CSE 431/531: Algorithm Analysis and Design (Spring 2019) Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Course Webpage (contains schedule, policies, homeworks and slides): http://www.cse.buffalo.edu/~shil/courses/CSE531/
- Please sign up course on Piazza via link on course webpage
 - announcements, polls, asking/answering questions

CSE 431/531: Algorithm Analysis and Design

- Time and location:
 - MoWeFr, 9:00-9:50am
 - Alumni 97
- Instructor:
 - Shi Li, shil@buffalo.edu
 - Office hours: TBD via poll
- TA
 - Alexander Stachnik, ajstachn@buffalo.edu
 - Office hours: TBD via poll

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Basic data Structures
 - Stacks, queues, linked lists

- Mathematical Tools
 - Mathematical inductions
 - Probabilities and random variables
- Basic data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - C, C++, Java or Python

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming
- NP-completeness

Tentative Schedule (42 Lectures)

Introduction	3 lectures
Basic Graph Algorithms	3 lectures
Greedy Algorihtms	6 lectures, 1 recitation
Divide and Conquer	6 lectures, 1 recitation
Dynamic Programming	6 lectures, 1 recitation
	1 recitation for homeworks
Mid-Term Exam	Apr 7, 2019, Mon
NP-Completeness	6 lectures, 1 recitation
Linear Programming	4 lectures
	2 recitations for homeworks
Final review, Q&A	
Final Exam	May 15 2019, Wed, 8:00am-11:00am

Textbook (Highly Recommended):

• <u>Algorithm Design</u>, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

• Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
- Slides and example problems for recitations will be posted online before class

- 40% for homeworks
 - 5 homeworks, 3 of which have programming tasks
- 60% for mid-term + final exams, score for two exams is $\max\{M \times 20\% + F \times 40\%, M \times 30\% + F \times 30\%\}$ $M, F \in [0, 100]$

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm course webpages
- Copy solutions from other students

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet

• We use Moss

(https://theory.stanford.edu/~aiken/moss/) to
detect similarity of programs

- You have 1 "late credit", using it allows you to turn in a homework late for three days
- With no special reasons, no other late submissions will be accepted

- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - "F" for the course
 - may lose financial support
 - case will be recorded in department and university databases

- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - "F" for the course
 - may lose financial support
 - case will be recorded in department and university databases

Questions?

Outline

1 Syllabus

2

Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations

Outline

1 Syllabus

2 Introduction

• What is an Algorithm?

- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

• Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$

```
Input: two integers a, b > 0
```

Output: the greatest common divisor of a and b

- Input: 210, 270
- Output: 30
- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

Sorting

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

Sorting

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

Sorting

Input: sequence of *n* numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59
- Algorithms: insertion sort, merge sort, quicksort, ...

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$ **Output:** a shortest path from s to t in G

• Algorithm: Dijkstra's algorithm

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, associated with a particular programming language

Pseudo-Code

Pseudo-Code:

$\mathsf{Euclidean}(a, b)$

• while b > 0

$$(a,b) \leftarrow (b,a \mod b)$$

 \bigcirc return a

- C++ program:
 - int Euclidean(int a, int b){
 - int c;
 - while (b > 0){

• b = a % b;

• }

• }

return a;

• Main focus: correctness, running time (efficiency)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
 - Indamental

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
 - fundamental
 - It is fun!

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \cdots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1'\leq a_2'\leq\cdots\leq a_n'$

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

• At the end of *j*-th iteration, the first *j* numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15 iteration 2: 12, 53, 35, 21, 59, 15 iteration 3: 12, 35, 53, 21, 59, 15 iteration 4: 12, 21, 35, 53, 59, 15 iteration 5: 12, 21, 35, 53, 59, 15 iteration 6: 12, 15, 21, 35, 53, 59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 53 59 15
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 53 59 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 35 53 59 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 35 53 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 53 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

• j = 6• key = 1512 21 35 35 53 59 \uparrow i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 35 35 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort (A, n)		
1	for $j \leftarrow 2$ to n	
2	$key \leftarrow A[j]$	
3	$i \leftarrow j - 1$	
4	while $i > 0$ and $A[i] > key$	
5	$A[i+1] \leftarrow A[i]$	
6	$i \leftarrow i-1$	
7	$A[i+1] \leftarrow key$	

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow_i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 $i \leftarrow i - 1$ 6 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 21 21 35 53 59
 \uparrow
 i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)• for $j \leftarrow 2$ to n $key \leftarrow A[j]$ 2 $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 $i \leftarrow i - 1$ 6 7 $A[i+1] \leftarrow key$

•
$$j = 6$$

• $key = 15$
12 15 21 35 53 59
 \uparrow
 i

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

- Correctness
- Running time

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15after j = 2 : 12, 53, 35, 21, 59, 15after j = 3 : 12, 35, 53, 21, 59, 15after j = 4 : 12, 21, 35, 53, 59, 15after j = 5 : 12, 21, 35, 53, 59, 15after j = 6 : 12, 15, 21, 35, 53, 59

• Q: Size of input?

- Q: Size of input?
- A: Running time as function of size

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?
- Q: Programming language?
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?
- Q: Programming language?
- A: Important idea: asymptotic analysis
 - Focus on growth of running-time as a function, not any particular value.

- Ignoring lower order terms
- Ignoring leading constant

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$

- Ignoring lower order terms
- Ignoring leading constant
- $3n^3 + 2n^2 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$ • $2^{n/3+100} + 100n^{100} = O(2^{n/3})$

- Ignoring lower order terms
- Ignoring leading constant
- ${\it O}\text{-}{\sf notation}$ allows us to
 - ignore architecture of computer
 - ignore programming language

insertion-sort(A, n)**1** for $j \leftarrow 2$ to n2 $key \leftarrow A[j]$ $i \leftarrow j-1$ 4 while i > 0 and A[i] > key $A[i+1] \leftarrow A[i]$ 5 6 $i \leftarrow i - 1$ $A[i+1] \leftarrow key$ 7

• Worst-case running time for iteration j in the outer loop?

• Worst-case running time for iteration j in the outer loop? Answer: O(j)

- Worst-case running time for iteration j in the outer loop? Answer: ${\cal O}(j)$
- Total running time = $\sum_{j=2}^{n} O(j) = O(n^2)$ (informal)

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- \bullet Basic operations take ${\cal O}(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- \bullet Basic operations take ${\cal O}(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers?

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers?
 Try to avoid using real numbers in this course.

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers? Try to avoid using real numbers in this course.
- Can we do better than insertion sort asymptotically?

- Random-Access Machine (RAM) model: read A[j] takes O(1) time.
- Basic operations take O(1) time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
- Precision of real numbers? Try to avoid using real numbers in this course.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort, heap sort, ...

• Remember to sign up for Piazza.

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

Asymptotic Notations

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

• In other words, f(n) is positive for large enough n.

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

• In other words, f(n) is positive for large enough n.

•
$$n^2 - n - 30$$

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if: • $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes • $2^n - n^{20}$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$? No
- We only consider asymptotically positive functions.

$\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

Proof.

Let c = 4 and $n_0 = 50$, for every $n > n_0 = 50$, we have,

$$3n^{2} + 2n - c(n^{2} - 10n) = 3n^{2} + 2n - 4(n^{2} - 10n)$$

= $-n^{2} + 40n \le 0$.
 $3n^{2} + 2n \le c(n^{2} - 10n)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $\bullet \ n^3 \notin O(10n^2)$
$\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.

•
$$3n^2 + 2n \in O(n^2 - 10n)$$

- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

Asymptotic NotationsO Ω Θ Comparison Relations \leq

\bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following statements are wrong:

- \bullet We use ``f(n) = O(g(n))" to denote $``f(n) \in O(g(n))"$
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$
- "=" is asymmetric! Following statements are wrong:
 - $O(n^3 10n) = 3n^2 + 2n$
 - $O(n^2 + 5n) = 3n^2 + 2n$
 - $O(n^2) = 3n^2 + 2n$

O-Notation For a function g(n), $O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \le cg(n), \forall n \ge n_0 \}.$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

O-Notation For a function g(n), $O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) \le cg(n), \forall n \ge n_0 \}.$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

• Again, we use "=" instead of \in .

•
$$4n^2 = \Omega(n-10)$$

•
$$3n^2 - n + 10 = \Omega(n^2 - 20)$$

Asymptotic Notations
$$O$$
 Ω Θ Comparison Relations \leq \geq

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n-10)$$

•
$$3n^2 - n + 10 = \Omega(n^2 - 20)$$

$$\begin{array}{c|c} \mbox{Asymptotic Notations} & O & \Omega & \Theta \\ \hline \mbox{Comparison Relations} & \leq & \geq \\ \end{array}$$

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$

 $\begin{aligned} \Theta\text{-Notation} \quad & \text{For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ & c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{aligned}$

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{aligned}$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{aligned}$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{aligned}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

 $\begin{aligned} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}. \end{aligned}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3 + 100} = \Theta(2^{n/3})$

 $\begin{array}{l} \Theta\text{-Notation} \ \ \text{For a function } g(n),\\ \Theta(g(n)) = \left\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \right\}. \end{array}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3+100} = \Theta(2^{n/3})$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

 $\begin{array}{l} \Theta\text{-Notation} \ \ \text{For a function } g(n),\\ \Theta(g(n)) = \left\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \right\}. \end{array}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3 + 100} = \Theta(2^{n/3})$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Theorem $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

f	g	0	Ω	Θ	_
$n^3 - 100n$	$5n^2 + 3n$				_
3n - 50	$n^2 - 7n$				-
$n^2 - 100n$	$5n^2 + 30n$				-
$\lg^{10} n$	$n^{0.1}$				-
2^n	$2^{n/2}$				-
\sqrt{n}	$n^{\sin n}$				-

f	g	0	Ω	Θ	
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No	
3n - 50	$n^{2} - 7n$				
$n^2 - 100n$	$5n^2 + 30n$				
$\lg^{10} n$	$n^{0.1}$				
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				

f	g	O	Ω	Θ	
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No	
3n - 50	$n^2 - 7n$	Yes	No	No	
$n^2 - 100n$	$5n^2 + 30n$				
$\lg^{10} n$	$n^{0.1}$				
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				

f	g	0	Ω	Θ	
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No	
3n - 50	$n^{2} - 7n$	Yes	No	No	
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes	
$\lg^{10} n$	$n^{0.1}$				
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				

f	g	0	Ω	Θ	
$n^{3} - 100n$	$5n^{2} + 3n$	No	Yes	No	
3n - 50	$n^2 - 7n$	Yes	No	No	
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes	
$\lg^{10} n$	$n^{0.1}$	Yes	No	No	
2^n	$2^{n/2}$				
\sqrt{n}	$n^{\sin n}$				

f	g	0	Ω	Θ	
$n^{3} - 100n$	$5n^{2} + 3n$	No	Yes	No	
3n - 50	$n^{2} - 7n$	Yes	No	No	
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes	
$\lg^{10} n$	$n^{0.1}$	Yes	No	No	
2^n	$2^{n/2}$	No	Yes	No	
\sqrt{n}	$n^{\sin n}$				

f	g	0	Ω	Θ
$n^3 - 100n$	$5n^{2} + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\lg^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Asymptotic NotationsO Ω Θ Comparison Relations \leq \geq =

Trivial Facts on Comparison Relations

• $f \leq g \Leftrightarrow g \geq f$

•
$$f = g \iff f \le g$$
 and $f \ge g$

•
$$f \leq g$$
 or $f \geq g$

Trivial Facts on Comparison Relations

- $f \leq g \Leftrightarrow g \geq f$ • $f = g \Leftrightarrow f \leq g$ and f
- $f = g \iff f \le g \text{ and } f \ge g$
- $\bullet \ f \leq g \ {\rm or} \ f \geq g$

Correct Analogies

$$\bullet \ f(n) = O(g(n)) \ \Leftrightarrow \ g(n) = \Omega(f(n))$$

 $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Trivial Facts on Comparison Relations

• $f \leq g \iff g \geq f$ • $f = g \iff f \leq g$ and $f \geq g$

$$\bullet \ f \leq g \ \text{or} \ f \geq g$$

Correct Analogies

•
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

•
$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

$$f(n) = n^{2}$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2^{n} & \text{if } n \text{ is even} \end{cases}$$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
Recall: informal way to define O-notation

- \bullet ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- theoretically, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird

•
$$3n^2 - 10n - 5 = O(n^2)$$
 is simpler.

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is ${\cal O}(n^4)$.

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is ${\cal O}(n^4)$.
- We do not use Ω and Θ very often when we talk about running times.
- We say: the running time of the insertion sort algorithm is ${\cal O}(n^2)$ and the bound is tight.

$o \text{ and } \omega\text{-Notations}$

o-Notation For a function g(n), $o(g(n)) = \{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that}$ $f(n) \leq cg(n), \forall n \geq n_0 \}.$

 $\begin{aligned} &\omega\text{-Notation For a function } g(n), \\ &\omega(g(n)) = \big\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that} \\ &f(n) \geq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

Example:

•
$$3n^2 + 5n + 10 = o(n^3)$$
, but $3n^2 + 5n + 10 \neq o(n^2)$

• $3n^2 + 5n + 10 = \omega(n)$, but $3n^2 + 5n + 10 \neq \omega(n^2)$.

Asymptotic NotationsO Ω Θ o ω Comparison Relations \leq \geq =<>

Questions?

Outline

1 Syllabus

2 Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

3 Asymptotic Notations

Computing the sum of \boldsymbol{n} numbers

• Merge two sorted arrays

3

• Merge two sorted arrays

3

Running time = O(n) where $n = n_1 + n_2$.

merge-sort(A, n)

- if n = 1 then
- 2 return A
- else

• return merge $(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)$

• Merge-Sort

• Merge-Sort

• Each level takes running time O(n)

• Merge-Sort

- Each level takes running time O(n)
- There are $O(\lg n)$ levels

• Merge-Sort

- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: n points in plane:
$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

Output: the pair of points that are closest

closest-pair(x, y, n)• best $d \leftarrow \infty$ **2** for $i \leftarrow 1$ to n-1for $j \leftarrow i+1$ to n 3 $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 4 5 if d < best d then $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$ 6 • return (besti, bestj)

Closest Pair

Input: n points in plane:
$$(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$$

Output: the pair of points that are closest

closest-pair(x, y, n)• best $d \leftarrow \infty$ **2** for $i \leftarrow 1$ to n-1for $j \leftarrow i+1$ to n 3 $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$ 4 5 if d < best d then $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$ 6 • return (besti, bestj)

Closest pair can be solved in $O(n \lg n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n\times n$

matrix-multiplication(A, B, n)1 $C \leftarrow$ matrix of size $n \times n$, with all entries being 02for $i \leftarrow 1$ to n3for $j \leftarrow 1$ to n4for $k \leftarrow 1$ to n5 $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$ 6return C

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Independent set of size k

Input: graph G = (V, E)

Output: whether there is an independent set of size k
$O(n^k)$ Running Time for Integer $k \ge 4$

Independent Set of Size k

Input: graph G = (V, E)

 $\ensuremath{\textbf{Output:}}$ whether there is an independent set of size k

independent-set (G = (V, E))

$$\bullet \quad \text{for every set } S \subseteq V \text{ of size } k$$

2 $b \leftarrow \mathsf{true}$

• for every
$$u, v \in S$$

if
$$(u,v) \in E$$
 then $b \leftarrow$ false

 \bullet if b return true

return false

Running time = $O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)

Beyond Polynomial Time: $O(2^n)$

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

$$\begin{array}{l} \textbf{max-independent-set}(G=(V,E))\\ \textcircledleft algorithm{0}{2} & R \leftarrow \emptyset\\ \textcircledleft algorithm{0}{2} & \text{for every set } S \subseteq V\\ \textcircledleft algorithm{0}{2} & b \leftarrow \text{true}\\ \textcircledleft algorithm{0}{3} & b \leftarrow \text{false}\\ \textcircledleft algorithm{0}{3} & \text{if } (u,v) \in E \text{ then } b \leftarrow \text{false}\\ \textcircledleft algorithm{0}{3} & \text{if } b \text{ and } |S| > |R| \text{ then } R \leftarrow S\\ \textcircledleft algorithm{0}{3} & \text{return } R \end{array}$$

Running time = $O(2^n n^2)$.

Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with n verticesOutput: a cycle that visits each node exactly once, or say no such cycle exists

Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with n verticesOutput: a cycle that visits each node exactly once, or say no such cycle exists

$\mathsf{Hamiltonian}(G = (V, E))$

- for every permutation (p_1, p_2, \cdots, p_n) of V
- 2 $b \leftarrow true$

• for
$$i \leftarrow 1$$
 to $n-1$

• if
$$(p_i, p_{i+1}) \notin E$$
 then $b \leftarrow$ false

• if
$$(p_n, p_1) \notin E$$
 then $b \leftarrow$ false

• if b then return
$$(p_1, p_2, \cdots, p_n)$$

return "No Hamiltonian Cycle"

Running time = $O(n! \times n)$

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

3	8	10	25	29	37	38	42	46	52	59	61	63	75	79
---	---	----	----	----	----	----	----	----	----	----	----	----	----	----

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- $\bullet \quad i \leftarrow 1, j \leftarrow n$
- $\textcircled{2} \text{ while } i \leq j \text{ do}$

- if A[k] = t return true
- $if A[k] < t then j \leftarrow k-1 else i \leftarrow k+1$

return false

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- $\bullet \quad i \leftarrow 1, j \leftarrow n$
- $\textcircled{2} \text{ while } i \leq j \text{ do}$

- if A[k] = t return true

return false

Running time = $O(\lg n)$

• Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$

- Sort the functions from smallest to largest asymptotically $n^{\sqrt{n}}$, $\lg n$, n, n^2 , $n \lg n$, n!, 2^n , e^n , $\lg(n!)$, n^n
- f < g stands for f = o(g), f = g stands for $f = \Theta(g)!$
- $\lg n < n^{\sqrt{n}}$
- $\lg n < n < n^{\sqrt{n}}$
- $\lg n < n < \frac{n^2}{n}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}}$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < n!$
- $\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n!$
- $\lg n < n < n \lg n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! < n^n$

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- $\bullet\,$ Cubic time $O(n^3)$
- \bullet Polynomial time: ${\cal O}(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:
• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- \bullet However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonable *n*, algorithm with lower order running time beats algorithm with higher order running time.