
CSE 431/531: Algorithm Analysis and Design (Spring 2018)

Greedy Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/103

Main Goal of Algorithm Design

Design fast algorithms to solve problems

Design more efficient algorithms to solve problems

Def. The goal of an optimization problem is to find a valid
solution with the minimum (or maximum) cost (or value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best
one.

However, trivial algorithm often runs in exponential time, as
the number of potential solutions is often exponentially large.

f(n) is polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = efficient

3/103

Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming

4/103

Greedy Algorithm

Build up the solutions in steps

At each step, make an irrevocable decision using a
“reasonable” strategy

Analysis of Greedy Algorithm

Prove that the reasonable strategy is “safe” (key)

Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem
(usually trivial)

5/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

6/103

Toy Problem 1: Bill Changing

Input: Integer A ≥ 0

Currency denominations: $1, $2, $5, $10, $20

Output: A way to pay A dollars using fewest number of bills

Example:

Input: 48

Output: 5 bills, $48 = $20× 2 + $5 + $2 + $1

Cashier’s Algorithm

1 while A ≥ 0 do

2 a← max{t ∈ {1, 2, 5, 10, 20} : t ≤ A}
3 pay a $a bill

4 A← A− a

7/103

Greedy Algorithm

Build up the solutions in steps

At each step, make an irrevocable decision using a
“reasonable” strategy

strategy: choose the largest bill that does not exceed A

the strategy is “reasonable”: choosing a larger bill help us in
minimizing the number of bills

The decision is irrevocable : once we choose a $a bill, we let
A← A− a and proceed to the next

8/103

Analysis of Greedy Algorithm

Prove that the reasonable strategy is “safe”

Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

n1, n2, n5, n10, n20: number of $1, $2, $5, $10, $20 bills paid

minimize n1 + n2 + n5 + n10 + n20 subject to
n1 + 2n2 + 5n5 + 10n10 + 20n20 = A

Obs.

n1 < 2 2 ≤ A < 5: pay a $2 bill

n1 + 2n2 < 5 5 ≤ A < 10: pay a $5 bill

n1 + 2n2 + 5n5 < 10 10 ≤ A < 20: pay a $10 bill

n1 + 2n2 + 5n5 + 10n10 < 20 20 ≤ A <∞: pay a $20 bill

9/103

Analysis of Greedy Algorithm

Prove that the reasonable strategy is “safe”

Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

Trivial: in residual problem, we need to pay A′ = A− a
dollars, using the fewest number of bills

10/103

Toy Example 2: Box Packing

Box Packing

Input: n boxes of capacities c1, c2, · · · , cn
m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj ≤ ci

Output: A way to put as many items as possible in the boxes.

Example:

Box capacities: 60, 40, 25, 15, 12

Item sizes: 45, 42, 20, 19, 16

Can put 3 items in boxes: 45→ 60, 20→ 40, 19→ 25

11/103

Box Packing: Design a Safe Strategy

Q: Take box 1 (with capacity c1). Which item should we put in
box 1?

A: The item of the largest size that can be put into the box.

putting the item gives us the easiest residual problem.

formal proof via exchanging argument: j = largest item that
can be put into box 1.

box 1

item j

12/103

Residual task: solve the instance obtained by removing box 1
and item j

Greedy Algorithm for Box Packing

1 T ← {1, 2, 3, · · · ,m}
2 for i← 1 to n do

3 if some item in T can be put into box i, then

4 j ← the largest item in T that can be put into box i

5 print(“put item j in box i”)

6 T ← T \ {j}

13/103

Steps of Designing A Greedy Algorithm

Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually
done by “exchanging argument”)

Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem
(usually trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Exchanging argument: let S be an arbitrary optimum solution. If
S is consistent with the greedy choice, we are done. Otherwise,
modify it to another optimum solution S ′ such that S ′ is
consistent with the greedy choice.

14/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

15/103

Interval Scheduling

Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

16/103

Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?

Schedule the job with the smallest size? No!

0 1 2 3 4 5 6 7 8 9

17/103

Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other
jobs? No!

0 1 2 3 4 5 6 7 8 9

18/103

Greedy Algorithm for Interval Scheduling

Which of the following decisions are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other
jobs? No!
Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9

19/103

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

Proof.

Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain an new
optimum schedule S ′.

S:

j:

S ′:

20/103

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

What is the remaining task after we decided to schedule j?
Is it another instance of interval scheduling problem? Yes!

0 1 2 3 4 5 6 7 8 9

21/103

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1 A← {1, 2, · · · , n}, S ← ∅
2 while A 6= ∅
3 j ← arg minj′∈A fj′

4 S ← S ∪ {j}; A← {j′ ∈ A : sj′ ≥ fj}
5 return S

0 1 2 3 4 5 6 7 8 9

22/103

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1 A← {1, 2, · · · , n}, S ← ∅
2 while A 6= ∅
3 j ← arg minj′∈A fj′

4 S ← S ∪ {j}; A← {j′ ∈ A : sj′ ≥ fj}
5 return S

Running time of algorithm?

Naive implementation: O(n2) time

Clever implementation: O(n lg n) time

23/103

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)

1 sort jobs according to f values

2 t← 0, S ← ∅
3 for every j ∈ [n] according to non-decreasing order of fj
4 if sj ≥ t then

5 S ← S ∪ {j}
6 t← fj
7 return S 0 1 2 3 4 5 6 7 8 9

2

3

4

5

6

8

1

7

9

t

24/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

25/103

Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F) of G is a sub-graph of G that is a tree including all
vertices V .

a i

b

h g

c d

f

e

26/103

a i

b

h g

c d

f

e

Lemma Let T = (V, F) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n− 1 edges;

T is acyclic and has n− 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.

27/103

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V,E) and edge weights w : E → R
Output: the spanning tree T of G with the minimum total

weight

a

b c

d

e

5

8 2

7

11

6

12

28/103

Recall: Steps of Designing A Greedy Algorithm

Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually
done by “exchanging argument”)

Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem
(usually trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST

Kruskal’s Algorithm

Prim’s Algorithm

29/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

30/103

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

31/103

Lemma It is safe to include the lightest edge: there is a
minimum spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e∗ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T ′

w(e∗) ≤ w(e) =⇒ w(T ′) ≤ w(T): T ′ is also a MST

lightest edge e∗

u

v

32/103

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g∗

Residual problem: find the minimum spanning tree that
contains edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph

33/103

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g∗

Remove u and v from the graph, and add a new vertex u∗

Remove all edges parallel connecting u to v from E

For every edge (u,w) ∈ E,w 6= v, change it to (u∗, w)

For every edge (v, w) ∈ E,w 6= u, change it to (u∗, w)

May create parallel edges! E.g. : two edges (i, g∗)

34/103

Greedy Algorithm

Repeat the following step until G contains only one vertex:

1 Choose the lightest edge e∗, add e∗ to the spanning tree

2 Contract e∗ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path
connecting u and v formed by edges we selected

35/103

Greedy Algorithm

MST-Greedy(G,w)

1 F = ∅
2 sort edges in E in non-decreasing order of weights w

3 for each edge (u, v) in the order

4 if u and v are not connected by a path of edges in F

5 F = F ∪ {(u, v)}
6 return (V, F)

36/103

Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Sets: {a, b, c, i, f, g, h, d, e}

37/103

Kruskal’s Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F)

38/103

Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F)

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .

39/103

Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:

Check if u and v are in the same set of the partition
Merge two sets in partition

40/103

V = {1, 2, 3, · · · , 16}
Partition:
{2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

par[i]: parent of i, (par[i] = nil if i is a root).

41/103

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r′: par[r]← r′.

42/103

Union-Find Data Structure

root(v)

1 if par[v] = nil then

2 return v

3 else

4 return root(par[v])

root(v)

1 if par[v] = nil then

2 return v

3 else

4 par[v] ← root(par[v])

5 return par[v]

Problem: the tree might too deep; running time might be
large

Improvement: all vertices in the path directly point to the
root, saving time in the future.

43/103

Union-Find Data Structure

root(v)

1 if par[v] = nil then

2 return v

3 else

4 par[v]← root(par[v])

5 return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

44/103

MST-Kruskal(G, w)

1 F ← ∅
2 S ← {{v} : v ∈ V }
3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 Su ← the set in S containing u

6 Sv ← the set in S containing v

7 if Su 6= Sv

8 F ← F ∪ {(u, v)}
9 S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10 return (V, F)

45/103

MST-Kruskal(G, w)

1 F ← ∅
2 for every v ∈ V : let par[v]← nil

3 sort the edges of E in non-decreasing order of weights w

4 for each edge (u, v) ∈ E in the order

5 u′ ← root(u)

6 v′ ← root(v)

7 if u′ 6= v′

8 F ← F ∪ {(u, v)}
9 par[u′]← v′

10 return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(mα(n))

α(n) is very slow-growing: α(n) ≤ 4 for n ≤ 1080.

Running time = time for 3 = O(m lg n).

46/103

Assumption Assume all edge weights are different.

Lemma An edge e ∈ E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

47/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

48/103

Two Methods to Build a MST
1 Start from F ← ∅, and add edges to F one by one until we

obtain a spanning tree

2 Start from F ← E, and remove edges from F one by one
until we obtain a spanning tree

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

49/103

Lemma It is safe to exclude the heaviest non-bridge edge: there
is a MST that does not contain the heaviest non-bridge edge.

50/103

Reverse Kruskal’s Algorithm

MST-Greedy(G,w)

1 F ← E

2 sort E in non-increasing order of weights

3 for every e in this order

4 if (V, F \ {e}) is connected then

5 F ← F \ {e}
6 return (V, F)

51/103

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

52/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

53/103

Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose
the edge with the smallest weight.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Greedy strategy for Prim’s algorithm: choose the lightest
edge incident to a.

54/103

Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e∗ incident to a

C

Proof.

Let T be a MST

Consider all components obtained by removing a from T

Let e∗ be the lightest edge incident to a and e∗ connects a to
component C

Let e be the edge in T connecting a to C

T ′ = T \ e ∪ {e∗} is a spanning tree with w(T ′) ≤ w(T)

55/103

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

56/103

Greedy Algorithm

MST-Greedy1(G,w)

1 S ← {s}, where s is arbitrary vertex in V

2 F ← ∅
3 while S 6= V

4 (u, v)← lightest edge between S and V \ S,
where u ∈ S and v ∈ V \ S

5 S ← S ∪ {v}
6 F ← F ∪ {(u, v)}
7 return (V, F)

Running time of naive implementation: O(nm)

57/103

Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (3, f)

(10, f)

58/103

Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value

Add (π(u), u) to F

Add u to S, update d and π values.

59/103

Prim’s Algorithm

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 while S 6= V , do

4 u← vertex in V \ S with the minimum d(u)

5 S ← S ∪ {u}
6 for each v ∈ V \ S such that (u, v) ∈ E
7 if w(u, v) < d(v) then

8 d(v)← w(u, v)

9 π(v)← u

10 return
{

(u, π(u))|u ∈ V \ {s}
}

60/103

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

61/103

Prim’s Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value extract min

Add (π(u), u) to F

Add u to S, update d and π values. decrease key

Use a priority queue to support the operations

62/103

Def. A priority queue is an abstract data structure that
maintains a set U of elements, each with an associated key value,
and supports the following operations:

insert(v, key value): insert an element v, whose associated
key value is key value.

decrease key(v, new key value): decrease the key value of
an element v in queue to new key value

extract min(): return and remove the element in queue with
the smallest key value

· · ·

63/103

Prim’s Algorithm

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3

4 while S 6= V , do

5 u← vertex in V \ S with the minimum d(u)

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v)

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}

64/103

Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}

65/103

Running Time of Prim’s Algorithm Using Priority

Queue

O(n)× (time for extract min) + O(m)× (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)

66/103

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut
(U, V \ U), such that (u, v) is the lightest edge between U and
V \ U .

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(c, f) is in MST because of cut
(
{a, b, c, i}, V \ {a, b, c, i}

)
(i, g) is not in MST because no such cut exists

67/103

“Evidence” for e ∈ MST or e /∈ MST

Assumption Assume all edge weights are different.

e ∈ MST ↔ there is a cut in which e is the lightest edge

e /∈ MST ↔ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

68/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

69/103

s-t Shortest Paths

Input: (directed or undirected) graph G = (V,E), s, t ∈ V
w : E → R≥0

Output: shortest path from s to t

16 1

1 5 4
2

104

3

s

333 t

70/103

Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Reason for Considering Single Source Shortest Paths Problem

We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight

71/103

Shortest path from s to v may contain Ω(n) edges

There are Ω(n) different vertices v

Thus, printing out all shortest paths may take time Ω(n2)

Not acceptable if graph is sparse

72/103

Shortest Path Tree

O(n)-size data structure to represent all shortest paths

For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)

16 10

1 5 12 4

74

3

s c d

e f t

a b

2

5

8 9 6

0

3

2 7

7

4 13

14

73/103

Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: π(v), v ∈ V \ s: the parent of v

d(v), v ∈ V \ s: the length of shortest path from s to v

74/103

Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s

1

2 3

4 5

7

8

6

75/103

Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

4 1 1 1 1u v u v

Shortest Path Algorithm by Running BFS

1 replace (u, v) of length w(u, v) with a path of w(u, v)
unit-weight edges, for every (u, v) ∈ E

2 run BFS virtually

3 π(v) = vertex from which v is visited

4 d(v) = index of the level containing v

Problem: w(u, v) may be too large!

76/103

Shortest Path Algorithm by Running BFS Virtually

1 S ← {s}, d(s)← 0

2 while |S| ≤ n

3 find a v /∈ S that minimizes min
u∈S:(u,v)∈E

{d(u) + w(u, v)}
4 S ← S ∪ {v}
5 d(v)← minu∈S:(u,v)∈E{d(u) + w(u, v)}

77/103

Virtual BFS: Example

4

2 3

5

4 6

5

4

3

s a b

edcc

0

2

4

7

9

10

Time 10

78/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

79/103

Dijkstra’s Algorithm

Dijkstra(G,w, s)

1 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
2 while S 6= V do

3 u← vertex in V \ S with the minimum d(u)

4 add u to S

5 for each v ∈ V \ S such that (u, v) ∈ E
6 if d(u) + w(u, v) < d(v) then

7 d(v)← d(u) + w(u, v)

8 π(v)← u

9 return (d, π)

Running time = O(n2)

80/103

16 10

1 5 12 4

74

3

s c d

e f t

a b

2

5

8 9 6

0

3

2 7

7

4 13

14
u

81/103

Improved Running Time using Priority Queue

Dijkstra(G,w, s)

1

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if d(u) + w(u, v) < d(v) then

9 d(v)← d(u) + w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return (π, d)

82/103

Recall: Prim’s Algorithm for MST

MST-Prim(G,w)

1 s← arbitrary vertex in G

2 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

4 while S 6= V , do

5 u← Q.extract min()

6 S ← S ∪ {u}
7 for each v ∈ V \ S such that (u, v) ∈ E
8 if w(u, v) < d(v) then

9 d(v)← w(u, v), Q.decrease key(v, d(v))

10 π(v)← u

11 return
{

(u, π(u))|u ∈ V \ {s}
}

83/103

Improved Running Time

Running time:
O(n)× (time for extract min) +O(m)× (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)

84/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

85/103

Encoding Symbols Using Bits

assume: 8 symbols a, b, c, d, e, f, g, h in a language

need to encode a message using bits

idea: use 3 bits per symbol

a b c d e f g h
000 001 010 011 100 101 110 111

deacfg → 011100000010101110

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per symbol

Q: What if some symbols appear more frequently than the
others in expectation?

86/103

Q: If some symbols appear more frequently than the others in
expectation, can we have a better encoding scheme?

A: Maybe. Using variable-length encoding scheme.

Idea

using fewer bits for symbols that are more frequently used,
and more bits for symbols that are less frequently used.

Need to use prefix codes to guarantee a unique decoding.

87/103

Prefix Codes

Def. A prefix code for a set S of symbols is a function
γ : S → {0, 1}∗ such that for two distinct x, y ∈ S, γ(x) is not a
prefix of γ(y).

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001/001/

cadbhhefca

88/103

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree

Rooted binary tree

Left edges labelled 0 and
right edges labelled 1

A leaf corresponds to a code
for some symbol

If coding scheme is not
wasteful: a non-leaf has
exactly two children

Best Prefix Codes

Input: frequencies of letters in a message

Output: prefix coding scheme giving the shortest encoding for
the message

89/103

example

symbols a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

90/103

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

the code for some letter?

hard to design a strategy; residual problem is complicated.

a partition of letters into left and right sub-trees?

not clear how to design the greedy algorithm

A: Choose two letters and make them brothers in the tree.

91/103

Which Two symbols Can Be Safely Put Together

As Brothers?

Focus a tree structure, without leaf labeling

There are two deepest leaves that are brothers

It is safe to make the two least frequent symbols brothers!

best to put the two least

frenquent symbols here!

92/103

It is safe to make the two least frequent symbols brothers!

Lemma There is an optimum encoding tree, where the two
least frequent symbols are brothers.

So we can make the two least frequent symbols brothers; the
decision is irrevocable.

Q: Is the residual problem an instance of the best prefix codes
problem?

A: Yes, although the answer is not immediate.

93/103

fx: the frequency of the symbol x in the support.

x1 and x2: the two symbols we decided to put together.

dx the depth of symbol x in our output encoding tree.

x1 x2

encoding tree for

S \ {x1, x2} ∪ {x′}

x′

Def: fx′ = fx1 + fx2

∑
x∈S

fxdx

=
∑

x∈S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
∑

x∈S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
∑

x∈S\{x1,x2}

fxdx + fx′(dx′ + 1)

=
∑

x∈S\{x1,x2}∪{x′}

fxdx + fx′

94/103

In order to minimize ∑
x∈S

fxdx,

we need to minimize ∑
x∈S\{x1,x2}∪{x′}

fxdx,

subject to that d is the depth function for an encoding tree of
S \ {x1, x2}.

This is exactly the best prefix codes problem, with symbols
S \ {x1, x2} ∪ {x′} and frequency vector f !

95/103

Huffman codes: Recursive Algorithm

Huffman(S, f)

1 if |S| > 1 then

2 let x1, x2 be the two symbols with the smallest f values

3 introduce a new symbol x′ and let fx′ = fx1 + fx2

4 S ′ ← S \ {x1, x2} ∪ {x′}
5 call Huffman(S ′, f |S′) to build an encoding tree T ′

6 let T be obtained from T ′ by adding x1, x2 as two children
of x′

7 return T

8 else

9 let x be the symbol in S

10 return a tree with a single node labeled x

96/103

Huffman codes: Iterative Algorithm

Huffman(S, f)

1 while |S| > 1 do

2 let x1, x2 be the two symbols with the smallest f values

3 introduce a new symbol x′ and let fx′ = fx1 + fx2

4 let x1 and x2 be the two children of x′

5 S ← S \ {x1, x2} ∪ {x′}
6 return the tree constructed

97/103

Example

A B C D E F
589111527

1320

2847

75

0

0

0

0 0

1

1
1

1 1

A : 00

B : 10

C : 010

D : 011

E : 110

F : 111

98/103

Algorithm using Priority Queue

Huffman(S, f)

1 Q← build-priority-queue(S)

2 while Q.size > 1 do

3 x1 ← Q.extract-min()

4 x2 ← Q.extract-min()

5 introduce a new symbol x′ and let fx′ = fx1 + fx2

6 let x1 and x2 be the two children of x′

7 Q.insert(x′)

8 return the tree constructed

99/103

Outline

1 Toy Examples

2 Interval Scheduling

3 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

4 Single Source Shortest Paths
Dijkstra’s Algorithm

5 Data Compression and Huffman Code

6 Summary

100/103

Summary for Greedy Algorithms

1 Design a “reasonable” strategy

Interval scheduling problem: schedule the job j∗ with the
earliest deadline
Kruskal’s algorithm for MST: select lightest edge e∗

Inverse Kruskal’s algorithm for MST: drop the heaviest
non-bridge edge e∗

Prim’s algorithm for MST: select the lightest edge e∗ incident
to a specified vertex s
Huffman codes: make the two least frequent symbols brothers

101/103

Summary for Greedy Algorithms

1 Design “reasonable” strategy

2 Prove that the reasonable strategy is “safe”

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Usually done by “exchange argument”
Interval scheduling problem: exchange j∗ with the first job in
an optimal solution
Kruskal’s algorithm: exchange e∗ with some edge e in the cycle
in T ∪ {e∗}
Prim’s algorithm: exchange e∗ with some other edge e incident
to s

102/103

Summary for Greedy Algorithms

1 Design “reasonable” strategy

2 Prove that the reasonable strategy is “safe”
3 Show that the remaining task after applying the strategy is

to solve a (many) smaller instance(s) of the same problem

Interval scheduling problem: remove j∗ and the jobs it conflicts
with
Kruskal and Prim’s algorithms: contracting e∗

Inverse Kruskal’s algorithm: remove e∗

Huffman codes: merge two symbols into one

103/103

Summary for Greedy Algorithms

Dijkstra’s algorithm does not quite fit in the framework.

It combines “greedy algorithm” and “dynamic programming”

Greedy algorithm: each time select the vertex in V \ S with
the smallest d value and add it to S

Dynamic programming: remember the d values of vertices in
S for future use

Dijkstra’s algorithm is very similar to Prim’s algorithm for
MST

	Toy Examples
	Interval Scheduling
	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Data Compression and Huffman Code
	Summary

