CSE 431/531: Algorithm Analysis and Design (Spring 2020) Advanced Data Structures

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

1 Heap: Concrete Data Structure for Priority Queue

- 2 Self-Balancing Binary-Search Tree
 - Counting inversions using Self-Balancing Binary-Search Tree
 - Binary Search Tree
 - Longest Increasing Subsequence using Self-Balancing BST

• Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element $v \in V \setminus U$, with associated key value key_value .
- decrease_key (v, new_key_value) : decrease the key value of an element $v \in U$ to new_key_value
- \bullet extract_min(): return and remove the element in U with the smallest key value
- o . . .

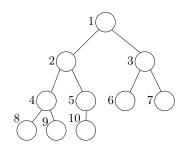
Simple Implementations for Priority Queue

 $\bullet \ n = {\rm size} \ {\rm of} \ {\rm ground} \ {\rm set} \ V$

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Heap

The elements in a heap is organized using a complete binary tree:

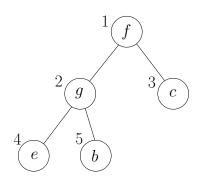


- ullet Nodes are indexed as $\{1,2,3,\cdots,s\}$
- Parent of node i: $\lfloor i/2 \rfloor$
- Left child of node i: 2i
- Right child of node i: 2i + 1

Heap

A heap H contains the following fields

- s: size of U (number of elements in the heap)
- $A[i], 1 \le i \le s$: the element at node i of the tree
- ullet $p[v],v\in U$: the index of node containing v
- $key[v], v \in U$: the key value of element v

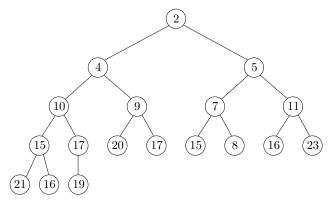


- s = 5
- A = (`f', `g', `c', `e', `b')
- p['f'] = 1, p['g'] = 2, p['c'] = 3,p['e'] = 4, p['b'] = 5

Heap

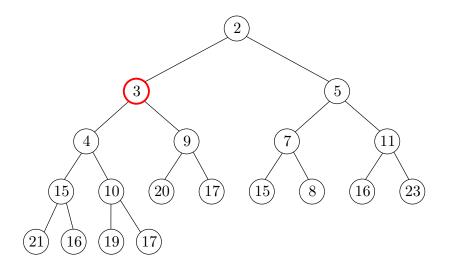
The following heap property is satisfied:

• for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \leq key[A[j]]$.



A heap. Numbers in the circles denote key values of elements.

$\mathsf{insert}(v, key_value)$



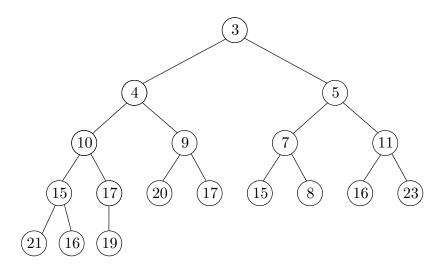
$insert(v, key_value)$

- \bullet $s \leftarrow s+1$
- $p[v] \leftarrow s$
- heapify_up(s)

heapify-up(i)

- \bullet while i > 1
- $j \leftarrow \lfloor i/2 \rfloor$
- if key[A[i]] < key[A[j]] then
- \bullet swap A[i] and A[j]
- $\mathbf{6} \qquad i \leftarrow j$
- else break

extract_min()



extract_min()

- **2** $A[1] \leftarrow A[s]$
- \bullet $s \leftarrow s 1$
- \bullet if $s \geq 1$ then
- \bullet heapify_down(1)
- $oldsymbol{o}$ return ret

$\mathsf{decrease_key}(v, key_value)$

- $oldsymbol{o}$ heapify-up(p[v])

$\mathsf{heapify\text{-}down}(i)$

- while $2i \leq s$
- $\text{if } 2i = s \text{ or } \\ key[A[2i]] \leq key[A[2i+1]] \text{ then }$
- $j \leftarrow 2i$
- else
 - $j \leftarrow 2i + 1$
- if key[A[j]] < key[A[i]] then
- $oldsymbol{0}$ swap A[i] and A[j]
- $p[A[i]] \leftarrow i, \ p[A[j]] \leftarrow j$
- else break

- Running time of heapify_up and heapify_down: $O(\lg n)$
- ullet Running time of insert, exact_min and decrease_key: $O(\lg n)$

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Two Definitions Needed to Prove that the Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too big if we can decrease key[A[i]] to make H a heap.

Outline

1 Heap: Concrete Data Structure for Priority Queue

- Self-Balancing Binary-Search Tree
 - Counting inversions using Self-Balancing Binary-Search Tree
 - Binary Search Tree
 - Longest Increasing Subsequence using Self-Balancing BST

Outline

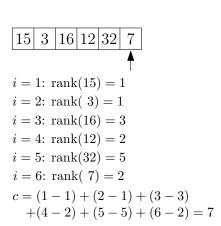
1 Heap: Concrete Data Structure for Priority Queue

- Self-Balancing Binary-Search Tree
 - Counting inversions using Self-Balancing Binary-Search Tree
 - Binary Search Tree
 - Longest Increasing Subsequence using Self-Balancing BST

Counting Inversions

inversions(A, n)

- $\begin{array}{c} \bullet & T \leftarrow \text{empty Binary Search} \\ \text{Tree} \end{array}$
- $c \leftarrow 0$
- \bullet for $i \leftarrow 1$ to n
- $\qquad c \leftarrow c + i T.\mathsf{rank}(A[i])$
- \bullet T.insert(A[i])
- \odot return c



Outline

1 Heap: Concrete Data Structure for Priority Queue

- Self-Balancing Binary-Search Tree
 - Counting inversions using Self-Balancing Binary-Search Tree
 - Binary Search Tree
 - Longest Increasing Subsequence using Self-Balancing BST

A self-balancing binary search tree T maintains a set of comparable elements and supports:

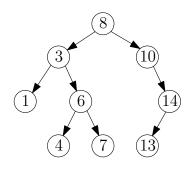
- ullet Insertion of an element to T
- ullet Deletion of an element from T
- Whether an element exists in T
- Return the rank of an element in T (i.e, 1 plus number of elements in T smaller than the element)
- Return the i-th smallest element in T
- ...

Each operation takes time $O(\lg n)$

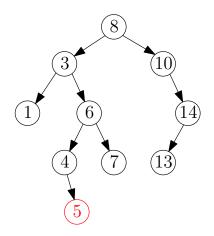
Binary Search Trees

For any node v in tree:

- $\begin{tabular}{ll} \bf keys \ in \ v \ must \ be \ greater \ than \\ all \ keys \ on \ the \ left-sub-tree \ of \\ v \end{tabular}$
- key in v must be smaller than all keys on the right-sub-tree of v
- in-order traversal of tree gives a sorted list of keys



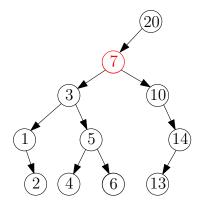
Binary Search Trees: Insertition



Binary Search Trees: Insertion

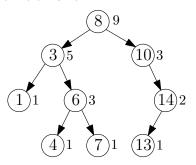
```
insert(v, key)
 \bullet if key < v.key
        if v.left = nil then
            create a new node u
 3
            u.key \leftarrow key, u.left \leftarrow \mathsf{nil}, u.right \leftarrow \mathsf{nil}
 5
            v.left \leftarrow u
         else insert(v.left, key)
     else
         if v.right = nil then
 9
            create a new node u
            u.key \leftarrow key, u.left \leftarrow \mathsf{nil}, u.right \leftarrow \mathsf{nil}
 10
 •
            v.right \leftarrow u
12
         else insert(v.right, key)
```

Binary Search Trees: Deletion



Binary Search Trees: Rank

• Need to maintain a field "size"



Binary Search Trees: Rank

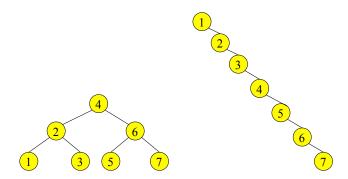
$\mathsf{rank}(v, key)$

- \bullet if $key \leq v.key$

- else
- if v.right = nil then return v.size + 1
- $\qquad \text{else return } v.size v.right.size + \mathsf{rank}(v.right, key)$

Running Time for Operations

- each operation takes time O(d).
- \bullet d = depth of tree
- best case: $d = \Theta(\lg n)$
- worst case: $d = \Theta(n)$



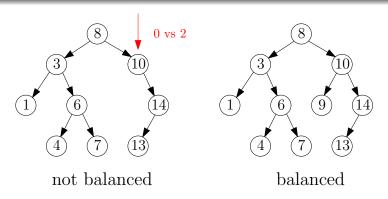
Self-Balancing BST: automatically keep the height of tree small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ..

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.

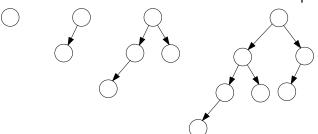


AVL Tree

Property of an AVL tree

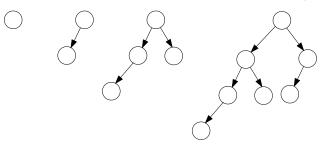
For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.

- Why does the property guarantee that the height of a tree is $O(\log n)$?
- f(d): minimum number of nodes in an AVL tree of depth d



•
$$f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 \cdots$$

ullet f(d): minimum number of nodes in an AVL tree of depth d



• Recursion:

$$f(0) = 0$$

 $f(1) = 1$
 $f(d) = f(d-1) + f(d-2) + 1$ $d \ge 2$

$$\bullet \ f(d) = 2^{\Theta(d)}$$

Depth of AVL tree

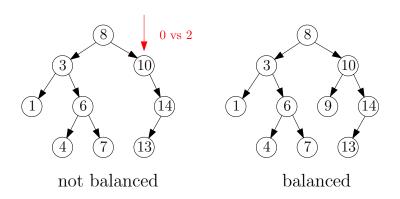
- f(d): minimum number of nodes in an AVL tree of depth d
- $f(d) = 2^{\Theta(d)}$
- ullet If a AVL tree has size n and depth d, then

$$n \ge f(d)$$

• Thus, $d = O(\log n)$

Property of an AVL tree

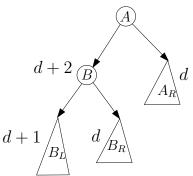
For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.

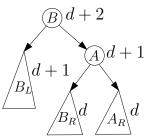


- How can we maintain the property?
- Assume we only do insertions; there are no deletions.

Maintain Balance Property

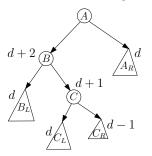
- A: the deepest node such that the balance property is not satisfied after insertion
- ullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- ullet case 1: we inserted an element to the left-sub-tree of B

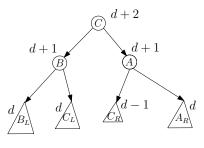




Maintain Balance Property

- A: the deepest node such that the balance property is not satisfied after insertion
- ullet Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- ullet case 2: we inserted an element to the right-sub-tree of B
- ullet C: the root of right-sub-tree of B





Outline

1 Heap: Concrete Data Structure for Priority Queue

- Self-Balancing Binary-Search Tree
 - Counting inversions using Self-Balancing Binary-Search Tree
 - Binary Search Tree
 - Longest Increasing Subsequence using Self-Balancing BST

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence $A=(a_1,a_2,\cdots,a_n)$ of n numbers, an increasing subsequence of A is a subsequence $(A_{i_1},A_{i_2},A_{i_3},\cdots,A_{i,t})$ such that $1\leq i_1< i_2< i_3<\cdots< i_t\leq n$ and $a_{i_1}< a_{i_2}< a_{i_3}<\cdots< a_{i_t}$.

Exercise: Longest Increasing Subsequence

Input: $A = (a_1, a_2, \cdots, a_n)$ of n numbers

Output: The length of the longest increasing sub-sequence of A

Example:

- Input: (10, 3, 9, 8, 2, 5, 7, 1, 12)
- Output: 4

Dynamic Programming for Longest Increasing Sub-sequence Problem

- f[i]: longest increasing sub-sequence ending at i.
- For every $i=1,2,3,\cdots,n$,

$$f[i] = \max_{j < i: a_j < a_i} f(j) + 1,$$

assuming $\max_{j < i: a_i < a_i} f(j) = 0$ if no such j exists.

$O(n^2)$ -Time Algorithm for LIS

LIS(A, n)

- \bullet ans $\leftarrow 0$
- **2** for $i \leftarrow 1$ to n do
- **4 for** $j \leftarrow 1$ to i 1 **do**
- if A[j] < A[i] and f[j] + 1 > f[i] then $f[i] \leftarrow f[j] + 1$
- if f[i] > ans then $ans \leftarrow f[i]$
- oreturn ans

Improving Running Time to $O(n \log n)$ Using Self-Balancing BST

$\mathsf{LIS}(A,n)$

- $\textbf{0} \ \, T \leftarrow \text{empty Self-Balancing BST,} \quad \, \backslash \backslash \text{ each element in } T \text{ is an integer and associated with a } f \text{ value}$
- $ans \leftarrow 1$
- **3** for $i \leftarrow 1$ to n do
- $f[i] \leftarrow T$.max-f-value-over-elements-less-than(A[i])+1\\ the function returns the maximum f value over all elements in T that are less than A[i]
- **5** T.insert $(A[i], f[i]) \setminus A[i]$ insert A[i] with f value being f[i] to T
- o return ans

Q: How can we implement max-f-value-over-elements-less-than so that it runs in $O(\log n)$ time?

A: In each node of BST, we maintain the maximum f value over all nodes in the sub-tree rooted at the node.

