Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to
design efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems
can not be solved efficiently.

Q: Why do we study negative results?

@ A given problem X cannot be solved in polynomial time.

e Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0

e Example: O(n),0(n?),0(n*?logn), O(n'")

e Not polynomial time: O(2"), O(n'°s™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
@ For natural problems, if there is an O(n*)-time algorithm,
then k is small, say 4

@ A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time (2") for some ¢

@ Do not need to worry about the computational model

Pseudo-Polynomial Is not Polynomial!

Polynomial:
@ Kruskal's algorithm for minimum spanning tree:
O(nlgn +m)
@ Floyd-Warshall for all-pair shortest paths: O(n?)

Reason: we need to specify m > n — 1 edges in the input

Pseudo-Polynomial:

e Knapsack Problem: O(nW), where W is the maximum
weight the Knapsack can hold

Reason: to specify integer in [0, W], we only need O(lg W) bits.

@ Some Hard Problems

© P. NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

© Summary

5/94

Recall: Knapsack Problem
Input: n items, each item ¢ with a weight w;, and a value v;;
a bound W on the total weight the knapsack can hold
Output: the maximum value of items the knapsack can hold,
ie,aset SC{1,2,--- n}

maXZvi s.t.Zwi <W

€S €S

e DP is O(nW)-time algorithm, not a real polynomial time

@ Knapsack is NP-hard: it is unlikely that the problem can be
solved in polynomial time

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC)
of G is a cycle C' in G that passes each vertex of G exactly once.

v

Hamiltonian Cycle (HC) Problem
Input: graph G = (V. E)
Output: whether G contains a Hamiltonian cycle

@ The graph is called the Petersen Graph. It has no HC.

8/94

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it
corresponds to a Hamiltonian Cycle

Running time: O(n!m) = 20(nlen)
Better algorithm: 20(?)
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in
polynomial time.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such
that no two vertices in I are adjacent in G. J

Maximum Independent Set Problem
Input: graph G = (V) E)

Output: the size of the maximum independent set of G

@ Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with v, A, —
operators.
Output: whether the boolean formula is satisfiable

e Example: —((—z1 Axa) V (my A —as) Vg V (mxe A xg)) is
not satisfiable

@ Trivial algorithm: enumerate all possible assignments, and
check if each assignment satisfies the formula

@ Formula Satisfiablity is NP-hard

@ Some Hard Problems

Q P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

© Summary

12/94

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision
version X' of the problem. If we have a polynomial time
algorithm for the decision version X', we can solve the original
problem X in polynomial time.

Optimization to Decision

Shortest Path
Input: graph G = (V, F), weight w, s,t and a bound L
Output: whether there is a path from s to ¢ of length at most L

Maximum Independent Set
Input: a graph GG and a bound &

Output: whether there is an independent set of size at least k

V.

Encoding

The input of a problem will be encoded as a binary string. |

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
@ Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
110000110111111111000001

15/94

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
01 234567389
s e s s s A |
L . .
L . e |
I .

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)
@ Encode the sequence into a binary string as before

Encoding

Def. The size of an input is the length of the encoded string s
for the input, denoted as |s]. }

Q: Does it matter how we encode the input instances? |

A: No! As long as we are using a “natural” encoding. We only
care whether the running time is polynomial or not

Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s € X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) =1 if and
only if s € X.

Def. A has a polynomial running time if there is a polynomial
function p(-) so that for every string s, the algorithm A
terminates on s in at most p(|s|) steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X
that can be solved in polynomial time. }

@ The decision versions of interval scheduling, shortest path
and minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 29 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice
convince Bob that GG contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it
is really a Hamiltonian cycle of GG

Def. The message Alice sends to Bob is called a certificate, and
the algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 2™ time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is
really a independent set in G.

@ Certificate: a set of size k

@ Certifier: check if the given set is really an independent set

Graph Isomorphism

Graph Isomorphism
Input: two graphs G; and G,
Output: whether two graphs are isomorphic to each other

O—0 oo
3 ,.. .
e\e e’ {

@ What is the certificate?
@ What is the certifier?

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings
s and t

@ there is a polynomial function p such that, s € X if and only
if there is string t such that |t| < p(|s|) and B(s,t) = 1.

The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for
which there exists an efficient certifier.

Hamiltonian Cycle € NP

Input: Graph G

Certificate: a sequence S of edges in G

lencoding(S)| < p(lencoding(G)|) for some polynomial
function p

Certifier B: B(G,S) =1 if and only if S is an HC in G

Clearly, B runs in polynomial time

e G e HC = 35, B(G,S) =1

Graph Isomorphism € NP

Input: two graphs G; = (V, Ey) and Gy = (V, Ey) on V
Certificate: a 1-1 function f: V — V

lencoding(f)| < p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1,Gs), f) = 1 if and only if for every

u,v € V, we have (u,v) € By < (f(u), f(v)) € Es.

Clearly, B runs in polynomial time

o (G1,Gz) € Gl — 3f, B((G1,Gs), f) =1

Maximum Independent Set € NP

Input: graph G = (V, E) and integer k
Certificate: a set S C V of size k

lencoding(.S)| < p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G,k),S) =1 if and only if S is an
independent set in G

Clearly, B runs in polynomial time

o (G.k)eMIS <« 38, B((G,k),S) =1

Circuit Satisfiablity (Circuit-Sat) Problem
Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is
17

L

@ Is Circuit-Sat € NP?

HC
Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

e Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does
not contain a HC), if this is true.

@ Unlikely

@ Alice can only convince Bob that G is a no-instance
e HC € Co-NP

The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
s € X if and only if s ¢ X.

Def. Co-NP is the set of decision problems X such that X €
NP.

Def. A tautology is a boolean formula that always evaluates to
1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

v

@ eg. (mxyAxe)V (—xy A—xg) VgV (—xa Axg) is a tautology
@ Bob can certify that a formula is not a tautology

@ Thus Tautology € Co-NP

@ Indeed, Tautology = Formula-Unsat

Prime

Prime
Input: an integer ¢ > 2
Output: whether ¢ is a prime

@ It is easy to certify that ¢ is not a prime
Prime € Co-NP

[Pratt 1970] Prime € NP

P C NP N Co-NP (see soon)

If a natural problem X is in NP N Co-NP, then it is likely
that X € P

o [AKS 2002] Prime € P

o let XePandse X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X € P, Bob can check whether s € X by himself,
without Alice’s help.

@ The certificate is an empty string
@ Thus, X € NP and P C NP

@ Similarly, P C Co-NP, thus P € NP N Co-NP

Is P = NP?

@ A famous, big, and fundamental open problem in computer
science

@ Little progress has been made
o General belief is P £ NP

@ It would be too amazing if P = NP: if one can check a
solution efficiently, then one can find a solution efficiently

@ Complexity assumption: P = NP

@ We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:
e if P # NP, then HC ¢ P
e HC ¢ P, unless P = NP

@ Again, a big open problem
@ General belief: NP # Co-NP.

34/94

4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P € NP N Co-NP

NP = Co-NP
P - NP = CO—NP @
NP N Co-NP
P = NP n Co-NP, @

@ General belief: we are in the 4th scenario

@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

@ Dealing with NP-Hard Problems

© Summary

36,94

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as YV <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then
Y can be solved in polynomial time. ’

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time,
then X cannot be solved in polynomial time. ’

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,F)and s,t €V
Output: whether there is a Hamiltonian path from s to t in G

Lemma HP <p HC. J

Obs. G has a HP from s to t if and only if graph on right side
has a HC. J

NP-Completeness

Def. A problem X is called NP-complete if
Q@ X ¢ NP, and
Q@ Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-complete problems are the hardest problems in NP

@ NP-hard problems are at least as hard as NP-complete
problems (a NP-hard problem is not required to be in NP)

@ To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

@ If you believe P £ NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

@ Some Hard Problems

© P. NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ NP-Complete Problems

© Dealing with NP-Hard Problems

© Summary

40/94

Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X forevery Y € NP.

@ How can we find a problem X & NP such that every problem
Y € NP is polynomial time reducible to X7 Are we asking
for too much?

@ No! There is indeed a large family of natural NP-complete
problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

xle
Toe

) >
>

J Y Y

Circuit-Sat is NP-Complete

data

@ key fact: algorithms can be \ /

Time 1 | [|

converted to circuits
) . ﬂ‘ll\m
Fact Any algorithm that takes n bits Time 2

as input and outputs 0/1 with running

time T'(n) can be converted into a _
circuit of size p(7'(n)) for some

polynomial function p(-).

A‘ll\m

Time T ‘ ‘

@ Then, we can show that any problem Y € NP can be
reduced to Circuit-Sat.

@ We prove HC <p Circuit-Sat as an example.

HC <p Circuit-Sat

check-HC(G, S) —* c’ C

TTTTITT TTTTTTTTT CTTTTTTT TITTTTTTT
G S 01001100 S
Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian
cycle is G and 0 otherwise.

G is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

Construct a circuit C” for the algorithm check-HC

hard-wire the instance G to the circuit C’ to obtain the
circuit C

G is a yes-instance if and only if C' is satisfiable O

Y <p Circuit-Sat, For Every Y €NP

Let check-Y(s,t) be the certifier for problem Y:
check-Y(s,t) returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a t such that
check-Y(s,t) returns 1

Construct a circuit C” for the algorithm check-Y

hard-wire the instance s to the circuit C’ to obtain the
circuit C

@ s is a yes-instance if and only if C'is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
‘ Clique m Ind—Set‘ ‘ 3D-Matching ‘ 3-Coloring ‘
‘ Vertex-Cover ‘ ‘ TSP ‘ ‘ Subset-Sum ‘

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:
@ Boolean variables: x1, 29, - , 2,
@ Literals: z; or —z;
e Clause: disjunction (“or") of at most 3 literals: x3 V -4,
r1VagVxg, —xoV x5V Iy
@ 3-CNF formula: conjunction (“and”) of clauses:
(x1V 2o Vx3) A (3 Vg Vay) A(—xy V oz V —ozy)

3-Sat

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

@ To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment x; = 1,29 = 1,23 = 0, x4 = 0 satisfies

(1 V 2z Vxs) A (22 Vg Vay) A -z V—xs Vozy)

Circuit-Sat <p 3-Sat

€1
T2

e

@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:
(x4 = "x3) A (25 = 1 V 22) A (26 = T24)
/\(I7:I1/\ZL‘2/\5L‘4)/\(JJ8 21'5\/l‘6)

/\(I‘g:I’6\/$9)/\($10:ISAI9A$7)/\SL’10

Circuit-Sat <p 3-Sat

(1’4 = _|£L‘3) VAN ([L’5 =11V 272) VAN ([lf@ = _'$4)
/\(I7:JI1/\QZ2/\ZE4)/\<I8 :ZE5\/JI6>

/\(Z’g:SL’6V£L'9)/\(1'10:.%'8/\1'9/\1'7)/\1'10

Convert each clause to a 3-CNF Tl X2 T | Ts > X1 VX2

0 0 O 1

Ts =T V X9 = 0 0 1 0
0 1 0 0

(21 Va2V ows) A 0 1 1 1

(271 V X9 V 1’5) A 1 0 0 0
1 0 1 1

1 VraVe A

(Fa1 Vi v s) 1 1 0 0

(_L%'l V L9 Vv 335) 1 1 1 1

Circuit-Sat <p 3-Sat

e Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear)
in the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
‘ Clique Ind-Set ‘ 3D-Matching ‘ ‘ S—Coloring‘
‘ Vertex-Cover ‘ ‘ TSP ‘ ‘ Subset-Sum ‘

Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V' such
that no two vertices in I are adjacent in G. }

Independent Set (Ind-Set) Problem
Input: G = (V,E),k
Output: whether there is an independent set of size k£ in G

3-Sat <p Ind-Set

(ZL’l vV) vV _|1'3) VAN (1‘2 V T3 V IL’4) N (ﬁZL'l vV T3 V 1'4)

A clause = a group of 3
vertices, one for each literal

An edge between every pair
of vertices in same group

An edge between every pair
of contradicting literals

Problem: whether there is
an IS of size k = #clauses

3-Sat instance is yes-instance <> clique instance is yes-instance:

@ satisfying assignment = independent set of size k

@ independent set of size k = satisfying assignment

Satisfying Assignment = IS of Size k

@ (z1VxoVoxg) A(xeVazVay) A(—xy Voxg Vay)

For every clause, at least 1
literal is satisfied

Pick the vertex
correspondent the literal

So, 1 literal from each group

No contradictions among
the selected literals

An IS of size k

IS of Size k£ = Satisfying Assignment

@ (z1VxoVoxg) A(xeVazVay) A(—xy Voxg Vay)

For every group, exactly one
literal is selected in IS

@ No contradictions among
the selected literals

If z; is selected in IS, set

If =z, is selected in IS, set

Otherwise, set z; arbitrarily

Reductions of NP-Complete Problems

Circuit-Sat

Clique Ind Set

‘ 3D- Mmtching ‘ ‘ S—Coloring‘

‘ Vertex CO\ /er ‘ TSP ‘ ‘ Sub%et Sum

Def. A clique in an undirected graph G = (V| E) is a subset
S C V such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k£ > 0,
Output: whether there exists a clique of size k£ in G

@ What is the relationship between Clique and Ind-Set?

Clique =p Ind-Set

Def. Given a graph G = (V, E), define G = (V,E) be the
graph such that (u,v) € F |f and only if (u,v) ¢ E.

Obs. S is an independent set in G if and only if S is a clique in
G.

V.

Reductions of NP-Complete Problems

‘ Clique

Ind-Set

L

Circuit-Sat

‘ 3D-Matching

‘ ‘ 3-Coloring ‘

l

Vertex-Cover

‘ TSP ‘ ‘ Subset-Sum ‘

Vertex-Cover

Def. Given a graph G = (V| E), a vertex cover of GG is a subset
S C V such that for every (u,v) € E thenu € Sorv e S .

Vertex-Cover Problem
Input: G = (V, E) and integer k

Output: whether there is a vertex cover of GG of size at most k

Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set? J

A: S is a vertex-cover of G = (V, E) if and only if V'\ S'is an
independent set of G. }

62,/94

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as ¥V <p X.

@ In general, algorithm for Y can call the algorithm for X
many times.

@ However, for most reductions, we call algorithm for X only
once

@ That is, for a given instance sy for Y, we only construct one
instance sx for X

A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct
in polynomial time an instance sx of problem such that:
e sy is a yes-instance of Y = sx is a yes-instance of X
@ sy is a yes-instance of X = sy is a yes-instance of Y

Reductions of NP-Complete Problems

Circuit-Sat

‘ Clique m Ind—Set‘ ‘ 3D-Matching ‘

] l

Vertex-Cover ‘ TSP ‘ ‘ Subset-Sum ‘

Set-Cover

‘ 3-Coloring ‘

Set-Cover Problem

Input: ground set U and m subsets Sy, Sy, -+ , S, of U and
an integer k
Output: whether there isaset I C {1,2,3,--- ,m} of size <k

such that | J,.; Si = U

Example:
e U=1{1,2,3,4,5,6}, S ={1,3,4}, 5, ={2,3}, 53 =
{3,6}, 54 =1{2,5}, 55 = {1,2,6}
@ Then S; US4 USs = U:; we need 3 subsets to cover U

Sample Application
@ m available packages for a software
@ U is the set of features
@ The package i covers the set S; of features

@ want to cover all features using fewest number of packages

Vertex-Cover <p Set-Cover

U:{a7bﬂc7d’e7f’g}

S1={a,g,h}
S ={a,b,c}
Sy ={b,e,h}
Sy =1{g,h}
S5 = {c,d}
Se ={d,e, f}

@ edges = elements in U

@ vertices = sets
@ edge incident on vertex = element contained in set

@ use vertices to cover edges = use sets to cover elements

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
‘ Clique m Ind—Set‘ ‘ 3D-Matching ‘ ‘ 3-Coloring ‘
‘ Vertex-Cover ‘ ‘ TSP ‘ ‘ Subset-Sum ‘

Recall: Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether G contains a Hamiltonian cycle

@ We consider Hamiltonian Cycle Problem in directed graphs
@ Exercise: HC-directed <p HC

3-Sat <p Directed-HC

c1=x1VTrVI3

Vertices s, t

A long enough double-path
P, for each variable x;
Ty

Edges from s to P,
Edges from P, to ¢
Edges from P, to P,

r;, =1 <= traverse b,
from left to right

T2

T3

eeg r1=1Lxy=123=
Tn 0,24 =0

3-Sat <p Directed-HC

c1=x1VTrVI3

@ There are exactly 2"

1 different Hamiltonian cycles,
each correspondent to one
2 assignment of variables

@ Add a vertex for each
T3 clause, so that the vertex
can be visited only if one of
the literals is satisfied.

A Path Should Be Long Enough

@ k: number of clauses

Yes-Instance for 3-Sat = Yes-Instance for Di-HC

c1=x1VTrVI3

@ In base graph, construct an
HC according to the
satisfying assignment

gl

2 @ For every clause, one literal
is satisfied
w3 @ Visit the vertex for the

clause by taking a “detour”
from the path for the literal

Yes-Instance for Di-HC = Yes-Instance for 3-Sat

@ Idea: for each path P;, must follow the left-to-right or
right-to-right pattern.

@ To visit vertex b, can either go a-b-c or b-c-a

@ Created “chunks” of 3 vertices.

@ Directions of the chunks must be the same

@ Can not take a detour to some other path

Reductions of NP-Complete Problems

Circuit-Sat

‘ Clique m Ind—Set‘ ‘ 3D-Matching ‘

i l

‘ Vertex-Cover ‘ TSP ‘ Subset—Sum‘

‘ 3-Coloring ‘

Traveling Salesman Problem

@ A salesman needs to visit n cities
1,2,3,---,n

@ He needs to start from and return
to city 1

@ Goal: find a tour with the
minimum cost

Travelling Salesman Problem (TSP)
Input: a graph G = (V, E), weights w : E — R>g, and L > 0
Output: whether there is a tour of length at most L

HC <p TSP

Obs. There is a Hamilton cycle in G if and only if there is a
tour for the salesman of length n = |V/|. J

77/94

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
‘ Clique m Ind—Set‘ ‘ 3D-Matching ‘ 3-Coloring
‘ Vertex-Cover ‘ ‘ TSP ‘ ‘ Subset-Sum ‘

k-coloring problem

Def. A k-coloring of G = (V, E) is a
function f:V — {1,2,3,--- ,k} so
that for every edge (u,v) € E, we
have f(u) # f(v). G is k-colorable if
there is a k-coloring of G.

k-coloring problem
Input: a graph G = (V, E)
Output: whether G is k-colorable or not

2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite. |

@ There is an O(m + n)-time algorithm to decide if a graph G
is 2-colorable

@ ldea: suppose G is connected. If we fix the color of one
vertex in (G, then the colors of all other vertices are fixed.

3-SAT <p 3-Coloring

@ Construct the base graph

@ Construct a gadget from each clause: gadget is 3-colorable if
and only if the clause is satisfied.

Base Graph r1V xo VT3

True False

@ Some Hard Problems

© P. NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

© Summary

82/94

Q: How far away are we from proving or disproving P = NP? J

@ Try to prove an “unconditional” lower bound on running time
of algorithm solving a NP-complete problem.
@ For 3-Sat problem:

e Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c"™) for some constant ¢ > 1

e Best lower bound is Q(n)
@ Essentially we have no techniques for proving lower bound for

running time

Dealing with NP-Hard Problems

@ Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
e 2" — 1.844™ — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with
more than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n! - poly(n))
@ Better algorithm: O(2™ - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances
with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs,
but easy on

@ trees
@ bounded tree-width graphs
@ interval graphs

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k
(number of nodes is n, number of
edges is O(n).)

@ Brute-force algorithm: O(kn**1)

@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of k

@ Vertex-Cover is fixed-parameter
tractable.

Approximation Algorithms

e For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the
solution output by the algorithm and the quality of the
optimal solution

@ We want to make the approximation ratio as small as
possible, while maintaining the property that the algorithm
runs in polynomial time

@ There is an 1.5-approximation for travelling salesman
problem: we can efficiently find a tour whose length is at
most 1.5 times the length of the optimal tour

@ 2-approximation for vertex-cover

e O(lgn)-approximation for set-cover

@ Some Hard Problems

© P, NP and Co-NP

© Polynomial Time Reductions and NP-Completeness
@ N\P-Complete Problems

© Dealing with NP-Hard Problems

© Summary

89/94

Summary

@ We consider decision problems

@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X
that can be solved in polynomial time.

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a
polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems
for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings
s and t

@ there is a polynomial function p such that, s € X if and only
if there is string t such that |t| < p(|s|) and B(s,t) = 1.

The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for
which there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X forevery Y € NP.

e If any NP-complete problem can be solved in polynomial
time, then P = NP

@ Unless P = NP, a NP-complete problem can not be solved
in polynomial time

Circuit-Sat

3-Sat
N
| Clique 7] Ind-Set | | 3D-Matching | | 3-Coloring |
i l
‘ Vertex-Cover ‘ ‘ TSP ‘ ‘ Subset-Sum ‘

93,/94

Summary

Proof of NP-Completeness for Circuit-Sat
@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit
@ Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier
Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is
satisfiable

Proof of NP-Completeness for other problems by reductions

	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Dealing with NP-Hard Problems
	Summary

