
CSE 431/531: Algorithm Analysis and Design (Spring 2019)

NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/94

NP-Completeness Theory

The topics we discussed so far are positive results: how to
design efficient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems
can not be solved efficiently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!
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Efficient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm,
then k is small, say 4

A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Ω(2nc

) for some c

Do not need to worry about the computational model
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Pseudo-Polynomial Is not Polynomial!

Polynomial:

Kruskal’s algorithm for minimum spanning tree:
O(n lg n + m)

Floyd-Warshall for all-pair shortest paths: O(n3)

Reason: we need to specify m ≥ n− 1 edges in the input

Pseudo-Polynomial:

Knapsack Problem: O(nW ), where W is the maximum
weight the Knapsack can hold

Reason: to specify integer in [0,W ], we only need O(lgW ) bits.
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Recall: Knapsack Problem

Input: n items, each item i with a weight wi, and a value vi;

a bound W on the total weight the knapsack can hold

Output: the maximum value of items the knapsack can hold,

i.e, a set S ⊆ {1, 2, · · · , n}:

max
∑
i∈S

vi s.t.
∑
i∈S

wi ≤ W

DP is O(nW )-time algorithm, not a real polynomial time

Knapsack is NP-hard: it is unlikely that the problem can be
solved in polynomial time
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Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC)
of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle



8/94

Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it
corresponds to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in
polynomial time.
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Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard
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Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with ∨,∧,¬
operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ∧ x2) ∨ (¬x1 ∧ ¬x3) ∨ x1 ∨ (¬x2 ∧ x3)) is
not satisfiable

Trivial algorithm: enumerate all possible assignments, and
check if each assignment satisfies the formula

Formula Satisfiablity is NP-hard
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision
version X ′ of the problem. If we have a polynomial time
algorithm for the decision version X ′, we can solve the original
problem X in polynomial time.
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Optimization to Decision

Shortest Path

Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
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Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String: 111101111100011111000011000001
110000110111111111000001
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Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before
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Encoding

Def. The size of an input is the length of the encoded string s
for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only
care whether the running time is polynomial or not
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Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s ∈ X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and
only if s ∈ X.

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A
terminates on s in at most p(|s|) steps.
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Complexity Class P

Def. The complexity class P is the set of decision problems X
that can be solved in polynomial time.

The decision versions of interval scheduling, shortest path
and minimum spanning tree all in P.
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Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice
convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it
is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and
the algorithm Bob runs is called a certifier.
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Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is
really a independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set
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Graph Isomorphism

Graph Isomorphism

Input: two graphs G1 and G2,

Output: whether two graphs are isomorphic to each other

2 3

4

56

1

2 6

4

35

1

What is the certificate?

What is the certifier?
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The Complexity Class NP

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings
s and t

there is a polynomial function p such that, s ∈ X if and only
if there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for
which there exists an efficient certifier.
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Hamiltonian Cycle ∈ NP

Input: Graph G

Certificate: a sequence S of edges in G

|encoding(S)| ≤ p(|encoding(G)|) for some polynomial
function p

Certifier B: B(G,S) = 1 if and only if S is an HC in G

Clearly, B runs in polynomial time

G ∈ HC ⇐⇒ ∃S, B(G,S) = 1
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Graph Isomorphism ∈ NP

Input: two graphs G1 = (V,E1) and G2 = (V,E2) on V

Certificate: a 1-1 function f : V → V

|encoding(f)| ≤ p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1, G2), f) = 1 if and only if for every
u, v ∈ V , we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

Clearly, B runs in polynomial time

(G1, G2) ∈ GI ⇐⇒ ∃f , B((G1, G2), f) = 1
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Maximum Independent Set ∈ NP

Input: graph G = (V,E) and integer k

Certificate: a set S ⊆ V of size k

|encoding(S)| ≤ p(|encoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) = 1 if and only if S is an
independent set in G

Clearly, B runs in polynomial time

(G, k) ∈ MIS ⇐⇒ ∃S, B((G, k), S) = 1
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Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is
1?

Is Circuit-Sat ∈ NP?
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HC

Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC ∈ NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does
not contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC ∈ Co-NP
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The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
s ∈ X if and only if s /∈ X.

Def. Co-NP is the set of decision problems X such that X ∈
NP.
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Def. A tautology is a boolean formula that always evaluates to
1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1∧x2)∨ (¬x1∧¬x3)∨x1∨ (¬x2∧x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology ∈ Co-NP

Indeed, Tautology = Formula-Unsat
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Prime

Prime

Input: an integer q ≥ 2

Output: whether q is a prime

It is easy to certify that q is not a prime

Prime ∈ Co-NP

[Pratt 1970] Prime ∈ NP

P ⊆ NP ∩ Co-NP (see soon)

If a natural problem X is in NP ∩ Co-NP, then it is likely
that X ∈ P

[AKS 2002] Prime ∈ P
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P ⊆ NP

Let X ∈ P and s ∈ X

Q: How can Alice convince Bob that s is a yes instance?

A: Since X ∈ P, Bob can check whether s ∈ X by himself,
without Alice’s help.

The certificate is an empty string

Thus, X ∈ NP and P ⊆ NP

Similarly, P ⊆ Co-NP, thus P ⊆ NP ∩ Co-NP



33/94

Is P = NP?

A famous, big, and fundamental open problem in computer
science

Little progress has been made

General belief is P 6= NP

It would be too amazing if P = NP: if one can check a
solution efficiently, then one can find a solution efficiently

Complexity assumption: P 6= NP

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /∈ P
HC /∈ P, unless P = NP
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Is NP = Co-NP?

Again, a big open problem

General belief: NP 6= Co-NP.
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4 Possibilities of Relationships

Notice that X ∈ NP ⇐⇒ X ∈ Co-NP and P ⊆ NP ∩ Co-NP

P = NP = Co-NP
NP = Co-NP

P

NP Co-NPP = NP ∩ Co-NP
NP Co-NP

NP ∩ Co-NP

P

General belief: we are in the 4th scenario
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Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as Y ≤P X.

To prove positive results:

Suppose Y ≤P X. If X can be solved in polynomial time, then
Y can be solved in polynomial time.

To prove negative results:

Suppose Y ≤P X. If Y cannot be solved in polynomial time,
then X cannot be solved in polynomial time.
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V,E) and s, t ∈ V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP ≤P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side
has a HC.
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NP-Completeness

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

Theorem If X is NP-complete and X ∈ P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete
problems (a NP-hard problem is not required to be in NP)

To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

If you believe P 6= NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X
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Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

How can we find a problem X ∈ NP such that every problem
Y ∈ NP is polynomial time reducible to X? Are we asking
for too much?

No! There is indeed a large family of natural NP-complete
problems
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The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

Output: whether the circuit is satisfiable

x1
x2

x3
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Circuit-Sat is NP-Complete

key fact: algorithms can be
converted to circuits

Fact Any algorithm that takes n bits
as input and outputs 0/1 with running
time T (n) can be converted into a
circuit of size p(T (n)) for some
polynomial function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y ∈ NP can be
reduced to Circuit-Sat.

We prove HC ≤P Circuit-Sat as an example.
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HC ≤P Circuit-Sat

check-HC(G,S) C ′

G S S0

C

0 0 0 01 1 1

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian
cycle is G and 0 otherwise.
G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C ′ for the algorithm check-HC
hard-wire the instance G to the circuit C ′ to obtain the
circuit C
G is a yes-instance if and only if C is satisfiable
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Y ≤P Circuit-Sat, For Every Y ∈NP

Let check-Y(s, t) be the certifier for problem Y :
check-Y(s, t) returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C ′ for the algorithm check-Y

hard-wire the instance s to the circuit C ′ to obtain the
circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 ∨ ¬x4,
x1 ∨ x8 ∨ ¬x9, ¬x2 ∨ ¬x5 ∨ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
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3-Sat

3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
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Circuit-Sat ≤P 3-Sat

x1
x2

x3

x5

x6

x7

x8

x9 x10

x4

Associate every wire with a new variable

The circuit is equivalent to the following formula:

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x9) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10
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Circuit-Sat ≤P 3-Sat

(x4 = ¬x3) ∧ (x5 = x1 ∨ x2) ∧ (x6 = ¬x4)

∧ (x7 = x1 ∧ x2 ∧ x4) ∧ (x8 = x5 ∨ x6)

∧ (x9 = x6 ∨ x9) ∧ (x10 = x8 ∧ x9 ∧ x7) ∧ x10

Convert each clause to a 3-CNF

x5 = x1 ∨ x2 ⇔
(x1 ∨ x2 ∨ ¬x5) ∧
(x1 ∨ ¬x2 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x5) ∧
(¬x1 ∨ ¬x2 ∨ x5)

x1 x2 x5 x5 ↔ x1 ∨ x2
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Circuit-Sat ≤P 3-Sat

Circuit ⇐⇒ Formula ⇐⇒ 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear)
in the size of the circuit

Thus, Circuit-Sat ≤P 3-Sat
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Recall: Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ⊆ V such
that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: G = (V,E), k

Output: whether there is an independent set of size k in G
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3-Sat ≤P Ind-Set

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

A clause ⇒ a group of 3
vertices, one for each literal

An edge between every pair
of vertices in same group

An edge between every pair
of contradicting literals

Problem: whether there is
an IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance ⇔ clique instance is yes-instance:

satisfying assignment ⇒ independent set of size k

independent set of size k ⇒ satisfying assignment
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Satisfying Assignment ⇒ IS of Size k

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex
correspondent the literal

So, 1 literal from each group

No contradictions among
the selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2
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IS of Size k ⇒ Satisfying Assignment

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

For every group, exactly one
literal is selected in IS

No contradictions among
the selected literals

If xi is selected in IS, set
xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Def. A clique in an undirected graph G = (V,E) is a subset
S ⊆ V such that ∀u, v ∈ S we have (u, v) ∈ E

Clique Problem

Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?
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Clique =P Ind-Set

Def. Given a graph G = (V,E), define G = (V,E) be the
graph such that (u, v) ∈ E if and only if (u, v) /∈ E.

Obs. S is an independent set in G if and only if S is a clique in
G.
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ⊆ V such that for every (u, v) ∈ E then u ∈ S or v ∈ S .

Vertex-Cover Problem

Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k
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Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.
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A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as Y ≤P X.

In general, algorithm for Y can call the algorithm for X
many times.

However, for most reductions, we call algorithm for X only
once

That is, for a given instance sY for Y , we only construct one
instance sX for X
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A Strategy of Polynomial Reduction

Given an instance sY of problem Y , show how to construct
in polynomial time an instance sX of problem such that:

sY is a yes-instance of Y ⇒ sX is a yes-instance of X
sX is a yes-instance of X ⇒ sY is a yes-instance of Y
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Set-Cover Problem

Input: ground set U and m subsets S1, S2, · · · , Sm of U and
an integer k

Output: whether there is a set I ⊆ {1, 2, 3, · · · ,m} of size ≤ k
such that

⋃
i∈I Si = U

Example:

U = {1, 2, 3, 4, 5, 6}, S1 = {1, 3, 4}, S2 = {2, 3}, S3 =
{3, 6}, S4 = {2, 5}, S5 = {1, 2, 6}
Then S1 ∪ S4 ∪ S5 = U ; we need 3 subsets to cover U

Sample Application

m available packages for a software

U is the set of features

The package i covers the set Si of features

want to cover all features using fewest number of packages
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Vertex-Cover ≤P Set-Cover

1

2

3

4

6

5
a

b

c

d
e

f

g

h

U = {a, b, c, d, e, f, g}
S1 = {a, g, h}
S2 = {a, b, c}
S3 = {b, e, h}
S4 = {g, h}
S5 = {c, d}
S6 = {d, e, f}

edges =⇒ elements in U

vertices =⇒ sets

edge incident on vertex =⇒ element contained in set

use vertices to cover edges =⇒ use sets to cover elements
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Recall: Hamiltonian Cycle (HC) Problem

Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

We consider Hamiltonian Cycle Problem in directed graphs

Exercise: HC-directed ≤P HC
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3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

Vertices s, t

A long enough double-path
Pi for each variable xi

Edges from s to P1

Edges from Pn to t

Edges from Pi to Pi+1

xi = 1 ⇐⇒ traverse Pi

from left to right

e.g, x1 = 1, x2 = 1, x3 =
0, x4 = 0
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3-Sat ≤P Directed-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1

There are exactly 2n

different Hamiltonian cycles,
each correspondent to one
assignment of variables

Add a vertex for each
clause, so that the vertex
can be visited only if one of
the literals is satisfied.
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A Path Should Be Long Enough

≤ 3k + 1 vertices

k: number of clauses
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Yes-Instance for 3-Sat ⇒ Yes-Instance for Di-HC

s

t

x1

x2

x3

xn

c1 = x1 ∨ x2 ∨ x3

c1
In base graph, construct an
HC according to the
satisfying assignment

For every clause, one literal
is satisfied

Visit the vertex for the
clause by taking a “detour”
from the path for the literal
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Yes-Instance for Di-HC ⇒ Yes-Instance for 3-Sat

≤ 3k + 1 vertices

Idea: for each path Pi, must follow the left-to-right or
right-to-right pattern.

To visit vertex b, can either go a-b-c or b-c-a

Created “chunks” of 3 vertices.

Directions of the chunks must be the same

Can not take a detour to some other path
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Traveling Salesman Problem

A salesman needs to visit n cities
1, 2, 3, · · · , n
He needs to start from and return
to city 1

Goal: find a tour with the
minimum cost

4

6

2 3

1 2

23

Travelling Salesman Problem (TSP)

Input: a graph G = (V,E), weights w : E → R≥0, and L > 0

Output: whether there is a tour of length at most L
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HC ≤P TSP

Obs. There is a Hamilton cycle in G if and only if there is a
tour for the salesman of length n = |V |.
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique



79/94

k-coloring problem

Def. A k-coloring of G = (V,E) is a
function f : V → {1, 2, 3, · · · , k} so
that for every edge (u, v) ∈ E, we
have f(u) 6= f(v). G is k-colorable if
there is a k-coloring of G.

k-coloring problem

Input: a graph G = (V,E)

Output: whether G is k-colorable or not
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2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

There is an O(m + n)-time algorithm to decide if a graph G
is 2-colorable

Idea: suppose G is connected. If we fix the color of one
vertex in G, then the colors of all other vertices are fixed.
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3-SAT ≤P 3-Coloring

Construct the base graph

Construct a gadget from each clause: gadget is 3-colorable if
and only if the clause is satisfied.

True False

Base

x1 x1

x2 x2

x3 x3

x1 ∨ ¬x2 ∨ x3

True False

Base Graph

x4 x̄4

x1

x2

x3
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Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time
of algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is Θ(n), n = number variables
Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is Ω(n)

Essentially we have no techniques for proving lower bound for
running time
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Dealing with NP-Hard Problems

Faster exponential time algorithms

Solving the problem for special cases

Fixed parameter tractability

Approximation algorithms
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Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))

2n → 1.844n → 1.3334n

Practical SAT Solver: solves real-world sat instances with
more than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))

Better algorithm: O(2n · poly(n))

In practice: TSP Solver can solve Euclidean TSP instances
with more than 100,000 vertices
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Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs,
but easy on

trees

bounded tree-width graphs

interval graphs

· · ·
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Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k
(number of nodes is n, number of
edges is Θ(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)

Running time is f(k)nc for some c
independent of k

Vertex-Cover is fixed-parameter
tractable.
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Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the
solution output by the algorithm and the quality of the
optimal solution

We want to make the approximation ratio as small as
possible, while maintaining the property that the algorithm
runs in polynomial time

There is an 1.5-approximation for travelling salesman
problem: we can efficiently find a tour whose length is at
most 1.5 times the length of the optimal tour

2-approximation for vertex-cover

O(lg n)-approximation for set-cover
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Summary

We consider decision problems

Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X
that can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential
time algorithm

Bob has a slow computer, which can only run a
polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems
for which Alice can convince Bob a yes instance is a yes instance
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Summary

Def. B is an efficient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings
s and t

there is a polynomial function p such that, s ∈ X if and only
if there is string t such that |t| ≤ p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for
which there exists an efficient certifier.
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Summary

Def. Given a black box algorithm A that solves a problem X, if
any instance of a problem Y can be solved using a polynomial
number of standard computational steps, plus a polynomial
number of calls to A, then we say Y is polynomial-time reducible
to X, denoted as Y ≤P X.

Def. A problem X is called NP-complete if

1 X ∈ NP, and

2 Y ≤P X for every Y ∈ NP.

If any NP-complete problem can be solved in polynomial
time, then P = NP

Unless P = NP , a NP-complete problem can not be solved
in polynomial time
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Summary

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Summary

Proof of NP-Completeness for Circuit-Sat

Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X ∈ NP, let B(s, t) be the certifier

Convert B(s, t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is
satisfiable

Proof of NP-Completeness for other problems by reductions


	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Dealing with NP-Hard Problems
	Summary

