

Homework 5

Instructor: Shi Li

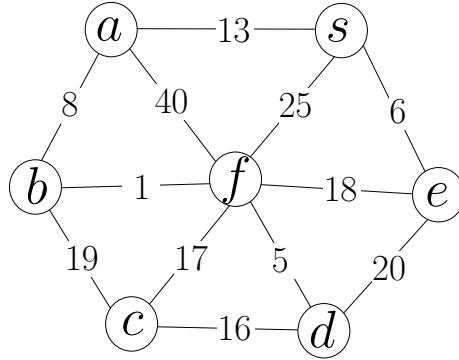
Deadline: 5/4/2020

Your Name: _____

Your Student ID: _____

Problems	1	2	3	Total
Max. Score	20	10	20	50
Your Score				

Problem 1 (20 points). Consider the following graph G with non-negative edge weights.



(1a) Use Prim's algorithm to compute the minimum spanning tree of G . Give the minimum spanning tree and its weight.

You can use the following table to describe the execution of the algorithm. The algorithm maintains a set S of vertices. The d value of a vertex $v \notin S$ is $\min_{u \in S: (u,v) \in E} w(u, v)$. The π value of a vertex v is the vertex $u \in S$ such that $d(v) = w(u, v)$; if $d(v) = \infty$, then $\pi(v) = "/>$.

iteration	vertex added to S	a		b		c		d		e		f	
		d	π	d	π	d	π	d	π	d	π	d	π
1	s	13	s	∞	/	∞	/	∞	/	6	s	25	s
2													
3													
4													
5													
6													
7													

Table 1: Prim's Algorithm for Minimum Spanning Tree

(1b) Use Dijkstra's algorithm to compute the shortest paths from s to all other vertices in the following undirected graph.

You can use the following table to describe the execution of the algorithm. The algorithm maintains a set S of vertices. The d value of a vertex $v \notin S$ is $\min_{u \in S: (u,v) \in E} (d(u) + w(u,v))$. The π value of a vertex v is the vertex $u \in S$ such that $d(v) = d(u) + w(u,v)$; if $d(v) = \infty$, then $\pi(v) = "/$.

iteration	vertex added to S	a		b		c		d		e		f	
		d	π	d	π	d	π	d	π	d	π	d	π
1	s	13	s	∞	/	∞	/	∞	/	6	s	25	s
2													
3													
4													
5													
6													
7													

Table 2: Dijkstra's algorithm for Shortest Path

Problem 2 (10 points) Assume we are given an undirected graph $G = (V, E)$ with non-negative edge weights $(w_e)_{e \in E}$, and two vertices s and t in V .

(2a) Let T be the unique minimum spanning tree of G . Is the following statement true or false? If we change the weight of every edge e from w_e to w_e^2 , then T is still the unique minimum spanning tree of G . Justify your answer.

(2b) Let P be the unique shortest path from s to t . Is the following statement true or false? If we change the weight of every edge e from w_e to w_e^2 , then P is still the unique shortest path from s to t . Justify your answer.

Problem 3 (20 points) We are given a directed graph $G = (V, E)$ with positive weight function: $w : E \rightarrow \mathbb{R}_{>0}$, and two vertices $s, t \in V$. Suppose we have already computed the d and π array using the Dijkstra's algorithm: $d[v]$ is the length of the shortest path from s to v , and $\pi[v]$ is the vertex before v in the path.

Show that how to use the d and π array to check if the shortest path from s to t in G is unique or not, in $O(n \log n + m)$ time.