CSE 431/531: Algorithm Analysis and Design

Spring 2020

## Homework 2

Instructor: Shi Li

Your Name: \_\_\_\_

Your Student ID: \_\_\_\_\_

| Problems   | 1  | 2  | 3  | Total |
|------------|----|----|----|-------|
| Max. Score | 10 | 20 | 20 | 50    |
| Your Score |    |    |    |       |

**Problem 1 (10 points).** Construct the Huffman code (i.e, the optimum prefix code) for the alphabet  $\{a, b, c, d, e, f, g\}$  with the following frequencies:

| Symbols     | а  | b  | с  | d  | е  | f  | g |
|-------------|----|----|----|----|----|----|---|
| Frequencies | 50 | 10 | 38 | 25 | 55 | 90 | 5 |

What is the weighted length of the code (i.e, the sum over all symbols the frequency of the symbol times its encoding length)?

**Problem 2 (20 points).** Let  $I = (k, n, T, (p_1, p_2, \dots, p_k), (r_1, r_2, \dots, r_T))$  be an offline caching instance with initial set of pages, where

- k is the number of pages the cache can hold,
- n is the number of different pages,
- T is the length of the request sequence,
- $p_1, p_2, \dots, p_k \in [n] := \{1, 2, 3, \dots, n\}$  are the k pages in the cache initially (for simplicity we assume the k pages are all different and there are no empty pages),

•  $r_t \in [n]$  for every  $t \in [T]$  is the page requested at time t.

Let  $I' = (k, n, T, (p_1, p_2, \dots, p_{k-1}, p'_k), (r_1, r_2, \dots, r_T))$  be the instance obtained from I by changing  $p_k$  to  $p'_k$ . Prove the minimum number of misses we can achieve for the instance I' is at most that for the instance I plus 1.

**Problem 3 (20 points).** Given a set of *n* points  $X = \{x_1, x_2, \dots, x_n\}$  on the real line, we want to use the smallest number of unit-length closed intervals to cover all the points in *X*. For example, the points *X* in Figure 1 can be covered by 3 unit-length intervals.

Suppose our greedy strategy is to choose some unit-length interval, and include it in the optimal solution. Which unit-length interval do you want to choose? Give your strategy and prove that it is safe to include it in the solution.

Deadline: 3/4/2020



Figure 1: Using 3 unit-length intervals (denoted by thick lines) to cover points in X (denoted by the solid circles).