
CSE 431/531: Algorithm Analysis and Design (Spring 2020)

Advanced Data Structures

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

2/39

Outline

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree
Counting inversions using Self-Balancing Binary-Search Tree
Binary Search Tree
Longest Increasing Subsequence using Self-Balancing BST

3/39

Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a
set U ⊆ V of elements, each with an associated key value, and
supports the following operations:

insert(v, key value): insert an element v ∈ V \ U , with
associated key value key value.

decrease key(v, new key value): decrease the key value of an
element v ∈ U to new key value

extract min(): return and remove the element in U with the
smallest key value

· · ·

4/39

Simple Implementations for Priority Queue

n = size of ground set V

data structures insert extract min decrease key
array

O(1) O(n) O(1)

sorted array

O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

4/39

Simple Implementations for Priority Queue

n = size of ground set V

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array

O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

4/39

Simple Implementations for Priority Queue

n = size of ground set V

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

4/39

Simple Implementations for Priority Queue

n = size of ground set V

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

5/39

Heap

The elements in a heap is organized using a complete binary tree:

1

2 3

4 5 6 7

8 9 10

Nodes are indexed as {1, 2, 3, · · · , s}
Parent of node i: bi/2c
Left child of node i: 2i

Right child of node i: 2i + 1

6/39

Heap

A heap H contains the following fields

s: size of U (number of elements in the heap)

A[i], 1 ≤ i ≤ s: the element at node i of the tree

p[v], v ∈ U : the index of node containing v

key[v], v ∈ U : the key value of element v

1

2

4

3

5

f

g

e b

c

s = 5

A = (‘f ’, ‘g’, ‘c’, ‘e’, ‘b’)

p[‘f ’] = 1, p[‘g’] = 2, p[‘c’] = 3,
p[‘e’] = 4, p[‘b’] = 5

7/39

Heap

The following heap property is satisfied:

for any two nodes i, j such that i is the parent of j, we have
key[A[i]] ≤ key[A[j]].

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

17

19

A heap. Numbers in the circles denote key values of elements.

8/39

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

17

19

8/39

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 3

2

4

10

17

19

8/39

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

3

19 17

8/39

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 17

2

4

3

10

19

8/39

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 17

2

3

4

10

19

9/39

insert(v, key value)

1 s← s + 1

2 A[s]← v

3 p[v]← s

4 key[v]← key value

5 heapify up(s)

heapify-up(i)

1 while i > 1

2 j ← bi/2c
3 if key[A[i]] < key[A[j]] then

4 swap A[i] and A[j]

5 p[A[i]]← i, p[A[j]]← j

6 i← j

7 else break

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19 17

2

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

17

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

17

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

17

10

10/39

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

17

10

11/39

extract min()

1 ret← A[1]

2 A[1]← A[s]

3 p[A[1]]← 1

4 s← s− 1

5 if s ≥ 1 then

6 heapify down(1)

7 return ret

decrease key(v, key value)

1 key[v]← key value

2 heapify-up(p[v])

heapify-down(i)

1 while 2i ≤ s

2 if 2i = s or
key[A[2i]] ≤ key[A[2i + 1]] then

3 j ← 2i

4 else

5 j ← 2i + 1

6 if key[A[j]] < key[A[i]] then

7 swap A[i] and A[j]

8 p[A[i]]← i, p[A[j]]← j

9 i← j

10 else break

12/39

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

12/39

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

12/39

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key
array O(1) O(n) O(1)

sorted array O(n) O(1) O(n)
heap O(lg n) O(lg n) O(lg n)

13/39

Two Definitions Needed to Prove that the

Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too
big if we can decrease key[A[i]] to make H a heap.

14/39

Outline

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree
Counting inversions using Self-Balancing Binary-Search Tree
Binary Search Tree
Longest Increasing Subsequence using Self-Balancing BST

15/39

Outline

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree
Counting inversions using Self-Balancing Binary-Search Tree
Binary Search Tree
Longest Increasing Subsequence using Self-Balancing BST

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

i = 3: rank(16) = 3

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

i = 3: rank(16) = 3

i = 4: rank(12) = 2

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

i = 3: rank(16) = 3

i = 4: rank(12) = 2

i = 5: rank(32) = 5

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

i = 3: rank(16) = 3

i = 4: rank(12) = 2

i = 5: rank(32) = 5

i = 6: rank(7) = 2

16/39

Counting Inversions

inversions(A, n)

1 T ← empty Binary Search
Tree

2 c← 0

3 for i← 1 to n

4 c← c + i− T.rank(A[i])

5 T .insert(A[i])

6 return c

15 3 16 12 32 7

i = 1: rank(15) = 1

i = 2: rank(3) = 1

i = 3: rank(16) = 3

i = 4: rank(12) = 2

i = 5: rank(32) = 5

i = 6: rank(7) = 2

c = (1− 1) + (2− 1) + (3− 3)
+(4− 2) + (5− 5) + (6− 2) = 7

17/39

Outline

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree
Counting inversions using Self-Balancing Binary-Search Tree
Binary Search Tree
Longest Increasing Subsequence using Self-Balancing BST

18/39

A self-balancing binary search tree T maintains a set of comparable
elements and supports:

Insertion of an element to T

Deletion of an element from T

Whether an element exists in T

Return the rank of an element in T (i.e, 1 plus number of
elements in T smaller than the element)

Return the i-th smallest element in T

...

Each operation takes time O(lg n)

19/39

Binary Search Trees

For any node v in tree:

key in v must be greater than
all keys on the left-sub-tree of
v

key in v must be smaller than
all keys on the right-sub-tree
of v

in-order traversal of tree gives
a sorted list of keys

8

3 10

1 6

4 7

14

13

19/39

Binary Search Trees

For any node v in tree:

key in v must be greater than
all keys on the left-sub-tree of
v

key in v must be smaller than
all keys on the right-sub-tree
of v

in-order traversal of tree gives
a sorted list of keys

8

3 10

1 6

4 7

14

13

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

20/39

Binary Search Trees: Insertition

8

3 10

1 6

4 7

14

13

5

21/39

Binary Search Trees: Insertion

insert(v, key)

1 if key < v.key

2 if v.left = nil then

3 create a new node u

4 u.key ← key, u.left← nil, u.right← nil

5 v.left← u

6 else insert(v.left, key)

7 else

8 if v.right = nil then

9 create a new node u

10 u.key ← key, u.left← nil, u.right← nil

11 v.right← u

12 else insert(v.right, key)

22/39

Binary Search Trees: Deletion

2

3 10

1 5

4 7

14

13

8

6

20

22/39

Binary Search Trees: Deletion

2

3 10

1 5

4 7

14

13

8

6

20

22/39

Binary Search Trees: Deletion

2

3 10

1 5

4 7

14

13

8

6

20

22/39

Binary Search Trees: Deletion

2

3 10

1 5

4 7

14

13

8

6

20

7

22/39

Binary Search Trees: Deletion

2

3 10

1 5

4 7

14

13

8

20

7

6

23/39

Binary Search Trees: Rank

Need to maintain a field “size”

8

3 10

1 6

4 7

14

13

9

5 3

1 3

1 1

2

1

23/39

Binary Search Trees: Rank

Need to maintain a field “size”

8

3 10

1 6

4 7

14

13

9

5 3

1 3

1 1

2

1

24/39

Binary Search Trees: Rank

rank(v, key)

1 if key ≤ v.key

2 if v.left = nil then return 1

3 else return rank(v.left, key)

4 else

5 if v.right = nil then return v.size + 1

6 else return v.size− v.right.size + rank(v.right, key)

25/39

Running Time for Operations

each operation takes time O(d).

d = depth of tree

best case:

d = Θ(lg n)

worst case:

d = Θ(n)

25/39

Running Time for Operations

each operation takes time O(d).

d = depth of tree

best case: d = Θ(lg n)

worst case:

d = Θ(n)

25/39

Running Time for Operations

each operation takes time O(d).

d = depth of tree

best case: d = Θ(lg n)

worst case: d = Θ(n)

25/39

Running Time for Operations

each operation takes time O(d).

d = depth of tree

best case: d = Θ(lg n)

worst case: d = Θ(n)

1

5

2

4

3

7

6

4

2 6

5 7 1 3

26/39

Self-Balancing BST: automatically keep the height of tree small

AVL tree

red-black tree

Splay tree

Treap

...

26/39

Self-Balancing BST: automatically keep the height of tree small

AVL tree

red-black tree

Splay tree

Treap

...

26/39

Self-Balancing BST: automatically keep the height of tree small

AVL tree

red-black tree

Splay tree

Treap

...

27/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

27/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

27/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

not balanced

27/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

not balanced

8

3 10

1 6

4 7

14

13

9

balanced

28/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

Why does the property guarantee that the height of a tree is
O(log n)?

f(d): minimum number of nodes in an AVL tree of depth d

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 · · ·

28/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

Why does the property guarantee that the height of a tree is
O(log n)?

f(d): minimum number of nodes in an AVL tree of depth d

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 · · ·

28/39

AVL Tree

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

Why does the property guarantee that the height of a tree is
O(log n)?
f(d): minimum number of nodes in an AVL tree of depth d

f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 · · ·

29/39

f(d): minimum number of nodes in an AVL tree of depth d

Recursion:

f(0) = 0

f(1) = 1

f(d) = f(d− 1) + f(d− 2) + 1 d ≥ 2

f(d) = 2Θ(d)

29/39

f(d): minimum number of nodes in an AVL tree of depth d

Recursion:

f(0) = 0

f(1) = 1

f(d) = f(d− 1) + f(d− 2) + 1 d ≥ 2

f(d) = 2Θ(d)

30/39

Depth of AVL tree

f(d): minimum number of nodes in an AVL tree of depth d

f(d) = 2Θ(d)

If a AVL tree has size n and depth d, then

n ≥ f(d)

Thus, d = O(log n)

30/39

Depth of AVL tree

f(d): minimum number of nodes in an AVL tree of depth d

f(d) = 2Θ(d)

If a AVL tree has size n and depth d, then

n ≥ f(d)

Thus, d = O(log n)

30/39

Depth of AVL tree

f(d): minimum number of nodes in an AVL tree of depth d

f(d) = 2Θ(d)

If a AVL tree has size n and depth d, then

n ≥ f(d)

Thus, d = O(log n)

31/39

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

not balanced

8

3 10

1 6

4 7

14

13

9

balanced

How can we maintain the property?

Assume we only do insertions; there are no deletions.

31/39

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

not balanced

8

3 10

1 6

4 7

14

13

9

balanced

How can we maintain the property?

Assume we only do insertions; there are no deletions.

31/39

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and
right-sub-tree of v differ by at most 1.

8

3 10

1 6

4 7

14

13

0 vs 2

not balanced

8

3 10

1 6

4 7

14

13

9

balanced

How can we maintain the property?

Assume we only do insertions; there are no deletions.

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion

Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A

B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A

case 1: we inserted an element to the left-sub-tree of B

A

B

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

B

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

B

BL
BR

AR

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

d+ 2 dB

BL
BR

AR

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

d+ 2 d

d+ 1

B

BL
BR

AR

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

d+ 2 d

d+ 1 d

B

BL
BR

AR

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

d+ 2 d

d+ 1 d

B

A

BR AR

BL

B

BL
BR

AR

32/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 1: we inserted an element to the left-sub-tree of B

A

d+ 2 d

d+ 1 d

B

A

BR AR

BL

dd

d+ 1
d+ 1

d+ 2

B

BL
BR

AR

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A

case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B

C: the root of right-sub-tree of B

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

AR

C

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

d+ 2 d
AR

C

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

d+ 2 d

d+ 1
d

AR

C

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

d+ 2 d

d+ 1
d

d− 1
d

AR

C

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

d+ 2 d

d+ 1
d

d− 1
d

AR

C

C

AB

BL
CL CR AR

33/39

Maintain Balance Property

A: the deepest node such that the balance property is not
satisfied after insertion
Wlog, we inserted an element to the left-sub-tree of A
B: the root of left-sub-tree of A
case 2: we inserted an element to the right-sub-tree of B
C: the root of right-sub-tree of B

A

B

BL

CL
CR

d+ 2 d

d+ 1
d

d− 1
d

AR

C

C

AB

BL
CL CR AR

ddd d− 1

d+ 1 d+ 1

d+ 2

34/39

Outline

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree
Counting inversions using Self-Balancing Binary-Search Tree
Binary Search Tree
Longest Increasing Subsequence using Self-Balancing BST

35/39

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence A = (a1, a2, · · · , an) of n numbers, an
increasing subsequence of A is a subsequence
(Ai1 , Ai2 , Ai3 , · · · , Ai,t) such that 1 ≤ i1 < i2 < i3 < · · · < it ≤ n
and ai1 < ai2 < ai3 < · · · < ait .

Exercise: Longest Increasing Subsequence

Input: A = (a1, a2, · · · , an) of n numbers

Output: The length of the longest increasing sub-sequence of A

Example:

Input: (10, 3, 9, 8, 2, 5, 7, 1, 12)

Output: 4

35/39

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence A = (a1, a2, · · · , an) of n numbers, an
increasing subsequence of A is a subsequence
(Ai1 , Ai2 , Ai3 , · · · , Ai,t) such that 1 ≤ i1 < i2 < i3 < · · · < it ≤ n
and ai1 < ai2 < ai3 < · · · < ait .

Exercise: Longest Increasing Subsequence

Input: A = (a1, a2, · · · , an) of n numbers

Output: The length of the longest increasing sub-sequence of A

Example:

Input: (10, 3, 9, 8, 2, 5, 7, 1, 12)

Output: 4

36/39

Dynamic Programming for Longest Increasing

Sub-sequence Problem

f [i]: longest increasing sub-sequence ending at i.

For every i = 1, 2, 3, · · · , n,

f [i] = max
j<i:aj<ai

f(j) + 1,

assuming maxj<i:aj<ai f(j) = 0 if no such j exists.

37/39

O(n2)-Time Algorithm for LIS

LIS(A, n)

1 ans← 0

2 for i← 1 to n do

3 f [i]← 0

4 for j ← 1 to i− 1 do

5 if A[j] < A[i] and f [j] + 1 > f [i] then f [i]← f [j] + 1

6 if f [i] > ans then ans← f [i]

7 return ans

38/39

Improving Running Time to O(n log n) Using

Self-Balancing BST

LIS(A, n)

1 T ← empty Self-Balancing BST, \\ each element in T is an
integer and associated with a f value

2 ans← 1

3 for i← 1 to n do

4 f [i]← T.max-f-value-over-elements-less-than(A[i])+1
\\ the function returns the maximum f value over all elements
in T that are less than A[i]

5 T.insert(A[i], f [i]) \\ insert A[i] with f value being f [i] to T

6 if f [i] > ans then ans← f [i]

7 return ans

39/39

Q: How can we implement max-f-value-over-elements-less-than so
that it runs in O(log n) time?

A: In each node of BST, we maintain the maximum f value over all
nodes in the sub-tree rooted at the node.

element f value max f value

9 45

5 20 13 40

3 80 7 30 10 50 17 70

6 60 8 25 16 4560 25 45

7050

70

6080

80

80

39/39

Q: How can we implement max-f-value-over-elements-less-than so
that it runs in O(log n) time?

A: In each node of BST, we maintain the maximum f value over all
nodes in the sub-tree rooted at the node.

element f value max f value

9 45

5 20 13 40

3 80 7 30 10 50 17 70

6 60 8 25 16 4560 25 45

7050

70

6080

80

80

39/39

Q: How can we implement max-f-value-over-elements-less-than so
that it runs in O(log n) time?

A: In each node of BST, we maintain the maximum f value over all
nodes in the sub-tree rooted at the node.

element f value max f value

9 45

5 20 13 40

3 80 7 30 10 50 17 70

6 60 8 25 16 4560 25 45

7050

70

6080

80

80

39/39

Q: How can we implement max-f-value-over-elements-less-than so
that it runs in O(log n) time?

A: In each node of BST, we maintain the maximum f value over all
nodes in the sub-tree rooted at the node.

element f value max f value

9 45

5 20 13 40

3 80 7 30 10 50 17 70

6 60 8 25 16 4560 25 45

7050

70

6080

80

80 max f value for
elements smaller than 12

	Heap: Concrete Data Structure for Priority Queue
	Self-Balancing Binary-Search Tree
	Counting inversions using Self-Balancing Binary-Search Tree
	Binary Search Tree
	Longest Increasing Subsequence using Self-Balancing BST

