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min Try + 4z,
Ty + T2 > 5
Ty + 229 > 6
dxy + 19 > 8
T1,29 > 0

@ optimum point:
xr1 = ].,.’132 =4
o value=7x1+4x4=23
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Standard Form of Linear Programming

min C1T1 + CoTo + -+ - 4+ cpy, s.t.

Z Az + Arpxg + -+ Ay, 2> by
Z Ag1x1 + Ag oy + -+ + Ay, > by

Z Am,lxl + Am,2x2 +-+ Am,nxn Z bm

T1,To, " ,Tnp ZO



Standard Form of Linear Programming

s
X2
Let z = , , c=
T,
A Ay o A
As1 Agg -+ Ay
A= J .’ . T b=
Am,l Am,? e Am,n
Then, LP becomes min T
Ax >b
x>0

@ > means coordinate-wise greater than or equal to



Standard Form of Linear Programming

min cTx s.t.

Ax > b

@ Linear programmings can be solved in polynomial time

Algorithm Theory Practice

Simplex Method Exponential Time | Works Well

Ellipsoid Method Polynomial Time Slow

Internal Point Methods | Polynomial Time | Works Well



Applications of Linear Programming

@ Design polynomial-time exact algorithms
@ Design polynomial-time approximation algorithms

@ Branch-and-bound algorithms to solve integer programmings



Brewery Problem (from Kevin Wayne's Notes*)

@ Small brewery produces ale and beer.

o Production limited by scarce resources: corn, hops, barley malt.
o Recipes for ale and beer require different proportions of

resources.
Beverage Corn Hops Malt Profit
(pounds) | (pounds) | (pounds) | (%)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190

@ How can brewer maximize profits?

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf
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Brewery Problem (from Kevin Wayne's Notes*)

Corn Hops Malt Profit
Beverage
(pounds) | (pounds) | (pounds) | (%)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190
@ Devote all resources to ale: 34 barrels of ale = $442
@ Devote all resources to beer: 32 barrels of beer = $736
@ 7.5 barrels of ale, 29.5 barrels of beer = $776
@ 12 barrels of ale, 28 barrels of beer = $800

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf


http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf

Brewery Problem (from Kevin Wayne's Notes*)

Corn Hops Malt Profit
Beverage
(pounds) | (pounds) | (pounds) | (%)
Ale (barrel) 5 4 35 13
Beer (barrel) 15 4 20 23
Constraint 480 160 1190
max 13A + 23B profit
5A 4+ 15B < 480 Corn
4A + 4B < 160 Hops
35A 4 20B < 1190 Malt
A B>0

* http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
LinearProgramminglI .pdf


http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
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s-t Shortest Path
Input: (directed or undirected) graph G = (V, E), s,t € V
w:E — Ry
Output: shortest path from s to ¢




s-t Shortest Path Using Linear Programming

max d;
ds =0
d, < dy, + w(u,v) V(u,v) € E

Lemma Let P be any s — t path. Then value of LP < Zwe.
ecP

Coro. value of LP < dist(s,?).

Lemma Let d, be the length of the shortest path from s to v.
Then (d,),cv satisfies all the constraints in LP.

Lemma value of LP = dist(s, t).



Weighted Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
each job has a weight (or value) v; > 0

i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: a maximum-weight subset of mutually compatible jobs
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Weighted Interval Scheduling Problem

Integer Programming

max E xjwj

J€ln|

> ozt Vvt € [T

J€ln]:t€ls;,f5)

z; € {0,1} Vj € [n]

v

Linear Programming

max E xjwj

j€ln]
Yoo ox; <1 vtelT)
j€nl:tels;s, f;)
z; €[0,1] Vj € [n]

v

@ In general, integer programming is an NP-hard problem.

@ Most optimization problems can be formulated as integer

programming.

@ However, the above IP is equivalent to the LP!
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Flow Network

@ Abstraction of fluid flowing through edges

e Digraph G = (V| E) with source s € V and sink t € V
o No edges enter s
o No edges leave t

@ Edge capacity c(e) € R. for every e € E




Def. An s-t flow is a function f : E — R such that
@ foreverye e E: 0 < f(e) < c(e) (capacity conditions)
e for every v € V' \ {s,t}:

Z fle) = Z f(e). (conservation conditions)

e into v e out of v

The value of a flow f is

val(f) = > f(e).

e out of s

Maximum Flow Problem

Input: directed network G = (V, E), capacity function
c: E— Ry, source s € V andsinkt €V

Output: an s-t flow f in G with the maximum val(f)




Maximum Flow Problem: Example




max E Te

e€dout(s)
ze < c(e) Vee E
Z Te = Z re  YveV\{st}
eE(S'"(’U) ee6°”t(v
Te >0 Vec E
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Greedy Algorithm
@ Start with empty flow: f(e) =0 for every e € E
@ Define the residual capacity of e to be c(e) — f(e)

@ Find an augmenting path: a path from s to ¢, where all
edges have positive residual capacity

@ Augment flow along the path as much as possible

@ Repeat until we got stuck




Greedy Algorithm: Example
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Fix the Issue: Allowing “Undo” Flow Sent




Assumption (u,v) and (v,u) can not both be in F

Def. For a s-t flow f, the residual graph G of G = (V. E)
w.r.t f contains:

@ the vertex set V,

e for every e = (u,v) € E with f(e) < c(e), a forward edge
e = (u,v), with residual capacity c¢(e) = c(e) — f(e),

e for every e = (u,v) € E with f(e) > 0, a backward edge

/

e’ = (v, u), with residual capacity c¢(e') = f(e).

Original graph G and f Residual Graph G



Residual Graph: One More Example




Agumenting Path

Augmenting the flow along a path P from s to t in G

Augment(P)

Qb Ieréi}rjl cr(e)

@ for every (u,v) € P

Q@ if (u,v) is a forward edge
f(u,v) < f(u,v) +b

else \\ (u,v) is a backward edge
fo,u) < f(v,u) —b

return f




Example for Augmenting Along a Path




Ford-Fulkerson's Method

Ford-Fulkerson(G, s, t, ¢)

Q let f(e) < 0 for every e in G

@ while there is a path from s to ¢ in G

© let P be any simple path from s to t in Gy
Q@ [ <augment(f,P)

Q return f




Ford-Fulkerson: Example




Correctness of Ford-Fulkerson Method

@ Flow conservation conditions are satisfied
@ When algorithm terminates, there is a cut in the residual
graph

Running Time of Ford-Fulkerson Method
@ Depends on #iterations
@ Fiterations could be exponential if augmenting paths are
chosen by adversary
@ #iterations=polynomial if in each iteration, we choose

e the shortest augmenting path,
e or the augmenting path with largest bottleneck capacity.
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Bipartite Graphs

Def. A graph G = (V| E) is bipartite if the vertices V' can be
partitioned into two subsets L and R such that every edge in £
is between a vertex in L and a vertex in R.




Def. Given a bipartite graph G = (LU R, E), a matching in G
is a set M C FE of edges such that every vertex in V is an
endpoint of at most one edge in M.

Maximum Bipartite Matching Problem
Input: bipartite graph G = (LUR, E)
Output: a matching M in G of the maximum size




Reduce Max. Bipartite Matching to Max. Flow

S
G

,}“.’.

@ The maximum flow <> maximum matching

@ Need to use the fact that the maximum flow has integer flow
values, if all capacities are integers.



Solving Bipartite Matching via Linear Programming

Integer Programming Linear Programming
max Z Te max Z Te
eclb ecE
ergl Yve LUR ergl Yve LUR
865(7.)) 666 )
€{0,1} Ve€eF z.€[0,1] VeeE

Lemma The above integer programming and linear
programming are equivalent.
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Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E thenu € Sorv e S .

Weighted Vertex-Cover Problem
Input: G = (V, F) with vertex weights {w, },cv

Output: a vertex cover S with minimum . w,




Integer Programming for Weighted Vertex Cover

@ Foreveryv eV, let z, € {0,1} indicate whether we select v
in the vertex cover S

@ The integer programming for weighted vertex cover:
(IPwvc) min Z Wy Ly s.t.

veV
Ty + 1y >1 V(u,v) € £

z, € {0,1} YoeV
@ (IPwvc) < weighted vertex cover

@ Thus it is NP-hard to solve integer programmings in general



@ Integer programming for WVC:
(IPwyvc) min Z Wy Ty s.t.

veV
Tyt T, > 1 V(u,v) € E
z, € {0,1} YoeV

@ Linear programming relaxation for WVC:

(LPwvc) min Z Wy T s.t.

veV
Ty + 2y 21 V<U,’U>€E
x, € [0,1] YvoeV

@ let IP = value of (IPywyc), LP = value of (LPwyc)
@ Then, LP < IP



Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z},cv
Q@ Thus, LP =3, w,a} <IP

Q@ Let S={ueV:z, >1/2} and output S

Lemma S is a vertex cover of G.

Proof.
e Consider any edge (u,v) € E: we have z +x} > 1
@ Thus, either ¥ > 1/2 or z¥ > 1/2
@ Thus, eitheru € Sorwv e S.




Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z}},cv
@ Thus, LP =3 ., wya) <IP

Q@ Let S={uecV:z, >1/2} and output S

Lemma S is a vertex cover of (.

Lemma cost(S) := > qw, <2-LP.

Proof.

cost(S) :Zwu < Zwu-2x;:22wu-x;

u€es u€eS ueS

<2 w,-a,=2-LP.

ueV




Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

@ Solving (LPwyc) to obtain a solution {z },cv
Q@ Thus, LP =" , w,a) <IP

©Q Let S={uecV:z:>1/2} and output S

Lemma S is a vertex cover of G. J

Lemma cost(S) := ) cqw, <2-LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.
cost(S) <2-LP < 2-IP =2 cost(best vertex cover). O

A N N
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min Tr1 + 42, 2
T1+ 29 > 5
r1+ 225 > 6
4oy + 19 > 8

1,22 >0

@ optimum point: 1 = 1,29 =4
o value=7x1+4x4=23

— N W e ot 1 o ©

Q: How can we prove a lower bound for the value? Jl

@ Txy+4xy > 2(xy + x2) + (21 +222) >2%x5+6=16

@ Txy +4xy > (1 + 2x9) + 1.5(4xy + 29) > 64+ 1.5 x 8 = 18
@ Txi1+4xy > (x1+x2)+(214+222)+ (421 +22) > 5+64+8 = 19
@ Txy+4xy > 4(xy +22) >4 x5=20

@ Txy +4xy > 3(xy + x2) + (42 + 22) >3 X 5+ 8 =23
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Primal LP
min Tr1 + 4z,
1+ T2 > 95
T+ 229 > 6
4x1 4+ 29 > 8

x1,22 >0

v

A way to prove lower bound on the value of primal LP

Tz, + 42 (if 7>y +y2 +4ys and 4 > y; + 2y, + y3)
> yi(z1 + 22) + yo(@1 + 222) + ys(dwy + z2)  (if y1, 92,93 > 0)

> 5y1 + 6y + 8ys.

@ Goal: need to maximize 5y; + 6ys + 8y3

Dual LP

max 511 + 6y2 + 8ys s.t.

Y1ty +4ys <7
y1+2ys +ys < 4
Yi,Y2 = 0




min 7l‘1+4.’L'2 5o 4 61y - 8 "
max s.t.
:E1+.’17225 o Y2 o
x1—|—2x226 y1+y2+4y3§7
4$1+1’228 y1+2y2+y334
T, %9 > 0 y1,y2 > 0
11 ) 7
4 1 8
min 'z s.t. max bly s.t.
Az >Db ATySC
x>0 y=>0
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Primal LP Dual LP

@ P = value of primal LP
@ D = value of dual LP

Theorem (weak duality theorem) D < P.

Theorem (strong duality theorem) D = P.

e Can always prove the optimality of the primal solution, by
adding up primal constraints.



min 5z + 629 + 23 s.t. max 2y; +dys + Tys s.t.
221 + 5y — 33 > 2 21 + 3y +y3 < 5
3r1 — 2x9 + 23 > 5 oY1 — 2ys + 2y3 < 6
21+ 229+ 323 > 7 =3y +y2 +3ys > 1

x1, %2, 23 2 0 Y1,Y2,y3 > 0
.'1,‘1=]..6,£L'2=0.6 y1=1,y2=5/8
x3 = 1.4, value = 13 ys = 9/8, value = 13
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5ZE1 + 61‘2 + XT3

5 9
> (21’1 + 556'2 — 31’3) + §(3£If1 — 2372 + SL’3> + g(l’l + 21’2 + 31‘3)

D 9
>24 - XD+ - X7
_+8>< +8><

=13
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