CSE 431/531: Algorithm Analysis and Design

Spring 2019

Homework 1

Instructor: Shi Li

Deadline: 2/28/2019

Problems	1	2	3	Total
Max. Score	20	20	40	80
Your Score				

Problem 1 (20 points) For each pair of functions f and g in the following table, indicate whether $f = O(g), f = \Omega(g)$ and $f = \Theta(g)$ respectively. Prove or disprove " $\left[\sqrt{3n^2 + 100}\right] = O(n)$ ", using the definition of O-notation.

f(n)	g(n)	0	Ω	Θ	f(n)	g(n)	0	Ω	Θ
$3n^2 - 10$	n				$\left\lceil \sqrt{3n^2 + 100} \right\rceil$	n			
$3n^2 - 10$	n^3				$n^{\sqrt{n}}$	\sqrt{n}^n			
$5n^3 - 10$	$4n^3 + 5n$				$n^{\sin n}$	n^2			
$\ln(n^{10})$	$\log_{10} n$				$2^{\log_3 n}$	$n^{1.5}$			
$(\ln n)^{10}$	$\log_{10} n$				2^n	e^n			

Problem 2 (20 points) Assume f(n) and g(n) are asymptotically positive functions. Whether each of the following statements is true or false? Prove or disprove (b) and (c), using definitions of asymptotic notations.

- (a) If f(n) = O(g(n)), then $\sqrt{f(n)} = O\left(\sqrt{g(n)}\right)$.
- (b) If f(n) = O(g(n)), then $(f(n))^2 = O((g(n))^2)$.
- (c) If f(n) = O(g(n)), then $2^{f(n)} = O(2^{g(n)})$.

Problem 3 (40 points) Given a directed graph G = (V, E), design an algorithm that decides if G contains a cycle or not. In the directed graphs, a cycle is a sequence of distinct vertices v_1, v_2, \dots, v_t in V, with $t \ge 2$, such that: $(v_t, v_1) \in E$ and for every $i \in \{1, 2, 3, \dots, t-1\}$, we have $(v_i, v_{i+1}) \in E$. If the graph contains a cycle, you need to output one; otherwise, you report there is no cycle. The running time of your algorithm should be O(n + m).

This is a programming problem. You need to

1. write down the pseudo-code for your algorithm,

- 2. briefly explain why the algorithm is correct and why it runs in O(n+m) time,
- 3. and use C++, Java or Python to implement your algorithm.

Implementation of the algorithm You need to read the graph G from the standard input (i.e, the terminal) and output the result to the standard output (i.e, the screen).

- Input format: In the first line of the input, there are two positive integers n and m. n is the number of vertices in the graph and m is the number of edges in the graph. The vertices are indexed from 1 to n. You can assume that $1 \le n \le 10000$ and $1 \le m \le 100000$. In the next m lines, each line contains 2 different integers u, v in $\{1, 2, \dots, n\}$, indicating an edge (u, v) in the graph G. Every edge appears only once in the input.
- **Output format**: If the graph G does not contain a cycle, simply output an integer 0. If the graph contains a cycle, you need to output $t v_1 v_2 \cdots v_t$, where t indicates the length of the cycle you found, and (v_1, v_2, \cdots, v_t) is the cycle.

Input #1:	Output #1:	Input $#2$:	Output #2:
3 3	0	69	$4\ 2\ 5\ 3\ 4$
1 2		1 2	
2 3		4 2	
1 3		14	
		3 4	
		4 6	
		3 6	
		5 3	
		2 5	
		1 5	