#### CSE 431/531: Algorithm Analysis and Design (Spring 2019) Graph Basics

#### Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

# Outline



Connectivity and Graph TraversalTesting Bipartiteness



### Examples of Graphs



Figure: Road Networks



Figure: Social Networks



Figure: Internet

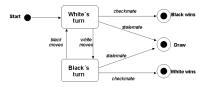
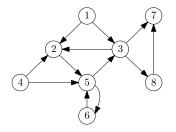


Figure: Transition Graphs

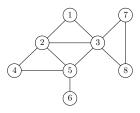
# (Undirected) Graph G = (V, E)



- V: set of vertices (nodes);
  - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
  - (undirected) graphs: relationship is symmetric,  ${\cal E}$  contains subsets of size 2
  - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},$  $\{4,5\},\{5,6\},\{7,8\}\}$

#### Abuse of Notations

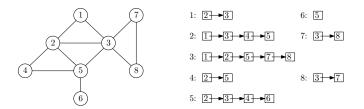
- For (undirected) graphs, we often use (i, j) to denote the set  $\{i, j\}$ .
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



•  $E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}$ 

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

### Representation of Graphs



- Adjacency matrix
  - $n\times n$  matrix, A[u,v]=1 if  $(u,v)\in E$  and A[u,v]=0 otherwise
  - $\bullet \ A$  is symmetric if graph is undirected
- Linked lists
  - For every vertex v, there is a linked list containing all neighbours of v.

#### Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- *m*: number of edges, assuming  $n-1 \le m \le n(n-1)/2$
- $d_v$ : number of neighbors of v

|                                    | Matrix   | Linked Lists |
|------------------------------------|----------|--------------|
| memory usage                       | $O(n^2)$ | O(m)         |
| time to check $(u,v) \in E$        | O(1)     | $O(d_u)$     |
| time to list all neighbours of $v$ | O(n)     | $O(d_v)$     |



# Connectivity and Graph TraversalTesting Bipartiteness



#### **Connectivity Problem**

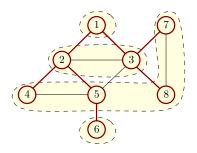
**Input:** graph G = (V, E), (using linked lists) two vertices  $s, t \in V$ 

**Output:** whether there is a path connecting s to t in G

- Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t* 
  - Breadth-First Search (BFS)
  - Depth-First Search (DFS)

# Breadth-First Search (BFS)

- Build layers  $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$  contains all nodes that are not in  $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in  $L_j$



## Implementing BFS using a Queue

#### BFS(s)

| 1 | $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$            |
|---|--------------------------------------------------------------------------|
| 2 | mark $\boldsymbol{s}$ as "visited" and all other vertices as "unvisited" |
| 3 | while head $\geq$ tail                                                   |
| 4 | $v \leftarrow queue[tail], tail \leftarrow tail + 1$                     |
| 5 | for all neighbours $u$ of $v$                                            |
| 6 | if $u$ is "unvisited" then                                               |
| 7 | $head \leftarrow head + 1, queue[head] = u$                              |
| 8 | mark $u$ as "visited"                                                    |

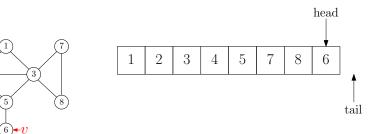
• Running time: O(n+m).

#### Example of BFS via Queue

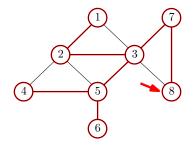
2

4

5



- Starting from  $\boldsymbol{s}$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



## Implementing DFS using a Stack

#### $\mathsf{DFS}(s)$

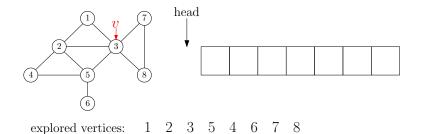
9

- mark all vertices as "unexplored"
- 3 while head  $\geq 1$
- if v is unexplored then
- mark v as "explored"
- $\bigcirc$  for all neighbours u of v
- $\bullet$  if u is not explored then

 $head \leftarrow head + 1, stack[head] = u$ 

• Running time: O(n+m).

#### Example of DFS using Stack



# Implementing DFS using Recurrsion

#### DFS(s)

- mark all vertices as "unexplored"
- **2** recursive-DFS(s)

#### recursive- $\mathsf{DFS}(v)$

- **1** if v is explored then return
- 2 mark v as "explored"
- (3) for all neighbours u of v
- recursive-DFS(u)

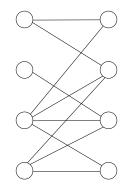


# Connectivity and Graph Traversal Testing Bipartiteness



#### Testing Bipartiteness: Applications of BFS

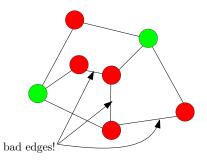
**Def.** A graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge  $(u, v) \in E$ , we have either  $u \in L, v \in R$  or  $v \in L, u \in R$ .



- Taking an arbitrary vertex  $s \in V$
- Assuming  $s \in L$  w.l.o.g
- Neighbors of  $\boldsymbol{s}$  must be in  $\boldsymbol{R}$
- Neighbors of neighbors of s must be in L
- • •
- Report "not a bipartite graph" if contradiction was found
- $\bullet~$  If G contains multiple connected components, repeat above algorithm for each component

# Test Bipartiteness





# Testing Bipartiteness using BFS

#### $\mathsf{BFS}(s)$

1

8

10

12

- $\textcircled{1} head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2 mark s as "visited" and all other vertices as "unvisited"
- $oldsymbol{3} color[s] \leftarrow 0$
- while head  $\geq$  tail
- for all neighbours u of v
  - if u is "unvisited" then
    - $head \leftarrow head + 1, queue[head] = u$
- mark u as "visited"
  - $color[u] \leftarrow 1 color[v]$
  - elseif color[u] = color[v] then
    - $\mathsf{print}(``G \mathsf{ is not bipartite''})$  and exit

### Testing Bipartiteness using BFS

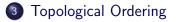
- mark all vertices as "unvisited"
- 2 for each vertex  $v \in V$
- if v is "unvisited" then
- test-bipartiteness(v)
- print("G is bipartite")

**Obs.** Running time of algorithm = O(n + m)

Homework problem: using DFS to implement test-bipartiteness.



Connectivity and Graph TraversalTesting Bipartiteness



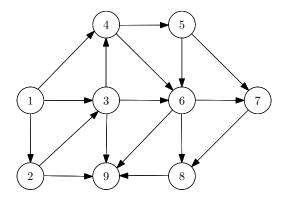
#### **Topological Ordering Problem**

Input: a directed acyclic graph (DAG) G = (V, E)Output: 1-to-1 function  $\pi : V \to \{1, 2, 3 \cdots, n\}$ , so that • if  $(u, v) \in E$  then  $\pi(u) < \pi(v)$ 

> 5 3 6 2

# **Topological Ordering**

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.



• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

**Q:** How to make the algorithm as efficient as possible?

#### **A**:

- Use linked-lists of outgoing edges
- Maintain the in-degree  $d_v$  of vertices
- Maintain a queue (or stack) of vertices v with  $d_v = 0$

#### topological-sort(G)

• let  $d_v \leftarrow 0$  for every  $v \in V$ **2** for every  $v \in V$ for every u such that  $(v, u) \in E$ 3  $d_u \leftarrow d_u + 1$ 4  $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$ • while  $S \neq \emptyset$  $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$ 1  $i \leftarrow i+1, \pi(v) \leftarrow i$ 8 9 for every u such that  $(v, u) \in E$  $d_{u} \leftarrow d_{u} - 1$ 10 if  $d_u = 0$  then add u to S **2** if i < n then output "not a DAG"

 $\bullet\ S$  can be represented using a queue or a stack

• Running time = O(n+m)