
CSE 431/531: Algorithm Analysis and Design Spring 2019

Homework 1
Instructor: Shi Li Deadline: 2/28/2019

Problems 1 2 3 Total
Max. Score 20 20 40 80
Your Score

Problem 1 (20 points) For each pair of functions f and g in the following table,
indicate whether f = O(g), f = Ω(g) and f = Θ(g) respectively. Prove or disprove
“
⌈√

3n2 + 100
⌉

= O(n)”, using the definition of O-notation.

f(n) g(n) O Ω Θ f(n) g(n) O Ω Θ

3n2 − 10 n
⌈√

3n2 + 100
⌉

n

3n2 − 10 n3 n
√
n

√
n
n

5n3 − 10 4n3 + 5n nsinn n2

ln(n10) log10 n 2log3 n n1.5

(lnn)10 log10 n 2n en

Problem 2 (20 points) Assume f(n) and g(n) are asymptotically positive functions.
Whether each of the following statements is true or false? Prove or disprove (b) and (c),
using definitions of asymptotic notations.

(a) If f(n) = O(g(n)), then
√

f(n) = O
(√

g(n)
)

.

(b) If f(n) = O(g(n)), then (f(n))2 = O ((g(n))2).

(c) If f(n) = O(g(n)), then 2f(n) = O
(
2g(n)

)
.

Problem 3 (40 points) Given a directed graph G = (V,E), design an algorithm that
decides if G contains a cycle or not. In the directed graphs, a cycle is a sequence of
distinct vertices v1, v2, · · · , vt in V , with t ≥ 2, such that: (vt, v1) ∈ E and for every
i ∈ {1, 2, 3, · · · , t− 1}, we have (vi, vi+1) ∈ E. If the graph contains a cycle, you need to
output one; otherwise, you report there is no cycle. The running time of your algorithm
should be O(n + m).

This is a programming problem. You need to

1. write down the pseudo-code for your algorithm,

1



2. briefly explain why the algorithm is correct and why it runs in O(n + m) time,

3. and use C++, Java or Python to implement your algorithm.

Implementation of the algorithm You need to read the graph G from the standard
input (i.e, the terminal) and output the result to the standard output (i.e, the screen).

• Input format: In the first line of the input, there are two positive integers n and
m. n is the number of vertices in the graph and m is the number of edges in the
graph. The vertices are indexed from 1 to n. You can assume that 1 ≤ n ≤ 10000
and 1 ≤ m ≤ 100000. In the next m lines, each line contains 2 different integers
u, v in {1, 2, · · · , n}, indicating an edge (u, v) in the graph G. Every edge appears
only once in the input.

• Output format: If the graph G does not contain a cycle, simply output an integer
0. If the graph contains a cycle, you need to output t v1 v2 · · · vt, where t indicates
the length of the cycle you found, and (v1, v2, · · · , vt) is the cycle.

Input #1:
3 3
1 2
2 3
1 3

Output #1:
0

Input #2:
6 9
1 2
4 2
1 4
3 4
4 6
3 6
5 3
2 5
1 5

Output #2:
4 2 5 3 4

2


