
CSE 431/531: Algorithm Analysis and Design (Spring 2019)

Dynamic Programming

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/83

Paradigms for Designing Algorithms

Greedy algorithm

Make a greedy choice

Prove that the greedy choice is safe

Reduce the problem to a sub-problem and solve it iteratively

Usually for optimization problems

Divide-and-conquer

Break a problem into many independent sub-problems

Solve each sub-problem separately

Combine solutions for sub-problems to form a solution for the
original one

Usually used to design more efficient algorithms



3/83

Paradigms for Designing Algorithms

Dynamic Programming

Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



4/83

Recall: Computing the n-th Fibonacci Number

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Fib(n)

1 F [0]← 0

2 F [1]← 1

3 for i← 2 to n do

4 F [i]← F [i− 1] + F [i− 2]

5 return F [n]

Store each F [i] for future use.



5/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



6/83

Recall: Interval Schduling

Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

Optimum value = 220



7/83

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time? No, we are ignoring weights

Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job

0 1 2 3 4 5 6 7 8 9



8/83

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Sort jobs according to non-decreasing
order of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0 0
1 80
2 100
3 100
4 105
5 150
6 170
7 185
8 220
9 220



9/83

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

Focus on instance
{1, 2, 3, · · · , i},
opt[i]: optimal value for the
instance

assume we have computed
opt[0], opt[1], · · · , opt[i− 1]

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si



10/83

Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain i?

A: opt[i− 1]

Q: The value of optimal solution that contains job i?

A: vi + opt[pi], pi = the largest j such that fj ≤ si

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}



11/83

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0

opt[1] = max{opt[0], 80 + opt[0]} = 80

opt[2] = max{opt[1], 100 + opt[0]} = 100

opt[3] = max{opt[2], 90 + opt[0]} = 100

opt[4] = max{opt[3], 25 + opt[1]} = 105

opt[5] = max{opt[4], 50 + opt[3]} = 150



12/83

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i− 1], vi + opt[pi]}

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

opt[0] = 0, opt[1] = 80, opt[2] = 100

opt[3] = 100, opt[4] = 105, opt[5] = 150

opt[6] = max{opt[5], 70 + opt[3]} = 170

opt[7] = max{opt[6], 80 + opt[4]} = 185

opt[8] = max{opt[7], 50 + opt[6]} = 220

opt[9] = max{opt[8], 30 + opt[7]} = 220



13/83

Recursive Algorithm to Compute opt[n]

1 sort jobs by non-decreasing order of finishing times

2 compute p1, p2, · · · , pn
3 return compute-opt(n)

compute-opt(i)

1 if i = 0 then

2 return 0

3 else

4 return max{compute-opt(i− 1), vi + compute-opt(pi)}

Running time can be exponential in n

Reason: we are computed each opt[i] many times

Solution: store the value of opt[i], so it’s computed only once



14/83

Memoized Recursive Algorithm

1 sort jobs by non-decreasing order of finishing times

2 compute p1, p2, · · · , pn
3 opt[0]← 0 and opt[i]← ⊥ for every i = 1, 2, 3, · · · , n
4 return compute-opt(n)

compute-opt(i)

1 if opt[i] = ⊥ then

2 opt[i]← max{compute-opt(i− 1), vi + compute-opt(pi)}
3 return opt[i]

Running time sorting: O(n lg n)

Running time for computing p: O(n lg n) via binary search

Running time for computing opt[n]: O(n)



15/83

Dynamic Programming

1 sort jobs by non-decreasing order of finishing times

2 compute p1, p2, · · · , pn
3 opt[0]← 0

4 for i← 1 to n

5 opt[i]← max{opt[i− 1], vi + opt[pi]}

Running time sorting: O(n lg n)

Running time for computing p: O(n lg n) via binary search

Running time for computing opt[n]: O(n)



16/83

How Can We Recover the Optimum Schedule?

1 sort jobs by non-decreasing order
of finishing times

2 compute p1, p2, · · · , pn
3 opt[0]← 0

4 for i← 1 to n

5 if opt[i− 1] ≥ vi + opt[pi]

6 opt[i]← opt[i− 1]

7 b[i]← N

8 else

9 opt[i]← vi + opt[pi]

10 b[i]← Y

1 i← n, S ← ∅
2 while i 6= 0

3 if b[i] = N

4 i← i− 1

5 else

6 S ← S ∪ {i}
7 i← pi
8 return S



17/83

Recovering Optimum Schedule: Example

i opt[i] b[i]
0 0 ⊥
1 80 Y
2 100 Y
3 100 N
4 105 Y
5 150 Y
6 170 Y
7 185 Y
8 220 Y
9 220 N

0 1 2 3 4 5 6 7 8 9

100

80

90

25

50 30

50

80

70

2

1

3

4

5

6

7

8

9

i



18/83

Dynamic Programming

Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



19/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



20/83

Subset Sum Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

Output: a subset S of items that

maximizes
∑
i∈S

wi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset
of items, so as to spend as much money as possible.

Example:

W = 35, n = 5, w = (14, 9, 17, 10, 13)

Optimum: S = {1, 2, 4} and 14 + 9 + 10 = 33



21/83

Greedy Algorithms for Subset Sum

Candidate Algorithm:

Sort according to non-increasing order of weights

Select items in the order as long as the total weight remains
below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change “non-increasing” to “non-decreasing”?

A: No. W = 100, n = 3, w = (1, 50, 50)



22/83

Design a Dynamic Programming Algorithm

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i− 1,W ′]

Q: The value of the optimum solution that contains i?

A: opt[i− 1,W ′ − wi] + wi



23/83

Dynamic Programming

Consider the instance: i,W ′, (w1, w2, · · · , wi);

opt[i,W ′]: the optimum value of the instance

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + wi

}
i > 0, wi ≤ W ′



24/83

Dynamic Programming

1 for W ′ ← 0 to W

2 opt[0,W ′]← 0

3 for i← 1 to n

4 for W ′ ← 0 to W

5 opt[i,W ′]← opt[i− 1,W ′]

6 if wi ≥ W ′ and opt[i− 1,W ′ − wi] + wi ≥ opt[i,W ′]
then

7 opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8 return opt[n,W ]



25/83

Recover the Optimum Set

1 for W ′ ← 0 to W

2 opt[0,W ′]← 0

3 for i← 1 to n

4 for W ′ ← 0 to W

5 opt[i,W ′]← opt[i− 1,W ′]

6 b[i,W ′]← N

7 if wi ≤ W ′ and opt[i− 1,W ′ − wi] + wi ≥ opt[i,W ′]
then

8 opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

9 b[i,W ′]← Y

10 return opt[n,W ]



26/83

Recover the Optimum Set

1 i← n,W ′ ← W,S ← ∅
2 while i > 0

3 if b[i,W ′] = Y then

4 W ′ ← W ′ − wi

5 S ← S ∪ {i}
6 i← i− 1

7 return S



27/83

Running Time of Algorithm

1 for W ′ ← 0 to W

2 opt[0,W ′]← 0

3 for i← 1 to n

4 for W ′ ← 0 to W

5 opt[i,W ′]← opt[i− 1,W ′]

6 if wi ≤ W ′ and opt[i− 1,W ′ − wi] + wi ≥ opt[i,W ′]
then

7 opt[i,W ′]← opt[i− 1,W ′ − wi] + wi

8 return opt[n,W ]

Running time is O(nW )

Running time is pseudo-polynomial because it depends on
value of the input integers.



28/83

Avoiding Unncessary Computation and Memory

Using Memoized Algorithm and Hash Map

compute-opt(i,W ′)

1 if opt[i,W ′] 6= ⊥ return opt[i,W ′]

2 if i = 0 then r ← 0

3 else

4 r ← compute-opt(i− 1,W ′)

5 if wi ≤ W ′ then

6 r′ ← compute-opt(i− 1,W ′ − wi) + wi

7 if r′ > r then r ← r′

8 opt[i,W ′]← r

9 return r

Use hash map for opt



29/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



30/83

Knapsack Problem

Input: an integer bound W > 0

a set of n items, each with an integer weight wi > 0

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W.

Motivation: you have budget W , and want to buy a subset
of items of maximum total value



31/83

DP for Knapsack Problem

opt[i,W ′]: the optimum value when budget is W ′ and items
are {1, 2, 3, · · · , i}.
If i = 0, opt[i,W ′] = 0 for every W ′ = 0, 1, 2, · · · ,W .

opt[i,W ′] =


0 i = 0

opt[i− 1,W ′] i > 0, wi > W ′

max

{
opt[i− 1,W ′]

opt[i− 1,W ′ − wi] + vi

}
i > 0, wi ≤ W ′



32/83

Exercise: Items with 3 Parameters

Input: integer bounds W > 0, Z > 0,

a set of n items, each with an integer weight wi > 0

a size zi > 0 for each item i

a value vi > 0 for each item i

Output: a subset S of items that

maximizes
∑
i∈S

vi s.t.∑
i∈S

wi ≤ W and
∑
i∈S

zi ≤ Z



33/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



34/83

Subsequence

A = bacdca

C = adca

C is a subsequence of A

Def. Given two sequences A[1 .. n] and C[1 .. t] of letters, C is
called a subsequence of A if there exists integers
1 ≤ i1 < i2 < i3 < . . . < it ≤ n such that A[ij] = C[j] for every
j = 1, 2, 3, · · · , t.

Exercise: how to check if sequence C is a subsequence of A?



35/83

Longest Common Subsequence

Input: A[1 .. n] and B[1 .. m]

Output: the longest common subsequence of A and B

Example:

A = ‘bacdca′

B = ‘adbcda′

LCS(A,B) = ‘adca′

Applications: edit distance (diff), similarity of DNAs



36/83

Matching View of LCS

b a c d c a

a d b c d a

Goal of LCS: find a maximum-size non-crossing matching
between letters in A and letters in B.



37/83

Reduce to Subproblems

A = ‘bacdca′

B = ‘adbcda′

either the last letter of A is not matched:

need to compute LCS(‘bacdc′, ‘adbc′)

or the last letter of B is not matched:

need to compute LCS(‘bacd′, ‘adbcd′)



38/83

Dynamic Programming for LCS

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: length of longest common
sub-sequence of A[1 .. i] and B[1 .. j].

if i = 0 or j = 0, then opt[i, j] = 0.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] + 1 if A[i] = B[j]

max

{
opt[i− 1, j]

opt[i, j − 1]
if A[i] 6= B[j]



39/83

Dynamic Programming for LCS

1 for j ← 0 to m do

2 opt[0, j]← 0

3 for i← 1 to n

4 opt[i, 0]← 0

5 for j ← 1 to m

6 if A[i] = B[j] then

7 opt[i, j]← opt[i− 1, j − 1] + 1, π[i, j]← “↖”

8 elseif opt[i, j − 1] ≥ opt[i− 1, j] then

9 opt[i, j]← opt[i, j − 1], π[i, j]←“←”

10 else

11 opt[i, j]← opt[i− 1, j], π[i, j]← “↑”



40/83

Example

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



41/83

Example: Find Common Subsequence

1 2 3 4 5 6
A b a c d c a
B a d b c d a

0 1 2 3 4 5 6
0 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥ 0 ⊥
1 0 ⊥ 0 ← 0 ← 1 ↖ 1 ← 1 ← 1 ←
2 0 ⊥ 1 ↖ 1 ← 1 ← 1 ← 1 ← 2 ↖
3 0 ⊥ 1 ↑ 1 ← 1 ← 2 ↖ 2 ← 2 ←
4 0 ⊥ 1 ↑ 2 ↖ 2 ← 2 ← 3 ↖ 3 ←
5 0 ⊥ 1 ↑ 2 ↑ 2 ← 3 ↖ 3 ← 3 ←
6 0 ⊥ 1 ↖ 2 ↑ 2 ← 3 ↑ 3 ← 4 ↖



42/83

Find Common Subsequence

1 i← n, j ← m,S ←“”

2 while i > 0 and j > 0

3 if π[i, j] =“↖” then

4 S ← A[i] on S, i← i− 1, j ← j − 1

5 else if π[i, j] =“↑”
6 i← i− 1

7 else

8 j ← j − 1

9 return S



43/83

Variants of Problem

Edit Distance with Insertions and Deletions

Input: a string A

each time we can delete a letter from A or insert a
letter to A

Output: minimum number of operations (insertions or
deletions) we need to change A to B?

Example:

A = ocurrance, B = occurrence

3 operations: insert ’c’, remove ’a’ and insert ’e’

Obs. #OPs = length(A) + length(B) - 2 · length(LCS(A, B))



44/83

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing

Input: a string A,

each time we can delete a letter from A, insert a letter
to A or change a letter

Output: how many operations do we need to change A to B?

Example:

A = ocurrance, B = occurrence.

2 operations: insert ’c’, change ’a’ to ’e’

Not related to LCS any more



45/83

Edit Distance (with Replacing)

opt[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m: edit distance between
A[1 .. i] and B[1 .. j].

if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

if i > 0, j > 0, then

opt[i, j] =


opt[i− 1, j − 1] if A[i] = B[j]

min


opt[i− 1, j] + 1

opt[i, j − 1] + 1

opt[i− 1, j − 1] + 1

if A[i] 6= B[j]



46/83

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward.

example: “racecar”, “wasitacaroracatisaw”, ”putitup”

Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:

Input: acbcedeacab

Output: acedeca



47/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



48/83

Computing the Length of LCS

1 for j ← 0 to m do

2 opt[0, j]← 0

3 for i← 1 to n

4 opt[i, 0]← 0

5 for j ← 1 to m

6 if A[i] = B[j]

7 opt[i, j]← opt[i− 1, j − 1] + 1

8 elseif opt[i, j − 1] ≥ opt[i− 1, j]

9 opt[i, j]← opt[i, j − 1]

10 else

11 opt[i, j]← opt[i− 1, j]

Obs. The i-th row of table only depends on (i− 1)-th row.



49/83

Reducing Space to O(n +m)

Obs. The i-th row of table only depends on (i− 1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i− 1)-th row and the i-th row.



50/83

Linear Space Algorithm to Compute Length of LCS

1 for j ← 0 to m do

2 opt[0, j]← 0

3 for i← 1 to n

4 opt[i mod 2, 0]← 0

5 for j ← 1 to m

6 if A[i] = B[j]

7 opt[i mod 2, j]← opt[i− 1 mod 2, j − 1] + 1

8 elseif opt[i mod 2, j − 1] ≥ opt[i− 1 mod 2, j]

9 opt[i mod 2, j]← opt[i mod 2, j − 1]

10 else

11 opt[i mod 2, j]← opt[i− 1 mod 2, j]

12 return opt[n mod 2,m]



51/83

How to Recover LCS Using Linear Space?

Only keep the last two rows: only know how to match A[n]

Can recover the LCS using n rounds: time = O(n2m)

Using Divide and Conquer + Dynamic Programming:

Space: O(m+ n)
Time: O(nm)



52/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



53/83

Recall: Single Source Shortest Path Problem

Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Algorithm for the problem: Dijkstra’s algorithm



54/83

16 10

1 5 12 4

74

3

s c d

e f t

a b

2

5

8 9 6

0

3

2 7

7

4 13

14
u



55/83

Dijkstra’s Algorithm Using Priorty Queue

Dijkstra(G,w, s)

1 S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
2 Q← empty queue, for each v ∈ V : Q.insert(v, d(v))

3 while S 6= V , do

4 u← Q.extract min()

5 S ← S ∪ {u}
6 for each v ∈ V \ S such that (u, v) ∈ E
7 if d(u) + w(u, v) < d(v) then

8 d(v)← d(u) + w(u, v), Q.decrease key(v, d(v))

9 π(v)← u

10 return (π, d)

Running time = O(m+ n lg n).



56/83

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V
assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

In transition graphs, negative weights make sense

If we sell a item: ‘having the item’ → ‘not having the item’,
weight is negative (we gain money)

Dijkstra’s algorithm does not work any more!



57/83

Dijkstra’s Algorithm Fails if We Have Negative

Weights

s

a

b

c

2

3
-4

1

5



58/83

s a

b

c

d

2
-5

3
1 4

Q: What is the length of the shortest path from s to d?

A: −∞

Def. A negative cycle is a cycle in which the total weight of
edges is negative.

Dealing with Negative Cycles

assume the input graph does not contain negative cycles, or

allow algorithm to report “negative cycle exists”



59/83

s a

b

c

d

2
-5

3
1 4

Q: What is the length of the shortest simple path from s to d?

A: 1

Unfortunately, computing the shortest simple path between
two vertices is an NP-hard problem.



60/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



61/83

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles.

s a

b

c

d

not a DAG

31

2

4

6

5

7

8

a DAG

Lemma A directed graph is a DAG if and only its vertices can
be topologically sorted.



62/83

Shortest Paths in DAG

Input: directed acyclic graph G = (V,E) and w : E → R.

Assume V = {1, 2, 3 · · · , n} is topologically sorted: if
(i, j) ∈ E, then i < j

Output: the shortest path from 1 to i, for every i ∈ V

31

2

4

6

5

7

8

3

5

1
9

8
6

1

9

5

2

2

8

1



63/83

Shortest Paths in DAG

f [i]: length of the shortest path from 1 to i

f [i] =

{
0 i = 1

minj:(j,i)∈E {f(j) + w(j, i)} i = 2, 3, · · · , n



64/83

Shortest Paths in DAG

Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1 f [1]← 0

2 for i← 2 to n do

3 f [i]←∞
4 for each incoming edge (j, i) ∈ E of i

5 if f [j] + w(j, i) < f [i]

6 f [i]← f [j] + w(j, i)

7 π(i)← j

print-path(t)

1 if t = 1 then

2 print(1)

3 return

4 print-path(π(t))

5 print(“,”, t)



65/83

Example

31

2

4

6

5

7

8

0

1

2

8

10

7

9

3

5

1
9

8
6

1

9

5

2

2

8

1



66/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



67/83

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V
assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

first try: f [v]: length of shortest path from s to v

issue: do not know in which order we compute f [v]’s

f `[v], ` ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V : length of shortest
path from s to v that uses at most ` edges



68/83

67

8

-2
-3-4

7

s

ab

c d

f `[v], ` ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V :
length of shortest path from s to v that
uses at most ` edges

f 2[a] = 6

f 3[a] = 2

f `[v] =


0 ` = 0, v = s

∞ ` = 0, v 6= s

min

{
f `−1[v]

minu:(u,v)∈E
(
f `−1[u] + w(u, v)

) ` > 0



69/83

dynamic-programming(G,w, s)

1 f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n− 1 do

3 copy f `−1 → f `

4 for each (u, v) ∈ E
5 if f `−1[u] + w(u, v) < f `[v]

6 f `[v]← f `−1[u] + w(u, v)

7 return (fn−1[v])v∈V

Obs. Assuming there are no negative cycles, then a shortest
path contains at most n− 1 edges



70/83

Dynamic Programming: Example

67

8

-2
-3-4

7

s

ab

c d

s a db c
0 ∞ ∞ ∞ ∞

0 2 7 -2 4

0

0

0

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

f 0

f 4

f 3

f 2

f 1 6 7 ∞ ∞

6 7 2 4

2 7 2 4



71/83

dynamic-programming(G,w, s)

1 f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n− 1 do

3 copy f `−1 → f `

4 for each (u, v) ∈ E
5 if f `−1[u] + w(u, v) < f `[v]

6 f `[v]← f `−1[u] + w(u, v)

7 return (fn−1[v])v∈V

Obs. Assuming there are no negative cycles, then a shortest
path contains at most n− 1 edges

Q: What if there are negative cycles?



72/83

Dynamic Programming With Negative Cycle

Detection

dynamic-programming(G,w, s)

1 f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n− 1 do

3 copy f `−1 → f `

4 for each (u, v) ∈ E
5 if f `−1[u] + w(u, v) < f `[v]

6 f `[v]← f `−1[u] + w(u, v)

7 for each (u, v) ∈ E
8 if fn−1[u] + w(u, v) < fn−1[v]

9 report “negative cycle exists” and exit

10 return (fn−1[v])v∈V



73/83

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1 f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n− 1 do

3 for each (u, v) ∈ E
4 if f [u] + w(u, v) < f [v]

5 f [v]← f [u] + w(u, v)

6 return f

Issue: when we compute f [u] + w(u, v), f [u] may be
changed since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest
path from s to v that uses at most ` edges

f [v] is always the length of some path from s to v



74/83

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1 f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n− 1 do

3 for each (u, v) ∈ E
4 if f [u] + w(u, v) < f [v]

5 f [v]← f [u] + w(u, v)

6 return f

After iteration `, f [v] is at most the length of the shortest
path from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

Assuming there are no negative cycles, after iteration n− 1,
f [v] = length of shortest path from s to v



75/83

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1 f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2 for `← 1 to n do

3 updated← false

4 for each (u, v) ∈ E
5 if f [u] + w(u, v) < f [v]

6 f [v]← f [u] + w(u, v), π[v]← u

7 updated← true

8 if not updated, then return f

9 output “negative cycle exists”

π[v]: the parent of v in the shortest path tree

Running time = O(nm)



76/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



77/83

Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices A1, A2, · · · , An of sizes
r1 × c1, r2 × c2, · · · , rn × cn, such that ci = ri+1 for
every i = 1, 2, · · · , n− 1.

Output: the order of computing A1A2 · · ·An with the minimum
number of multiplications

Fact Multiplying two matrices of size r × k and k × c takes
r × k × c multiplications.



78/83

Example:

A1 : 10× 100, A2 : 100× 5, A3 : 5× 50

10× 100 100× 5 5× 50

10× 5
10 · 100 · 5
= 5000

10× 50
10 · 5 · 50
= 2500

cost = 5000 + 2500 = 7500

10× 100 100× 5 5× 50

100× 50
100 · 5 · 50
= 25000

10× 5
10 · 100 · 50
= 50000

cost = 25000 + 50000 = 75000

(A1A2)A3: 10× 100× 5 + 10× 5× 50 = 7500

A1(A2A3): 100× 5× 50 + 10× 100× 50 = 75000



79/83

Matrix Chain Multiplication: Design DP

Assume the last step is (A1A2 · · ·Ai)(Ai+1Ai+2 · · ·An)

Cost of last step: r1 × ci × cn
Optimality for sub-instances: we need to compute
A1A2 · · ·Ai and Ai+1Ai+2 · · ·An optimally

opt[i, j] : the minimum cost of computing AiAi+1 · · ·Aj

opt[i, j] =

{
0 i = j

mink:i≤k<j (opt[i, k] + opt[k + 1, j] + rickcj) i < j



80/83

matrix-chain-multiplication(n, r[1..n], c[1..n])

1 let opt[i, i]← 0 for every i = 1, 2, · · · , n
2 for `← 2 to n

3 for i← 1 to n− `+ 1

4 j ← i+ `− 1

5 opt[i, j]←∞
6 for k ← i to j − 1

7 if opt[i, k] + opt[k + 1, j] + rickcj < opt[i, j]

8 opt[i, j]← opt[i, k] + opt[k + 1, j] + rickcj
9 return opt[1, n]



81/83

Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Graphs with Negative Weights
Shortest Paths in Directed Acyclic Graphs
Bellman-Ford Algorithm

6 Matrix Chain Multiplication

7 Summary



82/83

Dynamic Programming

Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



83/83

Definition of Cells for Problems We Learnt

Weighted interval scheduling: opt[i] = value of instance
defined by jobs {1, 2, · · · , i}
Subset sum, knapsack: opt[i,W ′] = value of instance with
items {1, 2, · · · , i} and budget W ′

Longest common subsequence: opt[i, j] = value of instance
defined by A[1..i] and B[1..j]

Matrix chain multiplication: opt[i, j] = value of instances
defined by matrices i to j

Shortest paths in DAG: f [v] = length of shortest path from s
to v

Bellman-Ford: f `[v] = length of shortest path from s to v
that uses at most ` edges


	Weighted Interval Scheduling
	Subset Sum Problem
	Knapsack Problem
	Longest Common Subsequence
	Longest Common Subsequence in Linear Space

	Shortest Paths in Graphs with Negative Weights
	Shortest Paths in Directed Acyclic Graphs
	Bellman-Ford Algorithm

	Matrix Chain Multiplication
	Summary

