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Greedy Algorithm

mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an efficient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer

not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more efficient algorithm

main focus of analysis: running time
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Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance
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merge-sort(A, n)

1 if n = 1 then

2 return A

3 else

4 B ← merge-sort
(
A
[
1..bn/2c

]
, bn/2c

)

5 C ← merge-sort
(
A
[
bn/2c+ 1..n

]
, dn/2e

)

6 return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4 , 5

Combine: 6
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Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

Better than insertion sort
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Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit
assumption: T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall
show how later)
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Def. Given an array A of n integers, an inversion in A is a pair
(i, j) of indices such that i < j and A[i] > A[j].

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
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Naive Algorithm for Counting Inversions

count-inversions(A, n)

1 c← 0

2 for every i← 1 to n− 1

3 for every j ← i+ 1 to n

4 if A[i] > A[j] then c← c+ 1

5 return c
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Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.
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Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Lemma If both B and C are sorted, then we can compute m in
O(n) time!
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:
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3

total= 0B:

C:

+0
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2



13/73

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2



13/73

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2



13/73

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2



13/73

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:
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25B:
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Count Inversions between B and C

Procedure that merges B and C and counts inversions
between B and C at the same time

merge-and-count(B,C, n1, n2)

1 count← 0;

2 A← []; i← 1; j ← 1

3 while i ≤ n1 or j ≤ n2

4 if j > n2 or (i ≤ n1 and B[i] ≤ C[j]) then

5 append B[i] to A; i← i+ 1

6 count← count+ (j − 1)

7 else

8 append C[j] to A; j ← j + 1

9 return (A, count)
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Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts
the number of inversions in A:

sort-and-count(A, n)

1 if n = 1 then

2 return (A, 0)

3 else

4 (B,m1)← sort-and-count
(
A
[
1..bn/2c

]
, bn/2c

)

5 (C,m2)← sort-and-count
(
A
[
bn/2c+ 1..n

]
, dn/2e

)

6 (A,m3)← merge-and-count(B,C, bn/2c, dn/2e)
7 return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4 , 5

Combine: 6 , 7
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Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers

Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial
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Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 85
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Quicksort Example

Assumption We can choose median of an array of size n in
O(n) time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429
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Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)
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Assumption We can choose median of an array of size n in
O(n) time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is
complicated and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)
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Quicksort Using A Random Pivot

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real
number in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Quicksort Using A Random Pivot

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Lemma The expected running time of the algorithm is
O(n lg n).
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1)
extra space.
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In-Place Sorting Algorithm: an algorithm that only uses
“small” extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji
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partition(A, `, r)

1 p← random integer between ` and r, swap A[p] and A[`]

2 i← `, j ← r

3 while i < j do

4 while i < j and A[i] ≤ A[j] do j ← j − 1

5 swap A[i] and A[j]

6 while i < j and A[i] ≤ A[j] do i← i+ 1

7 swap A[i] and A[j]

8 `′ ← i, r′ ← i

9 for j ← i− 1 down to `

10 if A[j] = A[i] then `′ ← `′ − 1 and swap A[`′] and A[j]

11 for j ← i+ 1 to r

12 if A[j] = A[i] then r′ ← r′ + 1 and swap A[r′] and A[j]

13 return (`′, r′)
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In-Place Implementation of Quick-Sort

quicksort(A, `, r)

1 if ` ≥ r return

2 (`′, r′)← patition(A, `, r)

3 quicksort(A, `, `′ − 1)

4 quicksort(A, r′ + 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
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Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling
the total size of two arrays

3 8 12 20 32 48

5 7 9 25 29
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements
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Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n lg n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to
know x?

A: dlog2Ne.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n lg n)
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Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before
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Selection Problem

Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n lg n).

Our goal: O(n) running time
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Recall: Quicksort with Median Finder

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR
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Selection Algorithm with Median Finder

selection(A, n, i)

1 if n = 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 if i ≤ AL.size then

6 return selection(AL, AL.size, i) \\ Conquer

7 elseif i > n− AR.size then

8 return selection(AR, AR.size, i− (n−AR.size)) \\ Conquer

9 else return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)
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Randomized Selection Algorithm

selection(A, n, i)

1 if n = 1 then return A

2 x← random element of A (called pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 if i ≤ AL.size then

6 return selection(AL, AL.size, i) \\ Conquer

7 elseif i > n− AR.size then

8 return selection(AR, AR.size, i− (n−AR.size)) \\ Conquer

9 else return x

expected running time = O(n)
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Polynomial Multiplication

Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)

Output: (−20, 49,−52, 20, 2,−5, 6)
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Näıve Algorithm

polynomial-multiplication(A,B, n)

1 let C[k] = 0 for every k = 0, 1, 2, · · · , 2n− 2

2 for i← 0 to n− 1

3 for j ← 0 to n− 1

4 C[i+ j]← C[i+ j] + A[i]×B[j]

5 return C

Running time: O(n2)



42/73
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Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)xn/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL
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pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



43/73

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)xn/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



44/73

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) + multiply(pL, qH)

)
× xn/2

+ multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



44/73

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) + multiply(pL, qH)

)
× xn/2

+ multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



44/73

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) + multiply(pL, qH)

)
× xn/2

+ multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



44/73

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) + multiply(pL, qH)

)
× xn/2

+ multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



45/73

Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
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qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL
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Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlg2 3) = O(n1.585)
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Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A,B, n)

1 if n = 1 then return (A[0]B[0])

2 AL ← A[0 .. n/2− 1], AH ← A[n/2 .. n− 1]

3 BL ← B[0 .. n/2− 1], BH ← B[n/2 .. n− 1]

4 CL ← multiply(AL, BL, n/2)

5 CH ← multiply(AH , BH , n/2)

6 CM ← multiply(AL + AH , BL +BH , n/2)

7 C ← array of (2n− 1) 0’s

8 for i← 0 to n− 2 do

9 C[i]← C[i] + CL[i]

10 C[i+ n]← C[i+ n] + CH [i]

11 C[i+ n/2]← C[i+ n/2] + CM [i]− CL[i]− CH [i]

12 return C
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
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Closest pair

Convex hull

Matrix multiplication

FFT(Fast Fourier Transform): polynomial multiplication in
O(n lg n) time
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Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time
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Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half
and right-half
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Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby

time for combine = O(n) (many technicalities omitted)

Recurrence: T (n) = 2T (n/2) +O(n)

Running time: O(n lg n)
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O(n lg n)-Time Algorithm for Convex Hull
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Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1 for i← 1 to n

2 for j ← 1 to n

3 C[i, j]← 0

4 for k ← 1 to n

5 C[i, j]← C[i, j] + A[i, k]×B[k, j]

6 return C

running time = O(n3)
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Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11),
matrix multiplication(A12, B21),
· · ·

Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)
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Strassen’s Algorithm

T (n) = 8T (n/2) +O(n2)

Strassen’s Algorithm: improve the number of multiplications
from 8 to 7!

New recurrence: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)
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Methods for Solving Recurrences

The recursion-tree method

The master theorem
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Recursion-Tree Method

T (n) = 2T (n/2) +O(n)
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Recursion-Tree Method

T (n) = 3T (n/2) +O(n)

n

Total running time at level i?

n
2i
× 3i =

(
3
2

)i
n

Index of last level?

lg2 n

Total running time?

lg2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)lg2 n
)

= O(3lg2 n) = O(nlg2 3).
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Ex: T (n) = 2T (n/2) +O(n2). Case 3. T (n) = O(n2)
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Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)
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c < lgb a : bottom-level dominates:
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)lgb n nc = nlgb a

c = lgb a : all levels have same time: nc lgb n = O(nc lg n)

c > lgb a : top-level dominates: O(nc)
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Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number
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Fibonacci Numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

n-th Fibonacci Number

Input: integer n > 0

Output: Fn
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Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1 if n = 0 return 0

2 if n = 1 return 1

3 return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or
exponential in n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n
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Computing Fn: Reasonable Algorithm

Fib(n)

1 F [0]← 0

2 F [1]← 1

3 for i← 2 to n do

4 F [i]← F [i− 1] + F [i− 2]

5 return F [n]

Dynamic Programming

Running time = ?
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2 F [1]← 1

3 for i← 2 to n do

4 F [i]← F [i− 1] + F [i− 2]

5 return F [n]

Dynamic Programming

Running time = O(n)
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Computing Fn: Even Better Algorithm

(
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Fn−1

)
=

(
1 1
1 0

)(
Fn−1
Fn−2

)

(
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=

(
1 1
1 0

)2(
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· · ·
(
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=

(
1 1
1 0

)n−1(
F1

F0

)



70/73

power(n)

1 if n = 0 then return

(
1 0
0 1

)

2 R← power(bn/2c)
3 R← R×R
4 if n is odd then R← R×

(
1 1
1 0

)

5 return R

Fib(n)

1 if n = 0 then return 0

2 M ← power(n− 1)

3 return M [1][1]

Recurrence for running time?

T (n) = T (n/2) +O(1)

T (n) = O(lg n)
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Running time = O(lg n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in
O(1) time

Even printing F (n) requires time much larger than O(lg n)

Fixing the Problem

To compute Fn, we need O(lg n) basic arithmetic operations on
integers
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Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem
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Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n lg n)

Integer Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlg2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlg2 7)

Usually, designing better algorithm for “combine” step is key
to improve running time
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