CSE 431/531: Algorithm Analysis and Design (Spring 2020)
Advanced Data Structures

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

@ Heap: Concrete Data Structure for Priority Queue

@ Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a
set U C V of elements, each with an associated key value, and
supports the following operations:
@ insert(v, key_value): insert an element v € V' \ U, with
associated key value key_value.
o decrease key(v, new_key value): decrease the key value of an
element v € U to new_key_value
@ extract-min(): return and remove the element in U with the
smallest key value

Simple Implementations for Priority Queue

@ n = size of ground set V'

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Heap

The elements in a heap is organized using a complete binary tree:

Nodes are indexed as {1,2,3,--- ,s}
Parent of node i: [i/2]

Left child of node i: 2i

Right child of node i: 2i + 1

e 6 o o

Heap

A heap H contains the following fields
@ s: size of U (number of elements in the heap)
e Ali],1 <i < s: the element at node i of the tree
@ p[v],v € U: the index of node containing v

@ keylv],v € U: the key value of element v

@ s=5

o A: (Lf77(g7’éc7’(e7’ Lb?)

o p['f1=1plg]=2p[c]=3,
ple’] =4,p['b'] =5

Heap

The following heap property is satisfied:

e for any two nodes 7, j such that ¢ is the parent of j, we have
key[A[]] < key[A[j]].

A heap. Numbers in the circles denote key values of elements.

insert(v, key value)

heapify-up(7)

insert(v, key value) @ whilei > 1
Q s« s+1 Q@ j«[i/2]
Q@ Als] v if key[A[i]] < key[A]j]] then

(5]
Q plv] + s (4] swap A[i] and A[j]
Q keylv] + key_value o plA[i]] < i, p[A[j]] + Jj
(6]
(")

@ heapify_up(s) Py

else break

extract_min()

extract_min()

Q ret + All]

Q@ A[l] + Als]

Q plAll]] +1

Q s+—s5s—1

@ if s > 1 then

@ heapify_down(1)
@ return ret

decrease_key(v, key_value)
Q keylv] < key_value
@ heapify-up(p[v])

0000000

heapify-down ()
Q while 2¢ < s
Q@ if2i=sor
key[A[2i]] < key[A[2i + 1]] then
J2i
else
j— 2141
if key[A[j]] < key[A]i]] then
swap A[i] and A[j]
PlA[]] < i, plA[j]] <= J
P4]
else break

@ Running time of heapify_up and heapify_down: O(Ilgn)

@ Running time of insert, exact_min and decrease_key: O(lgn)

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Two Definitions Needed to Prove that the
Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A]i]] is too
big if we can decrease key[A[i]] to make H a heap.

Outline

© Self-Balancing Binary-Search Tree
@ Counting inversions using Self-Balancing Binary-Search Tree
@ Binary Search Tree
@ Longest Increasing Subsequence using Self-Balancing BST

Outline

© Self-Balancing Binary-Search Tree
@ Counting inversions using Self-Balancing Binary-Search Tree

Counting Inversions

inversions(A, n)

Q@ T <+ empty Binary Search
Tree

Q@ c+0

Q fori< 1ton

Q@ c<+c+i—T.rank(Af])

Q@ Tlinsert(Ali])

@ return c

15| 3 [16]1232] 7]

i =1: rank(15) =1

i=2: rank(3) =1

i = 3: rank(16) = 3

i =4: rank(12) = 2

i =>5: rank(32) =5

i = 6: rank(7) =2
S+ E-1)+(-3)
+4-2)+(6-5+(06-2)=7

Outline

© Self-Balancing Binary-Search Tree

@ Binary Search Tree

A self-balancing binary search tree 7" maintains a set of comparable
elements and supports:

@ Insertion of an element to T

@ Deletion of an element from T
@ Whether an element exists in 1T’
°

Return the rank of an element in 7" (i.e, 1 plus number of
elements in 7" smaller than the element)

@ Return the i-th smallest element in T’
o ...

Each operation takes time O(lgn)

Binary Search Trees

For any node v in tree:

@ key in v must be greater than
all keys on the left-sub-tree of
v

@ key in v must be smaller than
all keys on the right-sub-tree
of v

@ in-order traversal of tree gives
a sorted list of keys

Binary Search Trees: Insertition

Binary Search Trees: Insertion

insert(v, key)
Q if key < v.key
if v.left = nil then
create a new node u
u.key < key,u.left < nil, u.right < nil
vieft < u
else insert(v.left, key)
else
if v.right = nil then
create a new node u
u.key < key, u.left < nil, u.right < nil
v.right <— u

6600000000

else insert(v.right, key)

Binary Search Trees: Deletion

Binary Search Trees: Rank

@ Need to maintain a field “size”

Binary Search Trees: Rank

rank(v, key)

Q if key <w.key

Q@ if v.left = nil then return 1

@ else return rank(v.left, key)

Q else

Q@ if v.right = nil then return v.size + 1

Q else return v.size — v.right.size + rank(v.right, key)

Running Time for Operations

@ each operation takes time O(d).
@ d = depth of tree
@ best case: d = O(lgn)

@ worst case: d = O(n)

Self-Balancing BST: automatically keep the height of tree small
o AVL tree
o red-black tree
@ Splay tree
o Treap

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

(3] (19
O ©® © W
@ O ®

not balanced balanced

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

@ Why does the property guarantee that the height of a tree is
O(logn)?
@ f(d): minimum number of nodes in an AVL tree of depth d

Ofﬁf@

o f(0)=0,f(1)=1,f(2)

e f(d): minimum number of nodes in an AVL tree of depth d

AL

@ Recursion:
f(0)=0
f(1)y =1
fld) = fd=1)+ f(d=2)+1 dz?2

o f(d) =2

Depth of AVL tree

@ f(d): minimum number of nodes in an AVL tree of depth d
o f(d) =29
@ If a AVL tree has size n and depth d, then

n > f(d)

@ Thus, d = O(logn)

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

(3] (19
O ©® © W
@ © ®

not balanced balanced

@ How can we maintain the property?

@ Assume we only do insertions; there are no deletions.

Maintain Balance Property

@ A: the deepest node such that the balance property is not
satisfied after insertion

@ Wilog, we inserted an element to the left-sub-tree of A

@ B: the root of left-sub-tree of A

@ case 1: we inserted an element to the left-sub-tree of B

Maintain Balance Property

@ A: the deepest node such that the balance property is not
satisfied after insertion

@ Wilog, we inserted an element to the left-sub-tree of A

@ B: the root of left-sub-tree of A

@ case 2: we inserted an element to the right-sub-tree of B

@ (' the root of right-sub-tree of B

Outline

© Self-Balancing Binary-Search Tree

@ Longest Increasing Subsequence using Self-Balancing BST

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence A = (ay,as,- - ,a,) of n numbers, an
increasing subsequence of A is a subsequence
(AilyAiQ,Ai;),;' ° o ;Ai,t) such that 1 <4 < iy < 3<--- <5 <n

and a;, < a;, < a;, < -0 < a,.

Exercise: Longest Increasing Subsequence
Input: A= (aj,as, - ,a,) of n numbers

Output: The length of the longest increasing sub-sequence of A

v

Example:
e Input: (10,3,9,8,2,5,7,1,12)
@ Output: 4

Dynamic Programming for Longest Increasing
Sub-sequence Problem

@ f[i]: longest increasing sub-sequence ending at 1.

@ Foreveryt1=1,2,3,--- ,n,

flil = max f(j)+1,

j<i:aj<a;

assuming max;i.q;<q, f(j) = 0 if no such j exists.

O(n?)-Time Algorithm for LIS

LIS(A, n)

Q ans <0

Q fori <+ 1tondo

Q@ [flij+0

Q@ forj«+ 1toi—1do

() if A[j] < Ali] and f[j] +1 > f[i] then f[i] < f[j] +1
Q@ if f[i] > ans then ans < f]i]

@ return ans

Improving Running Time to O(nlogn) Using
Self-Balancing BST

LIS(A, n)

@ T < empty Self-Balancing BST, \\ each element in T"is an
integer and associated with a f value

Q ans 1

©Q fori <+ 1tondo

Q@ f[i] «+ T.max-f-value-over-elements-less-than(A[i])+1
\\ the function returns the maximum f value over all elements
in T" that are less than A[i]

Q@ Tuinsert(A[i], f[i]) \\ insert Ali] with f value being f[i] to T
@ if f[i] > ans then ans <+ f]i]

@ return ans

Q: How can we implement max-f-value-over-elements-less-than so
that it runs in O(logn) time?

A: In each node of BST, we maintain the maximum f value over all
nodes in the sub-tree rooted at the node.

element f value max f value

max f value for
elements smaller than 12

30[60] \/\1 \50\ \\ [17]70]70]

7

[6]e0[co] [8]25[25] [16[45]45]

	Heap: Concrete Data Structure for Priority Queue
	Self-Balancing Binary-Search Tree
	Counting inversions using Self-Balancing Binary-Search Tree
	Binary Search Tree
	Longest Increasing Subsequence using Self-Balancing BST

