
CSE 431/531: Algorithm Analysis and Design Spring 2019

Homework 2
Instructor: Shi Li Deadline: 3/18/2019

Your Name: Your Student ID:

Problems 1 2 3 4 Total
Max. Score 10 15 15 40 80
Your Score

Problem 1 (10 points) Consider the minimum spanning tree problem, where the
input is a graph G = (V,E) and a weight vector w : E → R≥0. For simplicity, we assume
all the weights are different. Decide if each of the following strategy is safe or not.

(1a) Let C be a cycle in G and e∗ be the heaviest edge on C. Then we do not include
e∗ in the spanning tree. (So, in the residual problem, we remove e∗ from G.)

(1b) Let C be a cycle in G and e∗ be the lightest edge on C. Then we include e∗ in the
spanning tree. (So, in the residual problem, we contract e∗ in G.)

(1c) Let U ( V, U 6= ∅ be a strict non-empty subset of V and e∗ be the lightest edge in
E that is between U and V \ U . Then we include e∗ in the spanning tree.

(1d) Let U ( V, U 6= ∅ be a strict non-empty subset of V and e∗ be the heaviest edge in
E that is between U and V \ U . Then we do not include e∗ in the spanning tree.

If your answer is “not safe” for a strategy, you need to give a counter example. (For safe
strategies, saying they are safe is sufficient.)

Problem 2 (15 points) Given a set of n jobs {1, 2, 3, · · · , n}, each job j with a
processing time tj > 0 and a weight wj > 0, we need to schedule the n jobs on a machine
in some order. Let Cj be the completion time of j on in the schedule. Then the goal of
the problem is to find a schedule to minimize the weighted sum of the completion times,
i.e,

∑n
j=1wjCj.

Example. Suppose there are two jobs: the first takes time t1 = 1 and has weight
w1 = 10, while the second job takes time t2 = 3 and has weight w2 = 2. Then doing
job 1 first would yield a weighted completion time of 10 · 1 + 2 · 4 = 18, while doing the
second job first would yield the larger weighted completion time of 10 · 4 + 2 · 3 = 46.

Design an efficient greedy algorithm to solve the problem.

Problem 3(15 points) In the interval covering problem, we are given n intervals
[s1, t1), [s2, t2), · · · , [sn, tn) such that

⋃
i∈{1,2,3,··· ,n}[si, ti) = [0, T ). The goal of the problem

is to return a smallest-size set S ⊆ {1, 2, · · · , n} such that
⋃

i∈S[si, ti) = [0, T ). Design
an efficient greedy algorithm for this problem. You do not need to optimize the running
time. So you can simply use the two-step proof:

1



(1) Give a simple greedy strategy, and prove it is safe.

(2) Show that after you made a decision using the strategy, the residual task can be
formulated again as an instance of the interval covering problem.

Problem 4(40 points) You need to implement the union-and-find data structure. In
this problem, there are n elements numbered from 1 to n. Initially, each element is in
a separate partition. You will receive a sequence of operations, each being one of the
following:

• query-size(i). This operation asks for the size of the partition containing i, i.e, the
number of elements in the partition containing i. It does not change the partition-
ing.

• merge(i, j). This operation will merge the two partitions containing i and j. If i
and j were already in the same partition, the operation does nothing.

You need to implement the union-and-find data structure that supports the two opera-
tions using C++, Java or Python.

Implementation of the algorithm You need to read from the standard input (i.e,
the terminal) and output to the standard output (i.e, the screen).

• Input format: In the first line of the input, there are two positive integers n and
m. n is the number of elements and m is the number of operations given to you.
The elements are numbered from 1 to n. You can assume that 1 ≤ n ≤ 10000
and 1 ≤ m ≤ 100000. In the next m lines, each line is either of the form Q i,
where i is a number between 1 and n, or of the form M i j, where i and j are two
different numbers between 1 and n. Q i corresponds to the operation query-size(i),
and M i j corresponds to the operation merge(i, j).

• Output format: For every query(i) operation, output a single number in a line
that answers the query: i.e, output the number of elements in the partition that
contains i.

Input:
5 7
M 1 5
Q 1
M 5 4
M 2 3
Q 4
M 1 2
Q 5

Output:
2
3
5

Explanation:
Initial : {1}, {2}, {3}, {4}, {5}
M 1 5 : {1, 5}, {2}, {3}, {4}
Q 1 : returns 2
M 5 4 : {1, 4, 5}, {2}, {3}
M 2 3 : {1, 4, 5}, {2, 3}
Q 4 : returns 3
M 1 2 : {1, 2, 3, 4, 5}
Q 5 : returns 5

2


