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CSE 431/531: Algorithm Analysis and Design

Course Webpage (contains schedule, policies, homeworks and
slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up course on Piazza via link on course webpage
- announcements, polls, asking/answering questions

http://www.cse.buffalo.edu/~shil/courses/CSE531/
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CSE 431/531: Algorithm Analysis and Design

Time and location:

MoWeFr, 9:00-9:50am
Alumni 97

Instructor:

Shi Li, shil@buffalo.edu
Office hours: TBD via poll

TA

Alexander Stachnik, ajstachn@buffalo.edu
Office hours: TBD via poll
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You should already know:

Mathematical Tools

Mathematical inductions
Probabilities and random variables

Basic data Structures

Stacks, queues, linked lists

Some Programming Experience

C, C++, Java or Python
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You Will Learn

Classic algorithms for classic problems

Sorting
Shortest paths
Minimum spanning tree

How to analyze algorithms

Correctness
Running time (efficiency)
Space requirement

Meta techniques to design algorithms

Greedy algorithms
Divide and conquer
Dynamic programming
Linear Programming

NP-completeness
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Tentative Schedule (42 Lectures)

Introduction 3 lectures

Basic Graph Algorithms 3 lectures

Greedy Algorihtms 6 lectures, 1 recitation

Divide and Conquer 6 lectures, 1 recitation

Dynamic Programming 6 lectures, 1 recitation

1 recitation for homeworks

Mid-Term Exam Apr 7, 2019, Mon

NP-Completeness 6 lectures, 1 recitation

Linear Programming 4 lectures

2 recitations for homeworks

Final review, Q&A

Final Exam May 15 2019, Wed, 8:00am-11:00am
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Textbook

Textbook (Highly Recommended):

Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

Other Reference Books

Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Clifford Stein
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Reading Before Classes

Highly recommended: read the correspondent sections from
the textbook (or reference book) before classes

Slides and example problems for recitations will be posted
online before class
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Grading

40% for homeworks

5 homeworks, 3 of which have programming tasks

60% for mid-term + final exams, score for two exams is

max{M × 20% + F × 40%,M × 30% + F × 30%}
M,F ∈ [0, 100]
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For Homeworks, You Are Allowed to

Use course materials (textbook, reference books, lecture
notes, etc)

Post questions on Piazza

Ask me or TAs for hints

Collaborate with classmates

Think about each problem for enough time before discussions
Must write down solutions on your own, in your own words
Write down names of students you collaborated with
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For Homeworks, You Are Not Allowed to

Use external resources

Can’t Google or ask questions online for solutions
Can’t read posted solutions from other algorithm course
webpages

Copy solutions from other students
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For Programming Problems

Need to implement the algorithms by yourself

Can not copy codes from others or the Internet

We use Moss
(https://theory.stanford.edu/~aiken/moss/) to
detect similarity of programs

https://theory.stanford.edu/~aiken/moss/
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Late Policy

You have 1 “late credit”, using it allows you to turn in a
homework late for three days

With no special reasons, no other late submissions will be
accepted
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Mid-Term and Final Exam will be closed-book

Per Departmental Policy on Academia Integrity Violations,
penalty for AI violation is:

“F” for the course
may lose financial support
case will be recorded in department and university databases

Questions?

https://engineering.buffalo.edu/computer-science-engineering/information-for-faculty-and-staff/policies/academic-integrity-students.html
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What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite effective
procedure, with some input and some output.

Computational problem: specifies the input/output
relationship.

An algorithm solves a computational problem if it produces
the correct output for any given input.
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Examples

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)→ (210, 60)→ (60, 30)→ (30, 0)
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Examples

Sorting

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence

such that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .
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Examples

Shortest Path

Input: directed graph G = (V,E), s, t ∈ V

Output: a shortest path from s to t in G

16 1

1 5 4
2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm
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Algorithm = Computer Program?

Algorithm: “abstract”, can be specified using computer
program, English, pseudo-codes or flow charts.

Computer program: “concrete”, implementation of
algorithm, associated with a particular programming language
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Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1 while b > 0

2 (a, b)← (b, a mod b)

3 return a

C++ program:

int Euclidean(int a, int b){
int c;

while (b > 0){
c = b;

b = a % b;

a = c;

}
return a;

}
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Theoretical Analysis of Algorithms

Main focus: correctness, running time (efficiency)

Sometimes: memory usage

Not covered in the course: engineering side

extensibility
modularity
object-oriented model
user-friendliness (e.g, GUI)
. . .

Why is it important to study the running time (efficiency) of
an algorithm?

1 feasible vs. infeasible
2 efficient algorithms: less engineering tricks needed, can use

languages aiming for easy programming (e.g, python)
3 fundamental
4 it is fun!
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Sorting Problem

Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a′1, a
′
2, · · · , a′n) of the input sequence

such that a′1 ≤ a′2 ≤ · · · ≤ a′n

Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59
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Insertion-Sort

At the end of j-th iteration, the first j numbers are sorted.

iteration 1: 53, 12, 35, 21, 59, 15

iteration 2: 12, 53, 35, 21, 59, 15

iteration 3: 12, 35, 53, 21, 59, 15

iteration 4: 12, 21, 35, 53, 59, 15

iteration 5: 12, 21, 35, 53, 59, 15

iteration 6: 12, 15, 21, 35, 53, 59
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Example:

Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1 for j ← 2 to n

2 key ← A[j]

3 i← j − 1

4 while i > 0 and A[i] > key

5 A[i + 1]← A[i]

6 i← i− 1

7 A[i + 1]← key

j = 6

key = 15
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Analysis of Insertion Sort

Correctness

Running time
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Correctness of Insertion Sort

Invariant: after iteration j of outer loop, A[1..j] is the sorted
array for the original A[1..j].

after j = 1 : 53, 12, 35, 21, 59, 15

after j = 2 : 12, 53, 35, 21, 59, 15

after j = 3 : 12, 35, 53, 21, 59, 15

after j = 4 : 12, 21, 35, 53, 59, 15

after j = 5 : 12, 21, 35, 53, 59, 15

after j = 6 : 12, 15, 21, 35, 53, 59
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Analyze Running Time of Insertion Sort

Q: Size of input?

A: Running time as function of size

possible definition of size : # integers, total length of
integers, # vertices in graph, # edges in graph

Q: Which input?

A: Worst-case analysis:

Worst running time over all input instances of a given size

Q: How fast is the computer?

Q: Programming language?

A: Important idea: asymptotic analysis

Focus on growth of running-time as a function, not any
particular value.
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Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)



33/75

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)



33/75

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)



33/75

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)



33/75

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

3n3 + 2n2 − 18n + 1028⇒ 3n3 ⇒ n3

3n3 + 2n2 − 18n + 1028 = O(n3)

2n/3+100 + 100n100 ⇒ 2n/3+100 ⇒ 2n/3

2n/3+100 + 100n100 = O(2n/3)



34/75

Asymptotic Analysis: O-notation

Ignoring lower order terms

Ignoring leading constant

O-notation allows us to

ignore architecture of computer

ignore programming language
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Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1 for j ← 2 to n

2 key ← A[j]

3 i← j − 1

4 while i > 0 and A[i] > key

5 A[i + 1]← A[i]

6 i← i− 1

7 A[i + 1]← key

Worst-case running time for iteration j in the outer loop?

Answer: O(j)

Total running time =
∑n

j=2O(j) = O(n2) (informal)
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Computation Model

Random-Access Machine (RAM) model: read A[j] takes
O(1) time.

Basic operations take O(1) time: addition, subtraction,
multiplication, etc.

Each integer (word) has c log n bits, c ≥ 1 large enough

Precision of real numbers?

Try to avoid using real numbers in this course.

Can we do better than insertion sort asymptotically?

Yes: merge sort, quicksort, heap sort, ...
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Remember to sign up for Piazza.

Questions?
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Asymptotically Positive Functions

Def. f : N→ R is an asymptotically positive function if:

∃n0 > 0 such that ∀n > n0 we have f(n) > 0

In other words, f(n) is positive for large enough n.

n2 − n− 30

Yes

2n − n20

Yes

100n− n2/10 + 50?

No

We only consider asymptotically positive functions.
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O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c
and large enough n.

nn0

cg(n)

f (n)
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O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ O(g(n)) if f(n) ≤ cg(n) for some c
and large enough n.

3n2 + 2n ∈ O(n2 − 10n)

Proof.

Let c = 4 and n0 = 50, for every n > n0 = 50, we have,

3n2 + 2n− c(n2 − 10n) = 3n2 + 2n− 4(n2 − 10n)

= −n2 + 40n ≤ 0.

3n2 + 2n ≤ c(n2 − 10n)
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O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
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and large enough n.

3n2 + 2n ∈ O(n2 − 10n)

3n2 + 2n ∈ O(n3 − 5n2)

n100 ∈ O(2n)

n3 /∈ O(10n2)

Asymptotic Notations O Ω Θ
Comparison Relations ≤
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Conventions

We use “f(n) = O(g(n))” to denote “f(n) ∈ O(g(n))”

3n2 + 2n = O(n3 − 10n)

3n2 + 2n = O(n2 + 5n)

3n2 + 2n = O(n2)

“=” is asymmetric! Following statements are wrong:

O(n3 − 10n) = 3n2 + 2n

O(n2 + 5n) = 3n2 + 2n

O(n2) = 3n2 + 2n
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Ω-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

Ω-Notation For a function g(n),

Ω(g(n)) =
{

function f : ∃c > 0, n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

In other words, f(n) ∈ Ω(g(n)) if f(n) ≥ cg(n) for some c
and large enough n.
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Ω-Notation: Asymptotic Lower Bound

Again, we use “=” instead of ∈.

4n2 = Ω(n− 10)
3n2 − n + 10 = Ω(n2 − 20)

Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥

Theorem f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)).
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Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function g(n),

Θ(g(n)) =
{

function f : ∃c2 ≥ c1 > 0, n0 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n),∀n ≥ n0

}
.

f(n) = Θ(g(n)), then for large enough n, we have
“f(n) ≈ g(n)”.

nn0

c1g(n)

f (n)

c2g(n)
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Exercise

For each pair of functions f, g in the following table, indicate
whether f is O,Ω or Θ of g.

f g O Ω Θ

n3 − 100n 5n2 + 3n

No Yes No

3n− 50 n2 − 7n

Yes No No

n2 − 100n 5n2 + 30n

Yes Yes Yes

lg10 n n0.1

Yes No No

2n 2n/2

No Yes No

√
n nsinn

No No No
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3n− 50 n2 − 7n Yes No No

n2 − 100n 5n2 + 30n Yes Yes Yes

lg10 n n0.1 Yes No No

2n 2n/2 No Yes No
√
n nsinn No No No
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Asymptotic Notations O Ω Θ
Comparison Relations ≤ ≥ =

Trivial Facts on Comparison Relations

f ≤ g ⇔ g ≥ f

f = g ⇔ f ≤ g and f ≥ g

f ≤ g or f ≥ g

Correct Analogies

f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))

Incorrect Analogy

f(n) = O(g(n)) or g(n) = O(f(n))
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Incorrect Analogy

f(n) = O(g(n)) or g(n) = O(f(n))

f(n) = n2

g(n) =

{
1 if n is odd

2n if n is even
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Recall: informal way to define O-notation

ignoring lower order terms: 3n2 − 10n− 5→ 3n2

ignoring leading constant: 3n2 → n2

3n2 − 10n− 5 = O(n2)

Indeed, 3n2 − 10n− 5 = Ω(n2), 3n2 − 10n− 5 = Θ(n2)

theoretically, nothing tells us to ignore lower order terms and
leading constant.

3n2 − 10n− 5 = O(5n2 − 6n + 5) is correct, though weird

3n2 − 10n− 5 = O(n2) is simpler.
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Notice that O denotes asymptotic upper bound

n2 + 2n = O(n3) is correct.

The following sentence is correct: the running time of the
insertion sort algorithm is O(n4).

We do not use Ω and Θ very often when we talk about
running times.

We say: the running time of the insertion sort algorithm is
O(n2) and the bound is tight.
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o and ω-Notations

o-Notation For a function g(n),

o(g(n)) =
{

function f : ∀c > 0,∃n0 > 0 such that

f(n) ≤ cg(n),∀n ≥ n0

}
.

ω-Notation For a function g(n),

ω(g(n)) =
{

function f : ∀c > 0,∃n0 > 0 such that

f(n) ≥ cg(n),∀n ≥ n0

}
.

Example:

3n2 + 5n + 10 = o(n3), but 3n2 + 5n + 10 6= o(n2).

3n2 + 5n + 10 = ω(n), but 3n2 + 5n + 10 6= ω(n2).
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Asymptotic Notations O Ω Θ o ω
Comparison Relations ≤ ≥ = < >

Questions?
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Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
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O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)

1 S ← 0

2 for i← 1 to n

3 S ← S + A[i]

4 return S
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O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29
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O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48
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O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with length n1

and n2

1 A← []; i← 1; j ← 1

2 while i ≤ n1 and j ≤ n2

3 if (B[i] ≤ C[j]) then

4 append B[i] to A; i← i + 1

5 else

6 append C[j] to A; j ← j + 1

7 if i ≤ n1 then append B[i..n1] to A

8 if j ≤ n2 then append C[j..n2] to A

9 return A

Running time = O(n) where n = n1 + n2.
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O(n lg n) Running Time

merge-sort(A, n)

1 if n = 1 then

2 return A

3 else

4 B ← merge-sort
(
A
[
1..bn/2c

]
, bn/2c

)
5 C ← merge-sort

(
A
[
bn/2c+ 1..n

]
, n− bn/2c

)
6 return merge(B,C, bn/2c, n− bn/2c)
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O(n lg n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)
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O(n2) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest
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O(n2) (Quardatic) Running Time

Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)

1 bestd←∞
2 for i← 1 to n− 1

3 for j ← i + 1 to n

4 d←
√

(x[i]− x[j])2 + (y[i]− y[j])2

5 if d < bestd then

6 besti← i, bestj ← j, bestd← d

7 return (besti, bestj)

Closest pair can be solved in O(n lg n) time!
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O(n3) (Cubic) Running Time

Multiply two matrices of size n× n

matrix-multiplication(A,B, n)

1 C ← matrix of size n× n, with all entries being 0

2 for i← 1 to n

3 for j ← 1 to n

4 for k ← 1 to n

5 C[i, k]← C[i, k] + A[i, j]×B[j, k]

6 return C
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O(nk) Running Time for Integer k ≥ 4

Def. An independent set of a graph G = (V,E) is a subset
S ⊆ V of vertices such that for every u, v ∈ S, we have
(u, v) /∈ E.

Independent set of size k

Input: graph G = (V,E)

Output: whether there is an independent set of size k
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O(nk) Running Time for Integer k ≥ 4

Independent Set of Size k

Input: graph G = (V,E)

Output: whether there is an independent set of size k

independent-set(G = (V,E))

1 for every set S ⊆ V of size k

2 b← true

3 for every u, v ∈ S

4 if (u, v) ∈ E then b← false

5 if b return true

6 return false

Running time = O(n
k

k!
× k2) = O(nk) (assume k is a constant)
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Beyond Polynomial Time: O(2n)

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))

1 R← ∅
2 for every set S ⊆ V

3 b← true

4 for every u, v ∈ S

5 if (u, v) ∈ E then b← false

6 if b and |S| > |R| then R← S

7 return R

Running time = O(2nn2).
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Beyond Polynomial Time: O(n!)

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists
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Beyond Polynomial Time: n!

Hamiltonian(G = (V,E))

1 for every permutation (p1, p2, · · · , pn) of V

2 b← true

3 for i← 1 to n− 1

4 if (pi, pi+1) /∈ E then b← false

5 if (pn, p1) /∈ E then b← false

6 if b then return (p1, p2, · · · , pn)

7 return “No Hamiltonian Cycle”

Running time = O(n!× n)
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O(lg n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:
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O(lg n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)

1 i← 1, j ← n

2 while i ≤ j do

3 k ← b(i + j)/2c
4 if A[k] = t return true

5 if A[k] < t then j ← k − 1 else i← k + 1

6 return false

Running time = O(lg n)



71/75

O(lg n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)

1 i← 1, j ← n

2 while i ≤ j do

3 k ← b(i + j)/2c
4 if A[k] = t return true

5 if A[k] < t then j ← k − 1 else i← k + 1

6 return false

Running time = O(lg n)



72/75

Compare the Orders

Sort the functions from smallest to largest asymptotically
n
√
n, lg n, n, n2, n lg n, n!, 2n, en, lg(n!), nn

f < g stands for f = o(g), f = g stands for f = Θ(g)!

lg n < n
√
n

lg n < n < n
√
n

lg n < n < n2 < n
√
n

lg n < n < n lg n < n2 < n
√
n

lg n < n < n lg n < n2 < n
√
n < n!

lg n < n < n lg n < n2 < n
√
n < 2n < n!

lg n < n < n lg n < n2 < n
√
n < 2n < en < n!

lg n < n < n lg n = lg(n!) < n2 < n
√
n < 2n < en < n!

lg n < n < n lg n = lg(n!) < n2 < n
√
n < 2n < en < n! < nn
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Terminologies

When we talk about upper bounds:

Logarithmic time: O(lg n)

Linear time: O(n)

Quadratic time O(n2)

Cubic time O(n3)

Polynomial time: O(nk) for some constant k

Exponential time: O(cn) for some c > 1

Sub-linear time: o(n)

Sub-quadratic time: o(n2)
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Goal of Algorithm Design

Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant
depends on the implementation, complier and computer
architecture of computer.)
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Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time
0.1n2 with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonable n, algorithm with lower order running time
beats algorithm with higher order running time.
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