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Example of Linear Programming

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point:
x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23
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Standard Form of Linear Programming

min c1x1 + c2x2 + · · ·+ cnxn s.t.∑
A1,1x1 + A1,2x2 + · · ·+ A1,nxn ≥ b1∑
A2,1x1 + A2,2x2 + · · ·+ A2,nxn ≥ b2

...
...

...
...∑

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ≥ bm

x1, x2, · · · , xn ≥ 0
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Standard Form of Linear Programming

Let x =


x1

x2
...
xn

 , c =


c1
c2
...
cn

 ,

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
...

...
Am,1 Am,2 · · · Am,n

 , b =


b1
b2
...
bm

 .

Then, LP becomes min cTx s.t.

Ax ≥ b

x ≥ 0

≥ means coordinate-wise greater than or equal to
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Standard Form of Linear Programming

min cTx s.t.

Ax ≥ b

x ≥ 0

Linear programmings can be solved in polynomial time

Algorithm Theory Practice

Simplex Method Exponential Time Works Well

Ellipsoid Method Polynomial Time Slow

Internal Point Methods Polynomial Time Works Well
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Applications of Linear Programming

Design polynomial-time exact algorithms

Design polynomial-time approximation algorithms

Branch-and-bound algorithms to solve integer programmings
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Brewery Problem (from Kevin Wayne’s Notes∗)

Small brewery produces ale and beer.

Production limited by scarce resources: corn, hops, barley malt.
Recipes for ale and beer require different proportions of
resources.

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)

Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

How can brewer maximize profits?

∗ http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
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Brewery Problem (from Kevin Wayne’s Notes∗)

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)

Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

Devote all resources to ale: 34 barrels of ale ⇒ $442

Devote all resources to beer: 32 barrels of beer ⇒ $736

7.5 barrels of ale, 29.5 barrels of beer ⇒ $776

12 barrels of ale, 28 barrels of beer ⇒ $800

∗ http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
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Brewery Problem (from Kevin Wayne’s Notes∗)

Beverage
Corn Hops Malt Profit

(pounds) (pounds) (pounds) ($)

Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

Constraint 480 160 1190

max 13A+ 23B profit

5A+ 15B ≤ 480 Corn

4A+ 4B ≤ 160 Hops

35A+ 20B ≤ 1190 Malt

A,B ≥ 0

∗ http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/

LinearProgrammingI.pdf

http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingI.pdf
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s-t Shortest Path

Input: (directed or undirected) graph G = (V,E), s, t ∈ V

w : E → R≥0
Output: shortest path from s to t

16 10
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74
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a b
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s-t Shortest Path Using Linear Programming

max dt

ds = 0

dv ≤ du + w(u, v) ∀(u, v) ∈ E

Lemma Let P be any s→ t path. Then value of LP ≤
∑
e∈P

we.

Coro. value of LP ≤ dist(s, t).

Lemma Let dv be the length of the shortest path from s to v.
Then (dv)v∈V satisfies all the constraints in LP.

Lemma value of LP = dist(s, t).
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Weighted Interval Scheduling

Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-weight subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

Optimum value = 220
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Weighted Interval Scheduling Problem

Integer Programming

max
∑
j∈[n]

xjwj

∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ∈ {0, 1} ∀j ∈ [n]

Linear Programming

max
∑
j∈[n]

xjwj

∑
j∈[n]:t∈[sj ,fj)

xj ≤ 1 ∀t ∈ [T ]

xj ∈ [0, 1] ∀j ∈ [n]

In general, integer programming is an NP-hard problem.

Most optimization problems can be formulated as integer
programming.

However, the above IP is equivalent to the LP!
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Flow Network

Abstraction of fluid flowing through edges

Digraph G = (V,E) with source s ∈ V and sink t ∈ V
No edges enter s
No edges leave t

Edge capacity c(e) ∈ R>0 for every e ∈ E

s t

a

b d

c12

14

9

4 7

16

13

20

4



18/51

Def. An s-t flow is a function f : E → R such that

for every e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity conditions)

for every v ∈ V \ {s, t}:∑
e into v

f(e) =
∑

e out of v

f(e). (conservation conditions)

The value of a flow f is

val(f) =
∑

e out of s

f(e).

Maximum Flow Problem

Input: directed network G = (V,E), capacity function
c : E → R>0, source s ∈ V and sink t ∈ V

Output: an s-t flow f in G with the maximum val(f)
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Maximum Flow Problem: Example

s t

a

b d

c
12/12

11/14

0/
90/
4

7/
7
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/1
6

11/13

19/20

4/
4
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Linear Programming for Max-Flow

max
∑

e∈δout(s)

xe

xe ≤ c(e) ∀e ∈ E∑
e∈δin(v)

xe =
∑

e∈δout(v)

xe ∀v ∈ V \ {s, t}

xe ≥ 0 ∀e ∈ E
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Greedy Algorithm

Start with empty flow: f(e) = 0 for every e ∈ E

Define the residual capacity of e to be c(e)− f(e)

Find an augmenting path: a path from s to t, where all
edges have positive residual capacity

Augment flow along the path as much as possible

Repeat until we got stuck
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Greedy Algorithm: Example

s t
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Greedy Algorithm Does Not Always Give a

Optimum Solution

0/1
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Fix the Issue: Allowing “Undo” Flow Sent

a

b

s t0/
1

1/
1

1/11/
1

1/1
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Assumption (u, v) and (v, u) can not both be in E

Def. For a s-t flow f , the residual graph Gf of G = (V,E)
w.r.t f contains:

the vertex set V ,

for every e = (u, v) ∈ E with f(e) < c(e), a forward edge
e = (u, v), with residual capacity cf (e) = c(e)− f(e),

for every e = (u, v) ∈ E with f(e) > 0, a backward edge
e′ = (v, u), with residual capacity cf (e

′) = f(e).

0/1
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1

1/
1

0/1
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s t
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Residual Graph: One More Example

s

t

a b

c d

4
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Agumenting Path

Augmenting the flow along a path P from s to t in Gf

Augment(P )

1 b← min
e∈P

cf (e)

2 for every (u, v) ∈ P

3 if (u, v) is a forward edge

4 f(u, v)← f(u, v) + b

5 else \\ (u, v) is a backward edge

6 f(v, u)← f(v, u)− b

7 return f
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Example for Augmenting Along a Path
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Ford-Fulkerson’s Method

Ford-Fulkerson(G, s, t, c)

1 let f(e)← 0 for every e in G

2 while there is a path from s to t in Gf

3 let P be any simple path from s to t in Gf

4 f ←augment(f, P )

5 return f
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Ford-Fulkerson: Example

s

t

a b

c d
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Correctness of Ford-Fulkerson Method

Flow conservation conditions are satisfied

When algorithm terminates, there is a cut in the residual
graph

Running Time of Ford-Fulkerson Method

Depends on #iterations

#iterations could be exponential if augmenting paths are
chosen by adversary

#iterations=polynomial if in each iteration, we choose

the shortest augmenting path,
or the augmenting path with largest bottleneck capacity.
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Bipartite Graphs

Def. A graph G = (V,E) is bipartite if the vertices V can be
partitioned into two subsets L and R such that every edge in E
is between a vertex in L and a vertex in R.

L

R
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Def. Given a bipartite graph G = (L ∪R,E), a matching in G
is a set M ⊆ E of edges such that every vertex in V is an
endpoint of at most one edge in M .

Maximum Bipartite Matching Problem

Input: bipartite graph G = (L ∪R,E)

Output: a matching M in G of the maximum size

L

R
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Reduce Max. Bipartite Matching to Max. Flow

t

s

1

∞

L

R

1 1 1 1 1

1 1 1 1 1 1

∞ ∞
∞

The maximum flow ↔ maximum matching

Need to use the fact that the maximum flow has integer flow
values, if all capacities are integers.
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Solving Bipartite Matching via Linear Programming

Integer Programming

max
∑
e∈E

xe

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ∈ {0, 1} ∀e ∈ E

Linear Programming

max
∑
e∈E

xe

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ L ∪R

xe ∈ [0, 1] ∀e ∈ E

Lemma The above integer programming and linear
programming are equivalent.
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Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Weighted Vertex-Cover Problem

Input: G = (V,E) with vertex weights {wv}v∈V
Output: a vertex cover S with minimum

∑
v∈S wv
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Integer Programming for Weighted Vertex Cover

For every v ∈ V , let xv ∈ {0, 1} indicate whether we select v
in the vertex cover S

The integer programming for weighted vertex cover:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

(IPWVC) ⇔ weighted vertex cover

Thus it is NP-hard to solve integer programmings in general
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Integer programming for WVC:

(IPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

Linear programming relaxation for WVC:

(LPWVC) min
∑
v∈V

wvxv s.t.

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ [0, 1] ∀v ∈ V

let IP = value of (IPWVC), LP = value of (LPWVC)

Then, LP ≤ IP
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Proof.

Consider any edge (u, v) ∈ E: we have x∗u + x∗v ≥ 1

Thus, either x∗u ≥ 1/2 or x∗v ≥ 1/2

Thus, either u ∈ S or v ∈ S.
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : xu ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Proof.

cost(S) =
∑
u∈S

wu ≤
∑
u∈S

wu · 2x∗u = 2
∑
u∈S

wu · x∗u

≤ 2
∑
u∈V

wu · x∗u = 2 · LP.
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Algorithm for Weighted Vertex Cover

Algorithm for Weighted Vertex Cover

1 Solving (LPWVC) to obtain a solution {x∗u}u∈V
2 Thus, LP =

∑
u∈V wux

∗
u ≤ IP

3 Let S = {u ∈ V : x∗u ≥ 1/2} and output S

Lemma S is a vertex cover of G.

Lemma cost(S) :=
∑

u∈S wu ≤ 2 · LP.

Theorem Algorithm is a 2-approximation algorithm for WVC.

Proof.

cost(S) ≤ 2 · LP ≤ 2 · IP = 2 · cost(best vertex cover).
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min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

optimum point: x1 = 1, x2 = 4

value = 7× 1 + 4× 4 = 23
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Feasible Region
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7

x1 + x2 ≥ 5

4x1 + x2 ≥ 8

x1 + 2x2 ≥ 6

Q: How can we prove a lower bound for the value?

7x1 + 4x2 ≥ 2(x1 + x2) + (x1 + 2x2) ≥ 2× 5 + 6 = 16

7x1 + 4x2 ≥ (x1 + 2x2) + 1.5(4x1 + x2) ≥ 6 + 1.5× 8 = 18

7x1+4x2 ≥ (x1+x2)+(x1+2x2)+(4x1+x2) ≥ 5+6+8 = 19

7x1 + 4x2 ≥ 4(x1 + x2) ≥ 4× 5 = 20

7x1 + 4x2 ≥ 3(x1 + x2) + (4x1 + x2) ≥ 3× 5 + 8 = 23
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Primal LP

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1+6y2+8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A way to prove lower bound on the value of primal LP

7x1 + 4x2 (if 7 ≥ y1 + y2 + 4y3 and 4 ≥ y1 + 2y2 + y3)

≥ y1(x1 + x2) + y2(x1 + 2x2) + y3(4x1 + x2) (if y1, y2, y3 ≥ 0)

≥ 5y1 + 6y2 + 8y3.

Goal: need to maximize 5y1 + 6y2 + 8y3
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Primal LP

min 7x1 + 4x2

x1 + x2 ≥ 5

x1 + 2x2 ≥ 6

4x1 + x2 ≥ 8

x1, x2 ≥ 0

Dual LP

max 5y1+6y2+8y3 s.t.

y1 + y2 + 4y3 ≤ 7

y1 + 2y2 + y3 ≤ 4

y1, y2 ≥ 0

A =

 1 1
1 2
4 1

 b =

 5
6
8

 c =

(
7
4

)

min cTx s.t.

Ax ≥ b

x ≥ 0

max bTy s.t.

ATy ≤ c

y ≥ 0
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Primal LP

min cTx s.t.

Ax ≥ b

x ≥ 0

Dual LP

max bTy s.t.

ATy ≤ c

y ≥ 0

P = value of primal LP

D = value of dual LP

Theorem (weak duality theorem) D ≤ P .

Theorem (strong duality theorem) D = P .

Can always prove the optimality of the primal solution, by
adding up primal constraints.
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Example

Primal LP

min 5x1 + 6x2 + x3 s.t.

2x1 + 5x2 − 3x3 ≥ 2

3x1 − 2x2 + x3 ≥ 5

x1 + 2x2 + 3x3 ≥ 7

x1, x2, x3 ≥ 0

Primal Solution
x1 = 1.6, x2 = 0.6

x3 = 1.4, value = 13

Dual LP

max 2y1 + 5y2 + 7y3 s.t.

2y1 + 3y2 + y3 ≤ 5

5y1 − 2y2 + 2y3 ≤ 6

−3y1 + y2 + 3y3 ≥ 1

y1, y2, y3 ≥ 0

Dual Solution
y1 = 1, y2 = 5/8

y3 = 9/8, value = 13



51/51

5x1 + 6x2 + x3

≥ (2x1 + 5x2 − 3x3) +
5

8
(3x1 − 2x2 + x3) +

9

8
(x1 + 2x2 + 3x3)

≥ 2 +
5

8
× 5 +

9

8
× 7

= 13
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