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Examples of Graphs
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Figure: Transition Graphs



(Undirected) Graph G = (V, E)

e V: set of vertices (nodes);
o V={1,2,3,4,5,6,7,8}
e [ pairwise relationships among V;
e (undirected) graphs: relationship is symmetric, E contains

subsets of size 2
o E={{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{3,7},{3,8},
{4,5}.{5,6},{7,8}}



Abuse of Notations

e For (undirected) graphs, we often use (7, j) to denote the set
{i.j}.

@ We call (i,7) an unordered pair; in this case (i,j) = (j,1).

(1) (7)
°v°‘
(6)
o B=1{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7), (3,8),
(4,5),(5,6),(7,8)}



@ Social Network : Undirected
@ Transition Graph : Directed
@ Road Network : Directed or Undirected

@ Internet : Directed or Undirected



Representation of Graphs

1: 2++3] 63
2: [13-+{31+{43—5] 7 338

4: [24—5] 8: BT

@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Afu,v] =0
otherwise
e A is symmetric if graph is undirected
@ Linked lists
o For every vertex v, there is a linked list containing all
neighbours of v.



Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
@ m: number of edges, assumingn —1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E o(1) O(dy)

time to list all neighbours of v | O(n) O(dy)
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Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V'
Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

e Breadth-First Search (BFS)
e Depth-First Search (DFS)



Breadth-First Search (BFS)

@ Build Iayers Lo, L1> LQ, Lg, ce

o Ly={s}

@ L;, contains all nodes that are not in LoU L U---UL;
and have an edge to a vertex in L;

P -~




Implementing BFS using a Queue

BFS(s)

Q head + 1,tail < 1, queue[l] < s

© mark s as “visited” and all other vertices as “unvisited”
© while head > tail

Q@ v« queueltail], tail < tail + 1

© for all neighbours u of v

Q if u is “unvisited” then

(7] head < head + 1, queuelhead] = u
o

mark u as “visited”

@ Running time: O(n + m).



head

tail
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Depth-First Search (DFS)

e Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex ( “dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back




Implementing DFS using a Stack

DFS(s)

Q head + 1, stack[l] < s

© mark all vertices as “unexplored”

© while head > 1

Q@ v < stack[head], head < head — 1
if v is unexplored then

mark v as “explored”

if u is not explored then

(5]

o

Q for all neighbours u of v

o

(o] head < head + 1, stack[head] = u

@ Running time: O(n + m).



explored vertices: 1 2 3 5 4 6 7 8
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Implementing DFS using Recurrsion

DFS(s)
@ mark all vertices as “unexplored”
@ recursive-DFS(s)

recursive-DFS(v)
@ if v is explored then return
© mark v as “explored”

© for all neighbours u of v
Q@  recursive-DFS(u)
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Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a
bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, we have either
ue L,veRorveLucR.




Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g
Neighbors of s must be in R

°

°

°

@ Neighbors of neighbors of s must be in L

°

@ Report “not a bipartite graph” if contradiction was found
°

If G contains multiple connected components, repeat above
algorithm for each component



Test Bipartiteness

bad edges!
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Testing Bipartiteness using BFS

BFS(s)

Q head + 1,tail + 1, queue[l] « s

© mark s as “visited” and all other vertices as “unvisited”

© color(s] <0

© while head > tail

v < queue[tail, tail < tail + 1

for all neighbours u of v

if u is “unvisited” then

head < head + 1, queuelhead] = u
mark u as “visited”
color[u] < 1 — color[v]

elseif color|u] = color|v] then

®©®6 600000

print(“G is not bipartite”) and exit




Testing Bipartiteness using BFS

© mark all vertices as “unvisited”
@ for each vertex v € V

© if vis “unvisited” then

(%) test-bipartiteness(v)

@ print("“G is bipartite” )

V.

Obs. Running time of algorithm = O(n + m) )

Homework problem: using DFS to implement test-bipartiteness. )
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Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7: V — {1,2,3---  n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN
v



Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

AN
Vv



Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d, of vertices

e Maintain a queue (or stack) of vertices v with d, = 0




topological-sort(G)

Q letd, < OforeveryveV

Q foreveryv eV

© for every u such that (v,u) € F
Qo dy +— d, +1

Q@ S+ {v:d,=0},i+0

Q while S #£ ()

@ v < arbitrary vertex in S, S + S\ {v}
Q@ i+i+1 7(v)+1

@ for every u such that (v,u) € F
Q dy <~ d, —1

@ if d, =0 then add u to S

@ if i <n then output “not a DAG”

@ S can be represented using a queue or a stack
@ Running time = O(n + m)
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