Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Main Goal of Algorithm Design
@ Design fast algorithms to solve problems
@ Design more efficient algorithms to solve problems

Def. The goal of an optimization problem is to find a valid
solution with the minimum (or maximum) cost (or value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as
the number of potential solutions is often exponentially large.

e f(n) is polynomial if f(n) = O(n¥) for some constant k > 0.

@ convention: polynomial time = efficient

Common Paradigms for Algorithm Design

@ Greedy Algorithms
@ Divide and Conquer

@ Dynamic Programming

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a
“reasonable” strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem
(usually trivial)

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code

© Summary

5/104

Toy Problem 1: Bill Changing

Input: Integer A >0
Currency denominations: $1,$2,$5,$10, $20
Output: A way to pay A dollars using fewest number of bills

o’

Example:
e Input: 48
e Output: 5 bills, $48 = $20 x 2 + $5 + $2 + $1

Cashier’'s Algorithm

@ while A >0 do

Q@ a<+ max{te {1,2,510,20}:¢t < A}
© pay a $a bill

Q@ A+ A-a

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a
“reasonable” strategy

@ strategy: choose the largest bill that does not exceed A

@ the strategy is “reasonable”: choosing a larger bill help us in
minimizing the number of bills

@ The decision is irrevocable : once we choose a $a bill, we let
A <+ A — a and proceed to the next

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

@ N1, N2, Ny, N1, N20- number of $1, $2, $5, $10, $20 bills pald

@ minimize ny 4+ ng + N5 + N1 + ngy subject to
ni + 2712 + 5715 + 10711() + 207120 =A

Obs.

o n <2 2 < A< 5: pay a $2 bill
@ ny+2ny <5 5 < A < 10: pay a $5 bill
@ Ny + 2ny + 5ny < 10 10 < A < 20: pay a $10 bill

@ ny +2ny + 5n5 + 1001y <20 20 < A < oco: pay a $20 bill

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

@ Trivial: in residual problem, we need to pay A’ = A —a
dollars, using the fewest number of bills

9/104

Toy Example 2: Box Packing

Box Packing
Input: n boxes of capacities ¢q,co, -+ , ¢,
m items of sizes S, S9, - , S;m
Can put at most 1 item in a box
ltem j can be put into box ¢ if 5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16
@ Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25

Box Packing: Design a Safe Strategy

Q: Take box 1 (with capacity ¢;). Which item should we put in
box 17 J

A: The item of the largest size that can be put into the box.]

@ putting the item gives us the easiest residual problem.

e formal proof via exchanging argument: j = largest item that
can be put into box 1.

box 1

~_ v
Q O item j

@ Residual task: solve the instance obtained by removing box 1
and item j

Greedy Algorithm for Box Packing

Q@ 7T+ {1,2,3,--- ,m}

@ fori<«1tondo

© if some item in T can be put into box 7, then

Q J < the largest item in 7" that can be put into box i
(5] print(“put item j in box ")

Q@ T«T\{j}

Steps of Designing A Greedy Algorithm
@ Design a “reasonable” strategy
@ Prove that the reasonable strategy is “safe” (key, usually
done by “exchanging argument”)

@ Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

(usually trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Exchanging argument: let S be an arbitrary optimum solution. If
S is consistent with the greedy choice, we are done. Otherwise,
modify it to another optimum solution S’ such that S’ is
consistent with the greedy choice.

Generic Greedy Algorithm
© while the instance is non-trivial
© make the choice using the greedy strategy

© reduce the instance

Algorithm is correct if and only if the greedy strategy is safe.

@ Greedy strategy is safe: we will not miss the optimum
solution

@ Greedy stretegy is not safe: we will miss the optimum
solution for some instance, since the choices we made are
irrevocable.

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code
© Summary

15/104

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: A maximum-size subset of mutually compatible jobs

0o 1 2 5 4 5 6 7 8 9

T -1 [

N s o I
A R O

T
|

Greedy Algorithm for Interval Scheduling

@ Which of the following decisions are safe?

@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following decisions are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other
jobs? No!

0 1 2 3 4 5 6 7 8 9 ,
—
. e
=
B
R
|

Greedy Algorithm for Interval Scheduling

@ Which of the following decisions are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other
jobs? No!

@ Schedule the job with the earliest finish time? Yes!

01 2 3 4 5 6 7 8 9,

- [1

o B B
-~ =1

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

Proof.
@ Take an arbitrary optimum solution S
e If it contains j, done

@ Otherwise, replace the first job in .S with j to obtain an new
optimum schedule S’. O

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish
time: there is an optimum solution where j is scheduled.

@ What is the remaining task after we decided to schedule 57
@ Is it another instance of interval scheduling problem? Yes!
01 2 8 456 789

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

QO A~ {1,2,---,n}, S+ 0

@ while A #£ ()

Q@ j <« argminjecy fy

Q@ S—SU{ihA<{jecA:s;>f}
Q return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

Q@ A« {1,2,--- ,n}, S+ 0

@ while A £

Q@ j <« argminjecy fjy

Q@ S« SU{jhA<{jecA:sy>f}
©Q return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

© sort jobs according to f values

Q@t+ 0 S+ 0

@ for every j € [n]| according to non-decreasing order of f;
Q@ ifs; >1then

o S+ Su{j}

Q t < f;

@ return S 012345678

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code
© Summary

25/104

Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.

Lemma Let 7'= (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G;
T is acyclic and connected;

T is connected and has n — 1 edges;

T is minimally connected: removal of any edge disconnects it;

°
°

@ T is acyclic and has n — 1 edges;

°

@ T is maximally acyclic: addition of any edge creates a cycle;
°

T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : £ — R

Output: the spanning tree T of G with the minimum total
weight

12

Recall: Steps of Designing A Greedy Algorithm
@ Design a “reasonable” strategy
@ Prove that the reasonable strategy is “safe” (key, usually
done by “exchanging argument”)

@ Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem

(usually trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’'s Algorithm

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code

Q Summary

30,104

Q: Which edge can be safely included in the MST? J

A: The edge with the smallest weight (lightest edge).]
31/104

Lemma It is safe to include the lightest edge: there is a
minimum spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
Assume the lightest edge ¢* is not in T’
There is a unique path in T" connecting v and v
Remove any edge e in the path to obtain tree T’
w(e*) <w(e) = w(T") <w(T): T'is also a MST

lightest edge e* ~ _

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that
contains edge (g, h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*
Remove all edges parallel connecting u to v from E

For every edge (u,w) € E,w # v, change it to (u*,w)
For every edge (v,w) € E,w # u, change it to (u*, w)

May create parallel edges! E.g. : two edges (i, g*)

Greedy Algorithm

Repeat the following step until G contains only one vertex:
© Choose the lightest edge e¢*, add e* to the spanning tree
@ Contract e* and update GG be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path
connecting v and v formed by edges we selected

Greedy Algorithm

MST-Greedy (G, w)

Q@ F=10

© sort edges in E in non-decreasing order of weights w
@ for each edge (u,v) in the order

© if u and v are not connected by a path of edges in F’
(5] F=FU{(u,v)}

@ return (V. F)

Sets: {a,b,c,i, f,g,h,d, e}

37/104

Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

Q@ F«10

Q@ S+ {{v}:veV}

© sort the edges of E in non-decreasing order of weights w
Q for each edge (u,v) € E in the order
@ S, < thesetin S containing u

Q@ S, < thesetin S containing v

Q@ ifS.#5S,

(5] F +— FU{(u,v)}

@ SS\{Su\{S}U{S.US.}
@ return (V, F)

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

Q@ F«10

Q@ S+ {{v}:veV}

© sort the edges of F in non-decreasing order of weights w
@ for each edge (u,v) € E in the order
©@ 5, < thesetinS containing u

Q@ S5, thesetin S containing v

Q@ ifS,#S,

o F«+ FU{(u,v)}

@ S 5\{S)\{5}U{S, U8,
@ return (V) F)

Use union-find data structure to support @, @, @, @. ©.

Union-Find Data Structure

e V: ground set

@ We need to maintain a partition of V' and support following
operations:
o Check if u and v are in the same set of the partition
o Merge two sets in partition

o V=1{1,2,3,---,16}
@ Partition:
{2,3,5,9,10,12,15},{1,7,13,16}, {4,8,11}, {6, 14}

@ parli]: parent of i, (par[i] = nil if 7 is a root).

Union-Find Data Structure

SN

@ Q: how can we check if 4 and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root and r": par|r] < .

Union-Find Data Structure

root(v)
Q if par[v] = nil then
@ returnwv

© else
Q@ par[v] < root(par[v])

root(v)
Q if par[v] = nil then
@ returnwv

Q else
@ return root(par|v])

@ return par[v]

@ Problem: the tree might too deep; running time might be
large

@ Improvement: all vertices in the path directly point to the
root, saving time in the future.

Union-Find Data Structure

root(v)

Q if par[v] = nil then

Q@ returnw

© else

Q@ par[v] « root(parv])
Q@ return par[v]

0
® B W
O

44/104

MST-Kruskal(G, w)

Q@ F«+ 10

Q@ S+ {{vi:veV}

© sort the edges of E in non-decreasing order of weights w
© for each edge (u,v) € E in the order
Q@ S, <« thesetin S containing u

Q@ S, < thesetin S containing v

@ ifS,#£S,

(%) F + FU{(u,v)}

o S+ S\ {Su}\{S,}u{S, US,}
@ return (V, F)

45/104

MST-Kruskal(G, w)

Q@ F« 0

@ for every v € V: let par[v] < nil

© sort the edges of F in non-decreasing order of weights w
@ for each edge (u,v) € E in the order

Q@ u + root(u)

Q@ V' < root(v)

Q@ ifu #0

Q F«+ FU{(u,v)}
(o) parfu'] < v

@ return (V) F)

° .0 .0 0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 10%,
@ Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different.)

Lemma An edge e € F is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J

@ (i,g) is not in the MST because of cycle (i, ¢, f, g)
@ (e, f) isin the MST because no such cycle exists

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code

Q Summary

48/104

Two Methods to Build a MST

@ Start from F < (), and add edges to I one by one until we
obtain a spanning tree

@ Start from F' < FE, and remove edges from F' one by one
until we obtain a spanning tree

Lemma It is safe to exclude the heaviest non-bridge edge: there
is a MST that does not contain the heaviest non-bridge edge. J

Reverse Kruskal's Algorithm

MST-Greedy(G, w)

Q@ F+F

@ sort E in non-increasing order of weights
© for every e in this order

Q@ if (V,F\ {e}) is connected then

(5] F «+ F\{e}

Q return (V) F)

52/104

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code

Q Summary

53,/104

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose
the edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest
edge incident to a.

Lemma It is safe to include the lightest edge incident to a. |

lightest edge e* incident to a
/

Proof.
@ Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component '

@ Let e be the edge in T' connecting a to C'
o I"=T\eU{e*} is a spanning tree with w(7") < w(T) O

Prim’'s Algorithm: Example

Greedy Algorithm

MST-Greedyl(G, w)

Q@ S <+ {s}, where s is arbitrary vertex in V
Q@ F«10

© while S #V

Q@ (u,v) < lightest edge between S and V' \ S,
where w € Sandv e V'\ S

Q@ S+ Su{v}
Q@ F<+ FU{(u,v)}
@ return (V, F)

@ Running time of naive implementation: O(nm)

Prim’s Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V '\ S maintain
o d(v) = minyes.(uvyer w(u, v):
the weight of the lightest edge between v and S
o m(v) = arg minyeg:(u,v)cr WU, v):
(m(v),v) is the lightest edge between v and S

(13,¢)

Prim’s Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V '\ S maintain
o d(v) = minyes.(uv)cp W, v):
the weight of the lightest edge between v and S
o 7m(v) = argminyeg.(uv)er WU, v):
(m(v),v) is the lightest edge between v and S
In every iteration
@ Pick u € V'\ S with the smallest d(u) value
o Add (m(u),u) to F
@ Add u to S, update d and 7 values.

Prim’s Algorithm

MST-Prim(G, w)
Q@ s < arbitrary vertex in GG
Q@ S <+ 0,d(s) «+ 0and d(v) < oo for every v € V' \ {s}
@ while S #V, do
Q@ u <« vertexin V'\ S with the minimum d(u)
S« SuU{u}
for each v € V'\ S such that (u,v) € E

if w(u,v) < d(v) then

d(v) + w(u v)
(U)

o
o
Q
o
o
@ return {(u, |u eV \{s}}

61/104

Prim’s Algorithm

For every v € V'\ S maintain
o d(v) = minyeg.(uvyer w(u, v):
the weight of the lightest edge between v and S
o 7m(v) = argminyeg.(uv)cr WU, v):
(m(v),v) is the lightest edge between v and S
In every iteration

@ Pick u € V'\ S with the smallest d(u) value extract_min
e Add (m(u),u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that
maintains a set U of elements, each with an associated key value,
and supports the following operations:
@ insert(v, key_value): insert an element v, whose associated
key value is key value.
o decrease key(v, new_key_value): decrease the key value of
an element v in queue to new_key_value
@ extract_min(): return and remove the element in queue with
the smallest key value

Prim’s Algorithm

MST-Prim(G, w)
Q@ s < arbitrary vertex in GG
Q@ S <+ 0,d(s) «+ 0and d(v) < oo for every v € V' \ {s}
o
Q while S #V, do
Q@ u < vertexin V'\ S with the minimum d(u)
S« SuU{u}
for each v € V'\ S such that (u,v) € FE
if w(u,v) < d(v) then
d(v) + w(u v)
7(v)

(6]
(7]
o
o
Q
@ return {(u, (u))IUE V\{S}}

Prim’s Algorithm Using Priority Queue

MST-Prim(G, w)

Q@ s < arbitrary vertex in GG

Q@ S <+ 0,d(s) «+ 0and d(v) < oo for every v € V' \ {s}

© () < empty queue, for each v € V: Q.insert(v, d(v))

Q while S #V, do

Q@ u <+ Q.extract-min()

S« SuU{u}

for each v € V'\ S such that (u,v) € FE

if w(u,v) < d(v) then

d(v
7(v)

return {(u, 7(u))]u e V\{s}}

o
Q
o
o) w(u v), Q.decrease key(v,d(v))
Q
o

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) O(1) O(nlogn +m)

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a cut

(U,V'\ U), such that (u,v) is the lightest edge between U and
V\U.

e (c, f) isin MST because of cut ({a,b,c,i},V \ {a,b,c,i})
@ (i,g) is not in MST because no such cut exists

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which e is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which e is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

© Data Compression and Huffman Code
© Summary

69,104

Input: (directed or undirected) graph G = (V, E), s,t € V
w:E— RZO
Output: shortest path from s to ¢

70/104

Single Source Shortest Paths
Input: directed graph G = (V, E), s€ V
w: B —= R
Output: shortest paths from s to all other vertices v € V'

Reason for Considering Single Source Shortest Paths Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight

@ Shortest path from s to v may contain 2(n) edges
@ There are (n) different vertices v
@ Thus, printing out all shortest paths may take time Q(n?)

@ Not acceptable if graph is sparse

Shortest Path Tree
@ O(n)-size data structure to represent all shortest paths

@ For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)

Single Source Shortest Paths
Input: directed graph G = (V, E), s €V
w:E = Ry
Output: 7(v),v € V '\ s: the parent of v
d(v),v € V'\ s: the length of shortest path from s to v |

74/104

Q: How to compute shortest paths from s when all edges have
weight 17 J

A: Breadth first search (BFS) from source s J

Assumption Weights w(u, v) are integers (w.l.o.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

: 1 ; phoholholhe

Shortest Path Algorithm by Running BFS

@ replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

@ run BFS virtually

@ 7(v) = vertex from which v is visited

@ d(v) = index of the level containing v

@ Problem: w(u,v) may be too large!

Shortest Path Algorithm by Running BFS Virtually
Q@ S« {s},d(s) <0
@ while |S| <n

@ find av ¢ S that minimizes min {d(u) + w(u,v)}
ueS:(u,w)eEE

Q0 S+ Suf{v}
Q@ d(v) + minyes.(uneef{d(u) + w(u,v)}

77/104

Virtual BFS: Example

Time 10

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

© Data Compression and Huffman Code
© Summary

79/104

Dijkstra’s Algorithm

Dijkstra(G, w, s)

Q@ S+ 0,d(s) + 0and d(v) < oo for every v € V' \ {s}
@ while S #V do

@ u < vertexin V' \ S with the minimum d(u)

Q@ addutoS

@ foreach v € V'\ S such that (u,v) € £
o if d(u) +w(u,v) < d(v) then

®)i tuluy

o (V)

Q return (d, 7

)

@ Running time = O(n?)

Improved Running Time using Priority Queue

Dijkstra(G, w, s)
o
Q@ S <+ 0,d(s) «+ 0and d(v) < oo for every v € V' \ {s}
@ (@ < empty queue, for each v € V: Q.insert(v, d(v))
Q while S £V, do
Q@ u <+ Q.extract_min()
S« SuU{u}
for each v € V'\ S such that (u,v) € FE
if d(u) +w(u,v) < d(v) then
d(v) + () + w(u,v), Q.decrease_key(v, d(v))
m(v)

Q
o
o
Q
o
@ return (7, d)

Recall: Prim’s Algorithm for MST

MST-Prim(G, w)

Q@ s < arbitrary vertex in GG

Q@ S <+ 0,d(s) «+ 0and d(v) < oo for every v € V' \ {s}

@ (@ < empty queue, for each v € V: Q.insert(v, d(v))

Q while S #V, do

Q@ u <+ Q.extract-min()

S« SuU{u}

for each v € V'\ S such that (u,v) € FE

if w(u,v) < d(v) then

d(v
7(v)

return {(u, 7(u))]u e V\{s}}

o
Q
o
o) w(u v), Q.decrease key(v,d(v))
Q
o

Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) x (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time

Heap O(logn) O(logn) O(mlogn)

Fibonacci Heap | O(logn) O(1) O(nlogn + m)

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code
© Summary

85,104

Encoding Symbols Using Bits

@ assume: 8 symbols a,b,c,d, e, f, g, h in a language
@ need to encode a message using bits
@ idea: use 3 bits per symbol
o | b el d|e|f]g|n
000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

deacfg — 011100000010101110

Q: Can we have a better encoding scheme?

@ Seems unlikely: must use 3 bits per symbol

Q: What if some symbols appear more frequently than the
others in expectation?

Q: If some symbols appear more frequently than the others in
expectation, can we have a better encoding scheme?

A: Maybe. Using variable-length encoding scheme.

Idea

@ using fewer bits for symbols that are more frequently used,
and more bits for symbols that are less frequently used.

Need to use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of symbols is a function
v S — {0,1}* such that for two distinct z,y € S, v(x) is not a
prefix of v(y).

o | b | ¢ | d 2N
001 | 0000 | 0001 | 100 [f/ :
e f g h v\ y/ \1

11 | 1010 | 1011 | 01 E@ @/

0, 1 0 1
g &b
e 0001/001/100/0000/01/01/11/1010/0001/001/

@ cadbhhefca

Properties of Encoding Tree

% \ @ Rooted binary tree

o Left edges labelled 0 and
/ / right edges labelled 1
@ A leaf corresponds to a code
for some symbol
e If coding scheme is not
! wasteful: a non-leaf has
exactly two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme giving the shortest encoding for
the message

example

symbols a |blc|d]| e

frequencies 18|13/4|6]10
scheme 1 length || 2 | 3|3 | 2| 2 | total =89
scheme 2 length || 1 | 3|3 |3 | 3 | total =87
scheme 3 length || 1 |4 |4 |3 | 2 | total =84

D DN
I

scheme 1 scheme 2 scheme 3

Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

: What types of decisions should we make?

the code for some letter?

hard to design a strategy; residual problem is complicated.

a partition of letters into left and right sub-trees?

not clear how to design the greedy algorithm

: Choose two letters and make them brothers in the tree.

J

Which Two symbols Can Be Safely Put Together
As Brothers?

@ Focus a tree structure, without leaf labeling
@ There are two deepest leaves that are brothers
@ It is safe to make the two least frequent symbols brothers!

Q best to put the two least
é __.--frenquent symbols here!

-

@ It is safe to make the two least frequent symbols brothers!

Lemma There is an optimum encoding tree, where the two
least frequent symbols are brothers.

@ So we can make the two least frequent symbols brothers; the
decision is irrevocable.

Q: Is the residual problem an instance of the best prefix codes
problem?

A: Yes, although the answer is not immediate. |

@ f,: the frequency of the symbol x in the support.
@ r; and x5: the two symbols we decided to put together.

@ d, the depth of symbol z in our output encoding tree.

fods
0 =

= Z fmdw+fw1dm1 _'_fﬂczdm

encoding tree for z€S\{z1,72}
S\ {1, 22} U {2} = > oot (for + far)da,
zeS\{z1,z2}
()
= = Y et folde+ 1)
@ @ zeS\{z1,z2}

)) zeS\{z1,z2}U{z’}
Def: f:c’ = féL’1 + f:zg

In order to minimize

> foda,

z€S

we need to minimize
> ol
z€S\{z1,z2 }U{z’}

subject to that d is the depth function for an encoding tree of
S \ {1'1, il?g}.

@ This is exactly the best prefix codes problem, with symbols
S\ {z1, 22} U {2’} and frequency vector f!

Huffman codes: Recursive Algorithm

Huffman(S, f)
@ if [S| > 1 then

© let 1, x5 be the two symbols with the smallest f values

© introduce a new symbol z’ and let [y = fu, + fe,

Q@ S5+ S\{x,z}u{x'}

@ call Huffman(S’, f|s) to build an encoding tree 7"

Q@ let T be obtained from 7" by adding x, x5 as two children
of 2/

Q@ retunT

Q else

Q@ let x be the symbol in S
@ return a tree with a single node labeled x

Huffman codes: Iterative Algorithm

Huffman(S, f)

Q@ while |S| > 1 do

Q@ let x1, x5 be the two symbols with the smallest f values
© introduce a new symbol 2’ and let f,» = f., + fu,

Q@ let z; and 75 be the two children of 2’

Q@ S S\{zry,z}u{s}

@ return the tree constructed

T Qe

: 00

98,104

Algorithm using Priority Queue

Huffman(S, f)

© (@ < build-priority-queue(.S)

© while ().size > 1 do

r < Q.extract-min()

To < Q.extract-min()

introduce a new symbol 2’ and let f,, = f., + fu,
let 2; and 25 be the two children of 2’

() .insert(z’)

return the tree constructed

© Toy Examples
© Interval Scheduling

© Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

@ Single Source Shortest Paths
@ Dijkstra’s Algorithm

© Data Compression and Huffman Code
© Summary

100/104

Summary for Greedy Algorithms

© Design a “reasonable” strategy

e Interval scheduling problem: schedule the job j* with the
earliest deadline

e Kruskal's algorithm for MST: select lightest edge e*

o Inverse Kruskal's algorithm for MST: drop the heaviest
non-bridge edge e*

e Prim’s algorithm for MST: select the lightest edge e* incident
to a specified vertex s

e Huffman codes: make the two least frequent symbols brothers

Summary for Greedy Algorithms

© Design “reasonable” strategy
© Prove that the reasonable strategy is “safe”

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

o Usually done by “exchange argument”

o Interval scheduling problem: exchange j* with the first job in
an optimal solution

o Kruskal's algorithm: exchange e* with some edge e in the cycle
in TU{e*}

e Prim’s algorithm: exchange e* with some other edge e incident
to s

Summary for Greedy Algorithms

© Design “reasonable” strategy
© Prove that the reasonable strategy is “safe”

© Show that the remaining task after applying the strategy is
to solve a (many) smaller instance(s) of the same problem
o Interval scheduling problem: remove j* and the jobs it conflicts
with
o Kruskal and Prim’s algorithms: contracting e¢*
o Inverse Kruskal's algorithm: remove e*
e Huffman codes: merge two symbols into one

Summary for Greedy Algorithms

@ Dijkstra’s algorithm does not quite fit in the framework.
@ It combines “greedy algorithm” and “dynamic programming”

o Greedy algorithm: each time select the vertex in V'\ S with
the smallest d value and add it to S

@ Dynamic programming: remember the d values of vertices in
S for future use

@ Dijkstra’s algorithm is very similar to Prim's algorithm for
MST

	Toy Examples
	Interval Scheduling
	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Data Compression and Huffman Code
	Summary

