\left\{S_{v}\right\} \cup\left\{S_{u} \cup S_{v}\right\}$
(10) return (V, F)

MST-Kruskal (G, w)

(1) $F \leftarrow \emptyset$
(2) for every $v \in V$: let par $[v] \leftarrow$ nil
(3) sort the edges of E in non-decreasing order of weights w
(4) for each edge $(u, v) \in E$ in the order
(5) $u^{\prime} \leftarrow \operatorname{root}(u)$
(6) $v^{\prime} \leftarrow \operatorname{root}(v)$
(3) if $u^{\prime} \neq v^{\prime}$
(8) $F \leftarrow F \cup\{(u, v)\}$
(9) $\operatorname{par}\left[u^{\prime}\right] \leftarrow v^{\prime}$
(10) return (V, F)

- 2,5,6,7,9 takes time $O(m \alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \leq 4$ for $n \leq 10^{80}$.
- Running time $=$ time for $\mathbf{3}=O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i, g) is not in the MST because of cycle (i, c, f, g)
- (e, f) is in the MST because no such cycle exists

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Two Methods to Build a MST

(1) Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
(2) Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

MST-Greedy (G, w)
(1) $F \leftarrow E$
(2) sort E in non-increasing order of weights
(3) for every e in this order
(4) if $(V, F \backslash\{e\})$ is connected then
(5) $F \leftarrow F \backslash\{e\}$
(6) return (V, F)

Outline

(1) Toy Examples

2 Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(4) Single Source Shortest Paths
- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Design Greedy Strategy for MST

- Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

- Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

Lemma It is safe to include the lightest edge incident to a.
lightest edge,e^{*} incident to a

Proof.

- Let T be a MST
- Consider all components obtained by removing a from T
- Let e^{*} be the lightest edge incident to a and e^{*} connects a to component C
- Let e be the edge in T connecting a to C
- $T^{\prime}=T \backslash e \cup\left\{e^{*}\right\}$ is a spanning tree with $w\left(T^{\prime}\right) \leq w(T)$

Prim's Algorithm: Example

Greedy Algorithm

MST-Greedy1 (G, w)

(1) $S \leftarrow\{s\}$, where s is arbitrary vertex in V
(2) $F \leftarrow \emptyset$
(3) while $S \neq V$

- $(u, v) \leftarrow$ lightest edge between S and $V \backslash S$, where $u \in S$ and $v \in V \backslash S$
(1) $S \leftarrow S \cup\{v\}$
(0) $F \leftarrow F \cup\{(u, v)\}$
© return (V, F)
- Running time of naive implementation: $O(n m)$

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \backslash S$ maintain

- $d(v)=\min _{u \in S:(u, v) \in E} w(u, v)$: the weight of the lightest edge between v and S
- $\pi(v)=\arg \min _{u \in S:(u, v) \in E} w(u, v)$:
$(\pi(v), v)$ is the lightest edge between v and S

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \backslash S$ maintain

- $d(v)=\min _{u \in S:(u, v) \in E} w(u, v)$: the weight of the lightest edge between v and S
- $\pi(v)=\arg \min _{u \in S:(u, v) \in E} w(u, v)$:
$(\pi(v), v)$ is the lightest edge between v and S
In every iteration
- Pick $u \in V \backslash S$ with the smallest $d(u)$ value
- Add $(\pi(u), u)$ to F
- Add u to S, update d and π values.

MST-Prim (G, w)

(1) $s \leftarrow$ arbitrary vertex in G
(3) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$
(3) while $S \neq V$, do
(1) $u \leftarrow$ vertex in $V \backslash S$ with the minimum $d(u)$
(1) $S \leftarrow S \cup\{u\}$
(0) for each $v \in V \backslash S$ such that $(u, v) \in E$
(0) if $w(u, v)<d(v)$ then
($\quad d(v) \leftarrow w(u, v)$

- $\quad \pi(v) \leftarrow u$
(10) return $\{(u, \pi(u)) \mid u \in V \backslash\{s\}\}$

Example

For every $v \in V \backslash S$ maintain

- $d(v)=\min _{u \in S:(u, v) \in E} w(u, v)$: the weight of the lightest edge between v and S
- $\pi(v)=\arg \min _{u \in S:(u, v) \in E} w(u, v)$: $(\pi(v), v)$ is the lightest edge between v and S
In every iteration
- Pick $u \in V \backslash S$ with the smallest $d(u)$ value extract_min
- Add $(\pi(u), u)$ to F
- Add u to S, update d and π values.

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert(v, key_value): insert an element v, whose associated key value is key_value.
- decrease_key (v, new_key_value): decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value

MST-Prim (G, w)

(1) $s \leftarrow$ arbitrary vertex in G
(2) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$

0
(1) while $S \neq V$, do
(-) $u \leftarrow$ vertex in $V \backslash S$ with the minimum $d(u)$
(-) $S \leftarrow S \cup\{u\}$
(0) for each $v \in V \backslash S$ such that $(u, v) \in E$
(3) if $w(u, v)<d(v)$ then

- $\quad d(v) \leftarrow w(u, v)$
(1) $\pi(v) \leftarrow u$
(1) return $\{(u, \pi(u)) \mid u \in V \backslash\{s\}\}$

Prim's Algorithm Using Priority Queue

MST-Prim (G, w)
(1) $s \leftarrow$ arbitrary vertex in G
(2) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$
(3) $Q \leftarrow$ empty queue, for each $v \in V: Q$.insert $(v, d(v))$
(1) while $S \neq V$, do
(1) $u \leftarrow Q$.extract_min()
(0) $S \leftarrow S \cup\{u\}$
(0) for each $v \in V \backslash S$ such that $(u, v) \in E$
(- if $w(u, v)<d(v)$ then

- $d(v) \leftarrow w(u, v), Q$.decrease_key $(v, d(v))$
(1) $\pi(v) \leftarrow u$
(1) return $\{(u, \pi(u)) \mid u \in V \backslash\{s\}\}$

Running Time of Prim's Algorithm Using Priority

 Queue$O(n) \times($ time for extract_min $)+O(m) \times($ time for decrease_key $)$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	$O(1)$	$O(n \log n+m)$

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut ($U, V \backslash U$), such that (u, v) is the lightest edge between U and $V \backslash U$.

- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \backslash\{a, b, c, i\})$
- (i, g) is not in MST because no such cut exists

"Evidence" for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in \mathrm{MST} \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin \mathrm{MST} \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$ $w: E \rightarrow \mathbb{R}_{\geq 0}$
Output: shortest path from s to t

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$
Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega\left(n^{2}\right)$
- Not acceptable if graph is sparse

Shortest Path Tree

- $O(n)$-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v : second-to-last vertex in the shortest path from s to v (why?)

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: $\pi(v), v \in V \backslash s$: the parent of v
$d(v), v \in V \backslash s$: the length of shortest path from s to v

Q: How to compute shortest paths from s when all edges have weight 1 ?

A: Breadth first search (BFS) from source s

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

(1) replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
(2) run BFS virtually
(3) $\pi(v)=$ vertex from which v is visited
(4) $d(v)=$ index of the level containing v

- Problem: $w(u, v)$ may be too large!

Shortest Path Algorithm by Running BFS Virtually

(1) $S \leftarrow\{s\}, d(s) \leftarrow 0$
(2) while $|S| \leq n$
(3) find a $v \notin S$ that minimizes $\min _{u \in S:(u, v) \in E}\{d(u)+w(u, v)\}$
(a) $S \leftarrow S \cup\{v\}$
(5) $d(v) \leftarrow \min _{u \in S:(u, v) \in E}\{d(u)+w(u, v)\}$

Virtual BFS: Example

Time 10

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Dijkstra's Algorithm

Dijkstra (G, w, s)
(1) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$
(2) while $S \neq V$ do
(3) $u \leftarrow$ vertex in $V \backslash S$ with the minimum $d(u)$
(1) add u to S
(- for each $v \in V \backslash S$ such that $(u, v) \in E$
(0) if $d(u)+w(u, v)<d(v)$ then
(1) $d(v) \leftarrow d(u)+w(u, v)$
(3) $\pi(v) \leftarrow u$
(-) return (d, π)

- Running time $=O\left(n^{2}\right)$

Improved Running Time using Priority Queue

Dijkstra (G, w, s)
(1)
(2) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$
(3) $Q \leftarrow$ empty queue, for each $v \in V: Q$.insert $(v, d(v))$
(1) while $S \neq V$, do
(0) $u \leftarrow Q$.extract_min()
(0) $S \leftarrow S \cup\{u\}$
(0) for each $v \in V \backslash S$ such that $(u, v) \in E$
(3) if $d(u)+w(u, v)<d(v)$ then

- $\quad d(v) \leftarrow d(u)+w(u, v), Q$.decrease_key $(v, d(v))$
(10) $\pi(v) \leftarrow u$
(T) return (π, d)

Recall: Prim's Algorithm for MST

MST-Prim (G, w)
(1) $s \leftarrow$ arbitrary vertex in G
(2) $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \backslash\{s\}$
(3) $Q \leftarrow$ empty queue, for each $v \in V: Q$.insert $(v, d(v))$
(1) while $S \neq V$, do
(1) $u \leftarrow Q$.extract_min()
(0) $S \leftarrow S \cup\{u\}$
(0) for each $v \in V \backslash S$ such that $(u, v) \in E$
(3) if $w(u, v)<d(v)$ then

- $d(v) \leftarrow w(u, v), Q$.decrease_key $(v, d(v))$
(1) $\pi(v) \leftarrow u$
(1) return $\{(u, \pi(u)) \mid u \in V \backslash\{s\}\}$

Improved Running Time

Running time:
$O(n) \times($ time for extract_min $)+O(m) \times($ time for decrease_key $)$

Priority-Queue	extract_min	decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	$O(1)$	$O(n \log n+m)$

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Encoding Symbols Using Bits

- assume: 8 symbols a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per symbol

a	b	c	d	e	f	g	h
000	001	010	011	100	101	110	111

$$
\text { deacfg } \rightarrow 011100000010101110
$$

Q: Can we have a better encoding scheme?

- Seems unlikely: must use 3 bits per symbol

Q: What if some symbols appear more frequently than the others in expectation?

Q: If some symbols appear more frequently than the others in expectation, can we have a better encoding scheme?

A: Maybe. Using variable-length encoding scheme.

Idea

- using fewer bits for symbols that are more frequently used, and more bits for symbols that are less frequently used.

Need to use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of symbols is a function $\gamma: S \rightarrow\{0,1\}^{*}$ such that for two distinct $x, y \in S, \gamma(x)$ is not a prefix of $\gamma(y)$.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001/001/
- cadbhhefca

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some symbol
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message
Output: prefix coding scheme giving the shortest encoding for the message

example

symbols	a	b	c	d	e	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total $=89$
scheme 2 length	1	3	3	3	3	total $=87$
scheme 3 length	1	4	4	3	2	total $=84$

scheme 1

scheme 2

scheme 3

- Example Input: $(a: 18, b: 3, c: 4, d: 6, e: 10)$

Q: What types of decisions should we make?

- the code for some letter?
- hard to design a strategy; residual problem is complicated.
- a partition of letters into left and right sub-trees?
- not clear how to design the greedy algorithm

A: Choose two letters and make them brothers in the tree.

Which Two symbols Can Be Safely Put Together

As Brothers?

- Focus a tree structure, without leaf labeling
- There are two deepest leaves that are brothers
- It is safe to make the two least frequent symbols brothers!

- It is safe to make the two least frequent symbols brothers!

Lemma There is an optimum encoding tree, where the two least frequent symbols are brothers.

- So we can make the two least frequent symbols brothers; the decision is irrevocable.

Q: Is the residual problem an instance of the best prefix codes problem?

A: Yes, although the answer is not immediate.

- f_{x} : the frequency of the symbol x in the support.
- x_{1} and x_{2} : the two symbols we decided to put together.
- d_{x} the depth of symbol x in our output encoding tree.

encoding tree for

Def: $f_{x^{\prime}}=f_{x_{1}}+f_{x_{2}}$

$$
\begin{aligned}
& \sum_{x \in S} f_{x} d_{x} \\
= & \sum_{x \in S \backslash\left\{x_{1}, x_{2}\right\}} f_{x} d_{x}+f_{x_{1}} d_{x_{1}}+f_{x_{2}} d_{x_{2}} \\
= & \sum_{x \in S \backslash\left\{x_{1}, x_{2}\right\}} f_{x} d_{x}+\left(f_{x_{1}}+f_{x_{2}}\right) d_{x_{1}} \\
= & \sum_{x \in S \backslash\left\{x_{1}, x_{2}\right\}} f_{x} d_{x}+f_{x^{\prime}}\left(d_{x^{\prime}}+1\right) \\
= & \sum_{x \in S \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{x^{\prime}\right\}} f_{x} d_{x}+f_{x^{\prime}}
\end{aligned}
$$

In order to minimize

$$
\sum_{x \in S} f_{x} d_{x}
$$

we need to minimize

$$
\sum_{x \in S \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{x^{\prime}\right\}} f_{x} d_{x},
$$

subject to that d is the depth function for an encoding tree of $S \backslash\left\{x_{1}, x_{2}\right\}$.

- This is exactly the best prefix codes problem, with symbols $S \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{x^{\prime}\right\}$ and frequency vector f !

Huffman codes: Recursive Algorithm

Huffman (S, f)

(1) if $|S|>1$ then
(2) let x_{1}, x_{2} be the two symbols with the smallest f values
(3) introduce a new symbol x^{\prime} and let $f_{x^{\prime}}=f_{x_{1}}+f_{x_{2}}$
(1) $S^{\prime} \leftarrow S \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{x^{\prime}\right\}$
(0) call Huffman $\left(S^{\prime},\left.f\right|_{S^{\prime}}\right)$ to build an encoding tree T^{\prime}

- let T be obtained from T^{\prime} by adding x_{1}, x_{2} as two children of x^{\prime}
- return T
(3) else
(-) let x be the symbol in S
(1) return a tree with a single node labeled x

Huffman (S, f)

(9) while $|S|>1$ do
(2) let x_{1}, x_{2} be the two symbols with the smallest f values
(3) introduce a new symbol x^{\prime} and let $f_{x^{\prime}}=f_{x_{1}}+f_{x_{2}}$
(9) let x_{1} and x_{2} be the two children of x^{\prime}
(-) $S \leftarrow S \backslash\left\{x_{1}, x_{2}\right\} \cup\left\{x^{\prime}\right\}$
(0) return the tree constructed

Algorithm using Priority Queue

Huffman (S, f)

(1) $Q \leftarrow$ build-priority-queue (S)
(2) while Q.size >1 do
(0) $x_{1} \leftarrow Q$.extract-min()
(1) $x_{2} \leftarrow Q$.extract-min()
(0) introduce a new symbol x^{\prime} and let $f_{x^{\prime}}=f_{x_{1}}+f_{x_{2}}$
(-) let x_{1} and x_{2} be the two children of x^{\prime}
(1) Q.insert (x^{\prime})
(3) return the tree constructed

Outline

(1) Toy Examples
(2) Interval Scheduling
(3) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

4 Single Source Shortest Paths

- Dijkstra's Algorithm
(5) Data Compression and Huffman Code
(6) Summary

Summary for Greedy Algorithms

(1) Design a "reasonable" strategy

- Interval scheduling problem: schedule the job j^{*} with the earliest deadline
- Kruskal's algorithm for MST: select lightest edge e^{*}
- Inverse Kruskal's algorithm for MST: drop the heaviest non-bridge edge e^{*}
- Prim's algorithm for MST: select the lightest edge e^{*} incident to a specified vertex s
- Huffman codes: make the two least frequent symbols brothers

Summary for Greedy Algorithms

(1) Design "reasonable" strategy
(2) Prove that the reasonable strategy is "safe"

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

- Usually done by "exchange argument"
- Interval scheduling problem: exchange j^{*} with the first job in an optimal solution
- Kruskal's algorithm: exchange e^{*} with some edge e in the cycle in $T \cup\left\{e^{*}\right\}$
- Prim's algorithm: exchange e^{*} with some other edge e incident to s

Summary for Greedy Algorithms

(1) Design "reasonable" strategy
(2) Prove that the reasonable strategy is "safe"
(3) Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Interval scheduling problem: remove j^{*} and the jobs it conflicts with
- Kruskal and Prim's algorithms: contracting e^{*}
- Inverse Kruskal's algorithm: remove e^{*}
- Huffman codes: merge two symbols into one

Summary for Greedy Algorithms

- Dijkstra's algorithm does not quite fit in the framework.
- It combines "greedy algorithm" and "dynamic programming"
- Greedy algorithm: each time select the vertex in $V \backslash S$ with the smallest d value and add it to S
- Dynamic programming: remember the d values of vertices in S for future use
- Dijkstra's algorithm is very similar to Prim's algorithm for MST

