CSE 431/531: Algorithm Analysis and Design (Spring 2019) Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

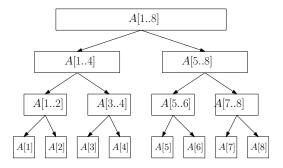
merge-sort(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- 2 return A
- else

• return merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

- Divide: trivial
- Conquer: **4**, **5**
- Combine: 6

Running Time for Merge-Sort



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort

Running Time for Merge-Sort Using Recurrence

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

Divide-and-Conquer

2 Counting Inversions

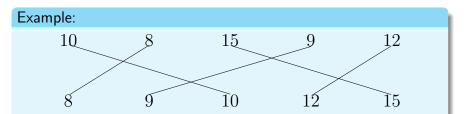
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that i < j and A[i] > A[j].

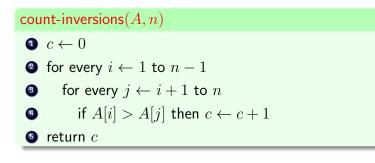
Counting Inversions

Input: an sequence A of n numbers

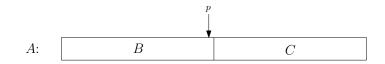
Output: number of inversions in A



• 4 inversions (for convenience, using numbers, not indices): (10,8), (10,9), (15,9), (15,12)



Divide-and-Conquer



•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

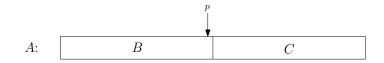
• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Q: How fast can we compute *m*, via trivial algorithm?

A: $O(n^2)$

• Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer



•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Lemma If both B and C are sorted, then we can compute m in O(n) time!

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]: B: 3total = 188 12 20 32 48 C: 7 9 25 29 +5 +5+2 +3 +3+012 20 25 29 32 48 8 9 3 5 7

Count Inversions between B and C

• Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
• count \leftarrow 0:
2 A \leftarrow []; i \leftarrow 1; j \leftarrow 1
(3) while i < n_1 or j < n_2
        if j > n_2 or (i \le n_1 \text{ and } B[i] \le C[j]) then
           append B[i] to A; i \leftarrow i+1
5
6
           count \leftarrow count + (j-1)
        else
 7
           append C[j] to A; j \leftarrow j+1
 8
\bigcirc return (A, count)
```

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

$sort\operatorname{-and-count}(A,n)$	• Divide: trivial				
1 if $n = 1$ then	• Conquer: 4 , 5				
2 return $(A, 0)$	• Combine: 6, 7				
else					
$ (B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right) $					
$ (C, m_2) \leftarrow \text{sort-and-count} $	$\left(A\left[\lfloor n/2 \rfloor + 1n\right], \lceil n/2 \rceil\right)$				
$ (A, m_3) \leftarrow merge-and-cou $	$\operatorname{unt}(B,C,\lfloor n/2 \rfloor,\lceil n/2 \rceil)$				
• return $(A, m_1 + m_2 + m_3)$)				

sort-and-count(A, n)

- $\bullet \quad \text{if } n=1 \text{ then }$
- **2** return (A, 0)

else

 $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$ $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1 \dots n \right], \lceil n/2 \rceil \right)$

$$(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$$

• return $(A, m_1 + m_2 + m_3)$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

• Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 6 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Merge SortQuicksortDivideTrivialSeparate small and big numbersConquerRecurseRecurseCombineMerge 2 sorted arraysTrivial

Assumption We can choose median of an array of size n in O(n) time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort(A, n)

- $2 x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R
 - Recurrence $T(n) \leq 2T(n/2) + O(n)$
 - Running time = $O(n \lg n)$

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

- There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

- $\ \, {\rm If} \ n\leq 1 \ {\rm then} \ {\rm return} \ A \\$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $\ \, {\bf O} \ \, A_L \leftarrow {\rm elements \ in} \ \, A \ \, {\rm that \ are \ less \ than \ x}$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow$ number of times x appear A
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

\\ Divide \\ Divide \\ Conquer \\ Conquer Assumption There is a procedure to produce a random real number in $\left[0,1\right]\!.$

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)

- $\ \, {\rm If} \ n\leq 1 \ {\rm then} \ {\rm return} \ A \\$
- 2 $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- $A_L \leftarrow \text{ elements in } A \text{ that are less than } x$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow$ number of times x appear A
- return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.

\\ Divide

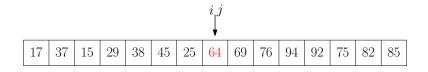
\\ Divide

\\ Conquer

\\ Conquer

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.



• To partition the array into two parts, we only need ${\cal O}(1)$ extra space.

$\mathsf{partition}(A, \ell, r)$

- $p \leftarrow \text{random integer between } \ell \text{ and } r, \text{ swap } A[p] \text{ and } A[\ell]$
- $\textcircled{2} i \leftarrow \ell, j \leftarrow r$
- $\textcircled{\textbf{o}} \hspace{0.1 in} \text{while} \hspace{0.1 in} i < j \hspace{0.1 in} \text{do}$
- while i < j and $A[i] \le A[j]$ do $j \leftarrow j 1$
- $\ \, \ \, \hbox{ while } i < j \hbox{ and } A[i] \leq A[j] \hbox{ do } i \leftarrow i+1$
- swap A[i] and A[j]

$$\bullet \ \ell' \leftarrow i, r' \leftarrow i$$

- $\textcircled{9} \ \text{ for } j \leftarrow i-1 \ \text{down to } \ell$

In-Place Implementation of Quick-Sort

$quicksort(A, \ell, r)$

- $\ \ \, \textbf{if} \ \ \ell \geq r \ \, \textbf{return}$
- $(\ell', r') \leftarrow \mathsf{patition}(A, \ell, r)$
- $\textbf{3} \hspace{0.1 cm} \text{quicksort}(A,\ell,\ell'-1)$
- quicksort(A, r'+1, r)
 - To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

• To merge two arrays, we need a third array with size equaling the total size of two arrays

5 7	9	25	29
-----	---	----	----

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

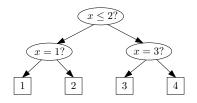
- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know *x*?

A: $\lceil \log_2 N \rceil$.



Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log_2 n! = \Theta(n \lg n)$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least
$$\log_2 n! = \Theta(n \lg n)$$

Outline

- Divide-and-Conquer
- 2 Counting Inversions
 - Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Selection Problem Input: a set A of n numbers, and $1 \le i \le n$ Output: the *i*-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- $\ \, \bullet \ \, \text{if} \ n \leq 1 \ \text{then return} \ A \\$
- $2 x \leftarrow \text{lower median of } A$
- $\ \, {\bf 0} \ \, A_L \leftarrow {\rm elements \ in} \ \, A {\rm \ that \ are \ less \ than \ } x$
- $A_R \leftarrow$ elements in A that are greater than x
- $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- $t \leftarrow \text{number of times } x \text{ appear } A$
- ③ return the array obtained by concatenating B_L , the array containing t copies of x, and B_R

\\ Divide
\\ Divide
\\ Conquer
\\ Conquer

Selection Algorithm with Median Finder

selection(A, n, i)

- $2 x \leftarrow \text{lower median of } A$
- $I A_L \leftarrow elements in A that are less than x \qquad \qquad \backslash \backslash Divide$
- $A_R \leftarrow$ elements in A that are greater than x
- if $i \leq A_L$.size then
- return selection $(A_L, A_L. size, i)$ $\setminus \ Conquer$
- elseif $i > n A_R$.size then
- return selection $(A_R, A_R.size, i (n A_R.size)) \setminus Conquer$

9 else return x

- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

\\ Divide

Randomized Selection Algorithm

selection(A, n, i)• if n = 1 then return A 2 $x \leftarrow random element of A$ (called pivot) **3** $A_L \leftarrow$ elements in A that are less than x \\ Divide • $A_R \leftarrow$ elements in A that are greater than x \\ Divide • if $i < A_L$ size then return selection $(A_L, A_L$ size, i) \\ Conquer 6 • elseif $i > n - A_B$.size then return selection(A_R, A_R .size, $i - (n - A_R$.size)) \\ Conquer 8 0 else return x

• expected running time = O(n)

Outline

- 1 Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree n-1**Output:** product of two polynomials

Example:

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$= 6x^{6} - 9x^{5} + 18x^{4} - 15x^{3}$$

$$+ 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$- 10x^{4} + 15x^{3} - 30x^{2} + 25x$$

$$+ 8x^{3} - 12x^{2} + 24x - 20$$

$$= 6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

• Input: (4, -5, 2, 3), (-5, 6, -3, 2)

• **Output**: (-20, 49, -52, 20, 2, -5, 6)

polynomial-multiplication(A, B, n)• let C[k] = 0 for every $k = 0, 1, 2, \dots, 2n - 2$ • for $i \leftarrow 0$ to n - 1• for $j \leftarrow 0$ to n - 1• $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$ • return C

Running time: $O(n^2)$

Divide-and-Conquer for Polynomial Multiplication

$$p(x) = 3x^{3} + 2x^{2} - 5x + 4 = (3x + 2)x^{2} + (-5x + 4)$$
$$q(x) = 2x^{3} - 3x^{2} + 6x - 5 = (2x - 3)x^{2} + (6x - 5)$$

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

Divide-and-Conquer for Polynomial Multiplication

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

$$\begin{aligned} \mathsf{multiply}(p,q) &= \mathsf{multiply}(p_H,q_H) \times x^n \\ &+ \big(\mathsf{multiply}(p_H,q_L) + \mathsf{multiply}(p_L,q_H)\big) \times x^{n/2} \\ &+ \mathsf{multiply}(p_L,q_L) \end{aligned}$$

■ Recurrence: T(n) = 4T(n/2) + O(n)
 ■ T(n) = O(n²)

$$pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L)$$

= $p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L$

• $p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L$

Divide-and-Conquer for Polynomial Multiplication

 $r_H = \mathsf{multiply}(p_H, q_H)$ $r_L = \mathsf{multiply}(p_L, q_L)$

 $\begin{aligned} \mathsf{multiply}(p,q) &= r_H \times x^n \\ &+ \left(\mathsf{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L\right) \times x^{n/2} \\ &+ r_L \end{aligned}$

Solving Recurrence: T(n) = 3T(n/2) + O(n)
T(n) = O(n^{lg₂3}) = O(n^{1.585})

Assumption n is a power of 2. Arrays are 0-indexed.

$\mathsf{multiply}(A, B, n)$

1 if
$$n = 1$$
 then return $(A[0]B[0])$
2 $A_L \leftarrow A[0 \dots n/2 - 1], A_H \leftarrow A[n/2 \dots n - 1]$
3 $B_L \leftarrow B[0 \dots n/2 - 1], B_H \leftarrow B[n/2 \dots n - 1]$
3 $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
3 $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
3 $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
6 $C \leftarrow \text{array of } (2n - 1) \text{ 0's}$
7 for $i \leftarrow 0$ to $n - 2$ do
9 $C[i] \leftarrow C[i] + C_L[i]$
9 $C[i + n] \leftarrow C[i + n] + C_H[i]$
10 $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
11 $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12 return C

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

- 6 Solving Recurrences
- Computing n-th Fibonacci Number

- Closest pair
- Convex hull
- Matrix multiplication
- FFT(Fast Fourier Transform): polynomial multiplication in $O(n\lg n)$ time

Closest Pair

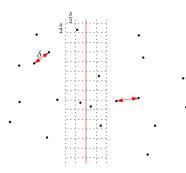
٠

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

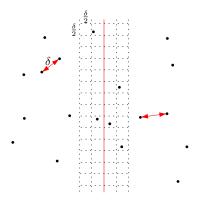
 $\bullet\,$ Trivial algorithm: $O(n^2)$ running time

Divide-and-Conquer Algorithm for Closest Pair

- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

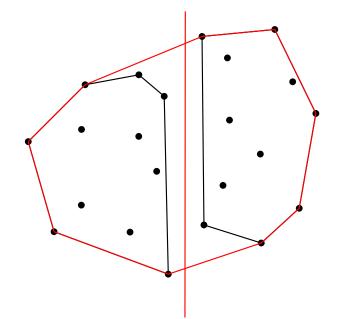


Divide-and-Conquer Algorithm for Closest Pair



- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$

$O(n \lg n)$ -Time Algorithm for Convex Hull



53/73

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B **Output:** C = AB

Naive Algorithm: matrix-multiplication(A, B, n)

• for
$$i \leftarrow 1$$
 to n

2 for
$$j \leftarrow 1$$
 to n

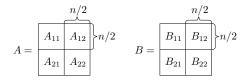
• for
$$k \leftarrow 1$$
 to n

$$C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j]$$

 \bullet return C

• running time =
$$O(n^3)$$

Try to Use Divide-and-Conquer



•
$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

• matrix_multiplication(A, B) recursively calls matrix_multiplication (A_{11}, B_{11}) , matrix_multiplication (A_{12}, B_{21}) ,

. . .

• Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$ • $T(n) = O(n^3)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

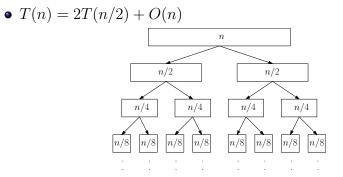
Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences
- Computing n-th Fibonacci Number

Methods for Solving Recurrences

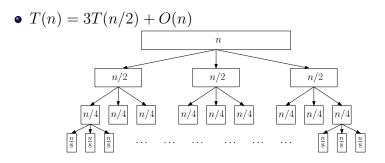
- The recursion-tree method
- The master theorem

Recursion-Tree Method



- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

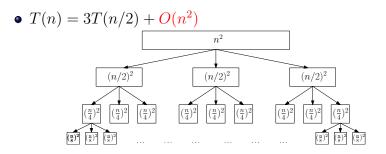
Recursion-Tree Method



- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$

Recursion-Tree Method



- Total running time at level *i*? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $\lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{ if } c < \lg_b a \\ O(n^c \lg n) & \text{ if } c = \lg_b a \\ O(n^c) & \text{ if } c > \lg_b a \end{cases}$$

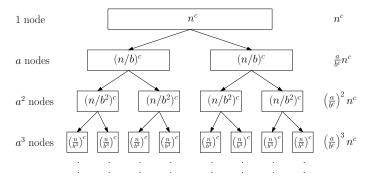
• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$
• Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\lg_2 3})$

• Ex:
$$T(n) = T(n/2) + O(1)$$
. Case 2. $T(n) = O(\lg n)$

• Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

Proof of Master Theorem Using Recursion Tree

 $T(n) = aT(n/b) + O(n^c)$



c < lg_b a : bottom-level dominates: (^a/_{b^c})^{lg_b n} n^c = n^{lg_b a}
c = lg_b a : all levels have same time: n^c lg_b n = O(n^c lg n)
c > lg_b a : top-level dominates: O(n^c)

64/73

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Other Classic Algorithms using Divide-and-Conquer
- 6 Solving Recurrences

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0Output: F_n

Computing F_n : Stupid Divide-and-Conquer Algorithm

$\mathsf{Fib}(n)$

- if n = 0 return 0
- 2 if n = 1 return 1

$$\bullet$$
 return $\mathsf{Fib}(n-1) + \mathsf{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

Fib(n)

- $\bullet F[0] \leftarrow 0$
- ${\bf 2} \ F[1] \leftarrow 1$

3 for
$$i \leftarrow 2$$
 to n do

$$\bullet \quad F[i] \leftarrow F[i-1] + F[i-2]$$

5 return F[n]

- Dynamic Programming
- Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
....

$$\left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right)^{n-1} \left(\begin{array}{c}F_1\\F_0\end{array}\right)$$

power(n)

• if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- $\ 2 \ \ R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- $\textbf{3} \ R \leftarrow R \times R$

• if
$$n$$
 is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

• return R

$\mathsf{Fib}(n)$

- $\textcircled{O} M \gets \mathsf{power}(n-1)$
- o return M[1][1]
 - Recurrence for running time? T(n) = T(n/2) + O(1)

•
$$T(n) = O(\lg n)$$

Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in ${\cal O}(1)$ time
- Even printing F(n) requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n , we need $O(\lg n)$ basic arithmetic operations on integers

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

- Merge sort, quicksort, count-inversions, closest pair, \cdots : $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$
- Integer Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$
- Matrix Multiplication: $T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7})$
- Usually, designing better algorithm for "combine" step is key to improve running time