CSE 431/531: Algorithm Analysis and Design (Spring 2019) Greedy Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Main Goal of Algorithm Design

- Design fast algorithms to solve problems
- Design more efficient algorithms to solve problems

Def. The goal of an optimization problem is to find a valid solution with the minimum (or maximum) cost (or value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Common Paradigms for Algorithm Design

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe" (key)
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 4 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- 6 Summary

Toy Problem 1: Bill Changing

Input: Integer $A \ge 0$

Currency denominations: \$1, \$2, \$5, \$10, \$20

Output: A way to pay A dollars using fewest number of bills

Example:

• Input: 48

• Output: 5 bills, $$48 = $20 \times 2 + $5 + $2 + 1

Cashier's Algorithm

- $a \leftarrow \max\{t \in \{1, 2, 5, 10, 20\} : t \le A\}$
- \bullet pay a a bill
- $\bullet \qquad A \leftarrow A a$

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- ullet strategy: choose the largest bill that does not exceed A
- the strategy is "reasonable": choosing a larger bill help us in minimizing the number of bills
- The decision is irrevocable : once we choose a \$a\$ bill, we let $A \leftarrow A a$ and proceed to the next

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe"
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- $n_1, n_2, n_5, n_{10}, n_{20}$: number of \$1, \$2, \$5, \$10, \$20 bills paid
- minimize $n_1+n_2+n_5+n_{10}+n_{20}$ subject to $n_1+2n_2+5n_5+10n_{10}+20n_{20}=A$

Obs.

•
$$n_1 < 2$$

 \bullet $n_1 + 2n_2 + 5n_5 < 10$

$$2 \le A < 5$$
: pay a \$2 bill

•
$$n_1 + 2n_2 < 5$$
 5 $\leq A < 10$: pay a \$5 bill

$$10 \le A < 20$$
: pay a \$10 bill

•
$$n_1 + 2n_2 + 5n_5 + 10n_{10} < 20$$
 $20 \le A < \infty$: pay a \$20 bill

Analysis of Greedy Algorithm

- Prove that the reasonable strategy is "safe"
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: in residual problem, we need to pay A' = A a dollars, using the fewest number of bills

Toy Example 2: Box Packing

Box Packing

```
Input: n boxes of capacities c_1, c_2, \cdots, c_n m items of sizes s_1, s_2, \cdots, s_m Can put at most 1 item in a box Item j can be put into box i if s_i \leq c_i
```

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 15, 12
- Item sizes: 45, 42, 20, 19, 16
- Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25$

Box Packing: Design a Safe Strategy

Q: Take box 1 (with capacity c_1). Which item should we put in box 1?

A: The item of the largest size that can be put into the box.

- putting the item gives us the easiest residual problem.
- formal proof via exchanging argument: j =largest item that can be put into box 1.

ullet Residual task: solve the instance obtained by removing box 1 and item j

Greedy Algorithm for Box Packing

- **1** $T \leftarrow \{1, 2, 3, \cdots, m\}$
- 2 for $i \leftarrow 1$ to n do
- \bullet if some item in T can be put into box i, then
- $oldsymbol{0} \qquad j \leftarrow$ the largest item in T that can be put into box i
- print("put item j in box i")

Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Exchanging argument: let S be an arbitrary optimum solution. If S is consistent with the greedy choice, we are done. Otherwise, modify it to another optimum solution S' such that S' is consistent with the greedy choice.

Generic Greedy Algorithm

- **1 while** the instance is non-trivial
- make the choice using the greedy strategy
- reduce the instance

Algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy stretegy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.

Outline

- Toy Examples
- Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- Summary

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following decisions are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Lemma It is safe to schedule the job j with the earliest finish time: there is an optimum solution where j is scheduled.

Lemma It is safe to schedule the job j with the earliest finish time: there is an optimum solution where j is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!

$\mathsf{Schedule}(s, f, n)$

- $\bullet A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$
- \bullet while $A \neq \emptyset$
- $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

Schedule(s, f, n)

- $\bullet A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$
- $\mathbf{3} \qquad j \leftarrow \arg\min_{j' \in A} f_{j'}$
- $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$
- \odot return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- Clever implementation: $O(n \lg n)$ time

Clever Implementation of Greedy Algorithm

Schedule(s, f, n)

- lacktriangledown sort jobs according to f values
- $2 t \leftarrow 0, S \leftarrow \emptyset$
- $\ensuremath{\mathfrak{g}}$ for every $j \in [n]$ according to non-decreasing order of f_j

- $t \leftarrow f_i$
- $\mathbf{0}$ return S

Outline

- Toy Examples
- Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 4 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- 6 Summary

Spanning Tree

Def. Given a connected graph G=(V,E), a spanning tree T=(V,F) of G is a sub-graph of G that is a tree including all vertices V.

Lemma Let T=(V,F) be a subgraph of G=(V,E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- \bullet T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- ullet T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

 $\label{eq:output:the spanning tree} \ T \ \text{of} \ G \ \text{with the minimum total}$

weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- Summary

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'
- $w(e^*) \le w(e) \implies w(T') \le w(T)$: T' is also a MST

Is the Residual Problem Still a MST Problem?

- ullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

Contraction of an Edge (u, v)

- ullet Remove u and v from the graph, and add a new vertex u^*
- ullet Remove all edges parallel connecting u to v from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)
- May create parallel edges! E.g. : two edges (i, g^*)

Greedy Algorithm

Repeat the following step until G contains only one vertex:

- Choose the lightest edge e^* , add e^* to the spanning tree
- $\ensuremath{\mathbf{2}}$ Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u and v formed by edges we selected

Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy}(G,w)$

- $\bullet F = \emptyset$
- $oldsymbol{2}$ sort edges in E in non-decreasing order of weights w
- lacktriangledown for each edge (u,v) in the order
- lacktriangledown if u and v are not connected by a path of edges in F
- $F = F \cup \{(u, v)\}$
- \bullet return (V, F)

Kruskal's Algorithm: Example

Sets: $\{a,b,c,i,f,g,h,d,e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal(G, w)

- **2** $S \leftarrow \{\{v\} : v \in V\}$
- $oldsymbol{3}$ sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $S_u \leftarrow \text{the set in } S \text{ containing } u$

- $F \leftarrow F \cup \{(u,v)\}$
- \bullet return (V, F)

Running Time of Kruskal's Algorithm

```
\mathsf{MST}\text{-}\mathsf{Kruskal}(G,\,w)
```

- $\bullet F \leftarrow \emptyset$
- **②** $S \leftarrow \{\{v\} : v \in V\}$
- $oldsymbol{3}$ sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order

- $F \leftarrow F \cup \{(u,v)\}$
- \bullet return (V, F)

Use union-find data structure to support 2, 5, 6, 7, 9.

- ullet V: ground set
- ullet We need to maintain a partition of V and support following operations:
 - ullet Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition:
 {2,3,5,9,10,12,15}, {1,7,13,16}, {4,8,11}, {6,14}

• par[i]: parent of i, (par[i] = nil if i is a root).

- ullet Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.

root(v)

- if par[v] = nil then
- \mathbf{a} return v
- else
- return root(par[v])

root(v)

- if par[v] = nil then
- $\mathbf{2}$ return v
- else
- \bullet return par[v]
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

```
root(v)
```

- if par[v] = nil then
- $\mathbf{2}$ return v
- else
- $par[v] \leftarrow \mathsf{root}(par[v])$
- \bullet return par[v]

MST-Kruskal(G, w)

- $\bullet F \leftarrow \emptyset$
- ② $S \leftarrow \{\{v\} : v \in V\}$
- lacksquare sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order

- $F \leftarrow F \cup \{(u,v)\}$
- \bullet return (V, F)

MST-Kruskal(G, w)

- \bullet for every $v \in V$: let $par[v] \leftarrow \mathsf{nil}$
- $oldsymbol{3}$ sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $u' \leftarrow \mathsf{root}(u)$
- $v' \leftarrow \operatorname{root}(v)$
- o if $u' \neq v'$
- $F \leftarrow F \cup \{(u,v)\}$
- $par[u'] \leftarrow v'$
- \bullet return (V, F)
 - 2,5,6,7,9 takes time $O(m\alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) < 4$ for $n < 10^{80}$.
- Running time = time for $3 = O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i, q) is not in the MST because of cycle (i, c, f, q)
- \bullet (e, f) is in the MST because no such cycle exists

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- 6 Summary

Two Methods to Build a MST

- 2 Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

Reverse Kruskal's Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy}(G,w)$

- $oldsymbol{2}$ sort E in non-increasing order of weights
- $oldsymbol{3}$ for every e in this order
- if $(V, F \setminus \{e\})$ is connected then
- $F \leftarrow F \setminus \{e\}$
- \bullet return (V, F)

Reverse Kruskal's Algorithm: Example

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- Summary

Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

Lemma It is safe to include the lightest edge incident to a.

Proof.

- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C
- $T' = T \setminus e \cup \{e^*\}$ is a spanning tree with $w(T') \leq w(T)$

Prim's Algorithm: Example

Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy1}(G,w)$

- \bullet $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- $P \leftarrow \emptyset$
- \bullet while $S \neq V$
- $(u,v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S, \\ \text{where } u \in S \text{ and } v \in V \setminus S$

- \circ return (V, F)
 - Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$:
 - the weight of the lightest edge between \boldsymbol{v} and \boldsymbol{S}
- $\pi(v) = \arg\min_{u \in S:(u,v) \in E} w(u,v)$:

 $(\pi(v), v)$ is the lightest edge between v and S

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value
- Add $(\pi(u), u)$ to F
- Add u to S, update d and π values.

Prim's Algorithm

$\mathsf{MST}\text{-}\mathsf{Prim}(G,w)$

- \bullet $s \leftarrow$ arbitrary vertex in G
- \bullet while $S \neq V$, do
- $\qquad \qquad u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- for each $v \in V \setminus S$ such that $(u, v) \in E$
- $\qquad \qquad \text{if } w(u,v) < d(v) \text{ then }$

- $n(v) \leftarrow a$

Example

Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- ullet Pick $u \in V \setminus S$ with the smallest d(u) value $u \in V \setminus S$ extract_min
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element v, whose associated key value is key_value .
- ullet decrease_key (v, new_key_value) : decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value
- • •

Prim's Algorithm

$\mathsf{MST}\text{-}\mathsf{Prim}(G,w)$

- \bullet $s \leftarrow$ arbitrary vertex in G
- $S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}$
- 3
- while $S \neq V$, do
- \bullet $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- for each $v \in V \setminus S$ such that $(u, v) \in E$
- if w(u, v) < d(v) then
- $d(v) \leftarrow w(u, v)$
- $\pi(x) \leftarrow x$
- $\mathbf{0} \qquad \qquad \pi(v) \leftarrow u$
- $\bullet \text{ return } \left\{ (u,\pi(u)) | u \in V \setminus \{s\} \right\}$

Prim's Algorithm Using Priority Queue

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 \bullet s \leftarrow arbitrary vertex in G
 S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}
 Q \leftarrow \text{empty queue, for each } v \in V : Q.\text{insert}(v, d(v))
 • while S \neq V, do
      u \leftarrow Q.\mathsf{extract\_min}()
       S \leftarrow S \cup \{u\}
 6
          for each v \in V \setminus S such that (u, v) \in E
 7
              if w(u, v) < d(v) then
 8
                 d(v) \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9
 1
                 \pi(v) \leftarrow u
 \bullet \quad \mathsf{return} \ \big\{ (u, \pi(u)) | u \in V \setminus \{s\} \big\}
```

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a cut $(U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$
- ullet (i,g) is not in MST because no such cut exists

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- ullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 4 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- Summary

s-t Shortest Paths

Input: (directed or undirected) graph G=(V,E), $s,t\in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega(n^2)$
- Not acceptable if graph is sparse

Shortest Path Tree

- \bullet O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: $\pi(v), v \in V \setminus s$: the parent of v

 $d(v), v \in V \setminus s$: the length of shortest path from s to v

 $\mathbf{Q}\text{:}\ \ \text{How to compute shortest paths from }s$ when all edges have weight 1?

A: Breadth first search (BFS) from source s

Assumption Weights w(u, v) are integers (w.l.o.g).

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- run BFS virtually
- 3 $\pi(v) = \text{vertex from which } v \text{ is visited}$
- $\mathbf{0}$ d(v) = index of the level containing v
 - Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

- $\qquad \text{find a } v \not \in S \text{ that minimizes } \min_{u \in S: (u,v) \in E} \{d(u) + w(u,v)\}$
- $S \leftarrow S \cup \{v\}$

Virtual BFS: Example

Time 10

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 4 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 5 Data Compression and Huffman Code
- Summary

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

- ② while $S \neq V$ do
- lacktriangledown add u to S
- for each $v \in V \setminus S$ such that $(u, v) \in E$
- if d(u) + w(u, v) < d(v) then
- $d(v) \leftarrow d(u) + w(u, v)$
 - $\pi(v) \leftarrow u$
- lacksquare return (d,π)
 - Running time = $O(n^2)$

Improved Running Time using Priority Queue

```
Dijkstra(G, w, s)
 S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}
 Q \leftarrow \text{empty queue, for each } v \in V : Q.\text{insert}(v, d(v))
 • while S \neq V, do
       u \leftarrow Q.\mathsf{extract\_min}()
       S \leftarrow S \cup \{u\}
 6
 7
         for each v \in V \setminus S such that (u, v) \in E
            if d(u) + w(u, v) < d(v) then
 8
                d(v) \leftarrow d(u) + w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9
 1
               \pi(v) \leftarrow u
    return (\pi, d)
```

Recall: Prim's Algorithm for MST

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 \bullet s \leftarrow arbitrary vertex in G
 S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}
 Q \leftarrow \text{empty queue, for each } v \in V : Q.\text{insert}(v, d(v))
 • while S \neq V, do
       u \leftarrow Q.\mathsf{extract\_min}()
       S \leftarrow S \cup \{u\}
 6
 7
          for each v \in V \setminus S such that (u, v) \in E
              if w(u, v) < d(v) then
 8
                 d(v) \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9
 1
                 \pi(v) \leftarrow u
 \bullet \quad \mathsf{return} \ \big\{ (u, \pi(u)) | u \in V \setminus \{s\} \big\}
```

Improved Running Time

Running time:

 $O(n) \times (\mathsf{time} \ \mathsf{for} \ \mathsf{extract_min}) + O(m) \times (\mathsf{time} \ \mathsf{for} \ \mathsf{decrease_key})$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 4 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Data Compression and Huffman Code
- Summary

Encoding Symbols Using Bits

- assume: 8 symbols a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per symbol

$$deacfg \rightarrow 0111000000101011110$$

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per symbol

Q: What if some symbols appear more frequently than the others in expectation?

Q: If some symbols appear more frequently than the others in expectation, can we have a better encoding scheme?

A: Maybe. Using variable-length encoding scheme.

Idea

 using fewer bits for symbols that are more frequently used, and more bits for symbols that are less frequently used.

Need to use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of symbols is a function $\gamma:S\to\{0,1\}^*$ such that for two distinct $x,y\in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

a	$\mid b \mid$	c	d	
001	0000	0001	100	
\overline{e}	f	g	h	
11	1010	1011	01	

- 0001/001/100/0000/01/01/11/1010/0001/001/
- cadbhhefca

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some symbol
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message

Output: prefix coding scheme giving the shortest encoding for the message

example

symbols	a	b	c	d	$\mid e \mid$	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total = 89
scheme 2 length	1	3	3	3	3	total = 87
scheme 3 length	1	4	4	3	2	total = 84

scheme 1

scheme 2

scheme 3

• Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

- the code for some letter?
- hard to design a strategy; residual problem is complicated.
- a partition of letters into left and right sub-trees?
- not clear how to design the greedy algorithm

A: Choose two letters and make them brothers in the tree.

Which Two symbols Can Be Safely Put Together As Brothers?

- Focus a tree structure, without leaf labeling
- There are two deepest leaves that are brothers
- It is safe to make the two least frequent symbols brothers!

• It is safe to make the two least frequent symbols brothers!

Lemma There is an optimum encoding tree, where the two least frequent symbols are brothers.

 So we can make the two least frequent symbols brothers; the decision is irrevocable.

Q: Is the residual problem an instance of the best prefix codes problem?

A: Yes, although the answer is not immediate.

- f_x : the frequency of the symbol x in the support.
- x_1 and x_2 : the two symbols we decided to put together.
- ullet d_x the depth of symbol x in our output encoding tree.

Def: $f_{x'} = f_{x_1} + f_{x_2}$

In order to minimize

$$\sum_{x \in S} f_x d_x,$$

we need to minimize

$$\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x,$$

subject to that d is the depth function for an encoding tree of $S \setminus \{x_1, x_2\}$.

• This is exactly the best prefix codes problem, with symbols $S \setminus \{x_1, x_2\} \cup \{x'\}$ and frequency vector f!

Huffman codes: Recursive Algorithm

$\mathsf{Huffman}(S,f)$

- **1** if |S| > 1 then
- let x_1, x_2 be the two symbols with the smallest f values
- introduce a new symbol x' and let $f_{x'} = f_{x_1} + f_{x_2}$
- $S' \leftarrow S \setminus \{x_1, x_2\} \cup \{x'\}$
- call $\mathsf{Huffman}(S', f|_{S'})$ to build an encoding tree T'
- let T be obtained from T' by adding x_1, x_2 as two children of x'
- \circ return T
- else
- \bullet let x be the symbol in S
- \bullet return a tree with a single node labeled x

Huffman codes: Iterative Algorithm

$\mathsf{Huffman}(S,f)$

- **1** while |S| > 1 do
- $oldsymbol{\circ}$ introduce a new symbol x' and let $f_{x'}=f_{x_1}+f_{x_2}$
- 4 let x_1 and x_2 be the two children of x'
- o return the tree constructed

Example

Algorithm using Priority Queue

```
\mathsf{Huffman}(S,f)
Q \leftarrow \text{build-priority-queue}(S)
② while Q.size > 1 do
       x_1 \leftarrow Q.\text{extract-min}()
       x_2 \leftarrow Q.\text{extract-min}()
 4
       introduce a new symbol x' and let f_{x'} = f_{x_1} + f_{x_2}
5
       let x_1 and x_2 be the two children of x'
       Q.insert(x')
     return the tree constructed
```

Outline

- Toy Examples
- 2 Interval Scheduling
- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 5 Data Compression and Huffman Code
- 6 Summary

- Design a "reasonable" strategy
 - Interval scheduling problem: schedule the job j^* with the earliest deadline
 - ullet Kruskal's algorithm for MST: select lightest edge e^*
 - \bullet Inverse Kruskal's algorithm for MST: drop the heaviest non-bridge edge e^*
 - \bullet Prim's algorithm for MST: select the lightest edge e^* incident to a specified vertex s
 - Huffman codes: make the two least frequent symbols brothers

- Design "reasonable" strategy
- Prove that the reasonable strategy is "safe"

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

- Usually done by "exchange argument"
- ullet Interval scheduling problem: exchange j^* with the first job in an optimal solution
- Kruskal's algorithm: exchange e^* with some edge e in the cycle in $T \cup \{e^*\}$
- \bullet Prim's algorithm: exchange e^{\ast} with some other edge e incident to s

- Design "reasonable" strategy
- Prove that the reasonable strategy is "safe"
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
 - ullet Interval scheduling problem: remove j^* and the jobs it conflicts with
 - ullet Kruskal and Prim's algorithms: contracting e^*
 - ullet Inverse Kruskal's algorithm: remove e^*
 - Huffman codes: merge two symbols into one

- Dijkstra's algorithm does not quite fit in the framework.
- It combines "greedy algorithm" and "dynamic programming"
- \bullet Greedy algorithm: each time select the vertex in $V\setminus S$ with the smallest d value and add it to S
- \bullet Dynamic programming: remember the d values of vertices in S for future use
- Dijkstra's algorithm is very similar to Prim's algorithm for MST