
CSE 431/531: Algorithm Analysis and Design Spring 2020

Homework 4
Instructor: Shi Li Deadline: 4/22/2020

Your Name: Your Student ID:

Problems 1 2 3 Total
Max. Score 14 18 18 50
Your Score

Problem 1 (14 points). Consider the following optimum binary search tree instance.
We have 5 elements e1, e2, e3, e4 and e5 with e1 < e2 < e3 < e4 < e5 and their frequencies
are f1 = 5, f2 = 25, f3 = 15, f4 = 10 and f5 = 30. Recall that the goal is to find a
binary search tree for the 5 elements so as to minimize

∑5
i=1 depth(ei)fi, where depth(ei)

is the depth of the element ei in the tree. You need to output the best tree as well as its
cost. You can try to complete the following tables and show the steps. In the two tables,
opt(i, j) is the cost of the best tree for the instance containing ei, ei+1, ..., ej and π(i, j) is
the root of the best tree.

i

opt(i, j) j
1 2 3 4 5

1 5
2 25
3 15
4 10
5 30

i

π(i, j) j
1 2 3 4 5

1 1
2 2
3 3
4 4
5 5

Table 1: opt and π tables for the optimum binary search tree instance. For cleanness of
the table, we assume opt(i, j) = 0 if j < i and there are not shown in the left table.

opt(1, 2) = min{0 + opt(2, 2), opt(1, 1) + 0}+ (f1 + f2) =

opt(2, 3) =

opt(3, 4) =

opt(4, 5) =

opt(1, 3) = min{0 + opt(2, 3), opt(1, 1) + opt(3, 3), opt(1, 2) + 0}+ (f1 + f2 + f3)

=

opt(2, 4) =

=

opt(3, 5) =

=

1

opt(1, 4) = min{0 + opt(2, 4), opt(1, 1) + opt(3, 4), opt(1, 2) + opt(4, 4), opt(1, 3) + 0}
+ (f1 + f2 + f3 + f4)

=

opt(2, 5) =

=

opt(1, 5) =

=

Problem 2 (18 points) This problem asks for the maximum weighted independent
set in a 2 × n size grid. Formally, the set of vertices in the input graph G is V =
{1, 2} × {1, 2, 3, · · · , n} =

{
(r, c) : r ∈ {1, 2}, c ∈ {1, 2, 3, · · · , n}

}
. Two different vertices

(r, c) and (r′, c′) in V are adjacent in G if and only if |r − r′| + |c − c′| = 1. For every
vertex (r, c) ∈ V , we are given the weight wr,c ≥ 0 of the vertex. The goal of the problem
is to find an independent set of G with the maximum total weight. (Recall that S ⊆ V
is an independent set if there are no edges between any two vertices in S.) See Figure 1
for an example of an instance of the problem.

c

r

40

50 80

100 90

20 10

0

130

90

10

30

Figure 1: A maximum weighted independent set instance on a 2 × 6-grid. The weights
of the vertices are given by the numbers. The vertices in rectangles form the maximum
weighted independent set, with a total weight of 370.

Design an O(n)-time dynamic programming algorithm to solve the problem. For
simplicity, you only need to output the weight of the maximum weighted independent
set, not the actual set.

If you could not solve the above problem, you can try to solve the simpler problem
when the grid size is 1 × n instead of 2 × n (that is, the input graph is a path on n
verticies).

Problem 3 (18 points). Given a sequence A[1 .. n] of numbers, we say that A is an
N -shaped sequence if there are two indices i, j such that 1 < i < j < n and

• A[1] < A[2] < A[3] < · · · < A[i],

2

• A[i] > A[i+ 1] > A[i+ 2] > · · · > A[j],

• A[j] < A[j + 1] < A[j + 2] < · · · < A[n].

For example (3, 6, 9, 12, 11, 10, 12, 13, 17) is an N -shaped sequence.
Design an polynomial-time algorithm that, given an array A of n numbers, outputs

the length of the longest N -shaped subsequence of A. (If no such subsequence exists,
your algorithm can output −∞). For example, if the input sequence is (3, 1, 4, 6, 5, 7, 2),
your algorithm should output 5 ((3, 4, 6, 5, 7) is the longest N -shaped subsequence).

You will get all the points if the running time of your algorithm is O(n2).

3

