CSE 431/531: Algorithm Analysis and Design (Spring 2020) Advanced Data Structures

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

1 Heap: Concrete Data Structure for Priority Queue

2 Self-Balancing Binary-Search Tree

- Counting inversions using Self-Balancing Binary-Search Tree
- Binary Search Tree
- Longest Increasing Subsequence using Self-Balancing BST

• Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a set $U \subseteq V$ of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element $v \in V \setminus U$, with associated key value key_value .
- decrease_key(v, new_key_value): decrease the key value of an element $v \in U$ to new_key_value
- extract_min(): return and remove the element in U with the smallest key value

•••

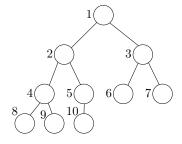
data structures	insert	extract_min	decrease_key
array			
sorted array			

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array			

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

The elements in a heap is organized using a complete binary tree:

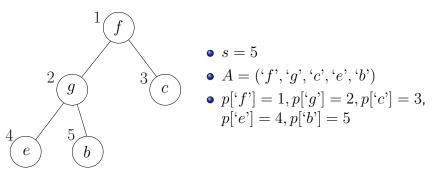


- Nodes are indexed as $\{1,2,3,\cdots,s\}$
- Parent of node $i: \lfloor i/2 \rfloor$
- Left child of node i: 2i
- Right child of node i: 2i + 1

Heap

A heap ${\cal H}$ contains the following fields

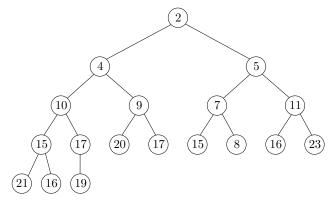
- s: size of U (number of elements in the heap)
- $A[i], 1 \leq i \leq s$: the element at node i of the tree
- $p[v], v \in U$: the index of node containing v
- $key[v], v \in U$: the key value of element v



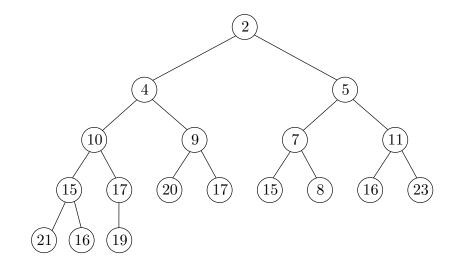
Heap

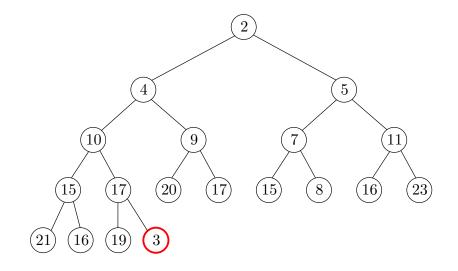
The following heap property is satisfied:

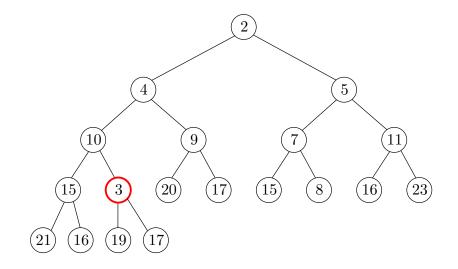
• for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \le key[A[j]].$

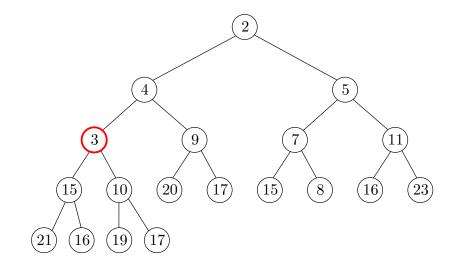


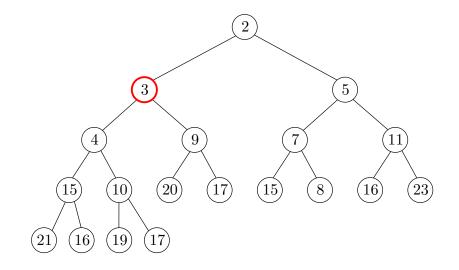
A heap. Numbers in the circles denote key values of elements.











$insert(v, key_value)$

- $\bullet \ s \leftarrow s+1$
- ${\bf 2} \ A[s] \leftarrow v$
- $\textbf{3} \ p[v] \leftarrow s$
- $\textcircled{0} key[v] \leftarrow key_value$

• heapify_up(s)

heapify-up(i)

5

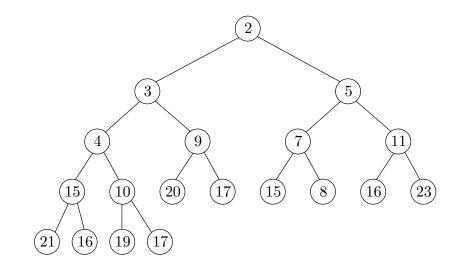
6

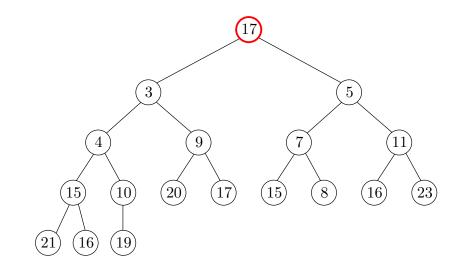
- while i > 1• $j \leftarrow \lfloor i/2 \rfloor$
- if key[A[i]] < key[A[j]] then

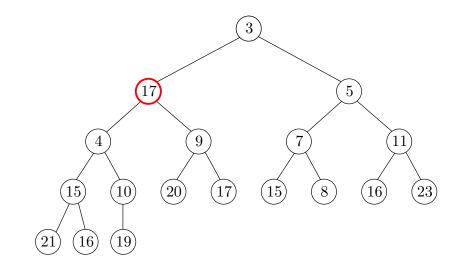
$$p[A[i]] \leftarrow i, \ p[A[j]] \leftarrow j$$

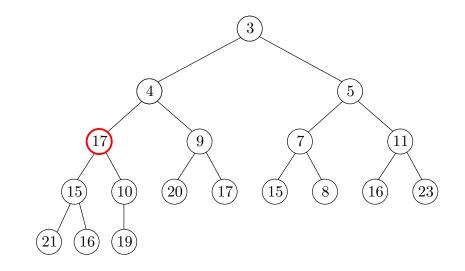
$$i \leftarrow j$$

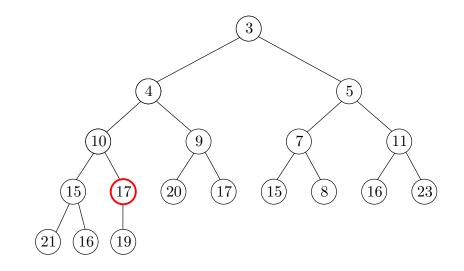
else break

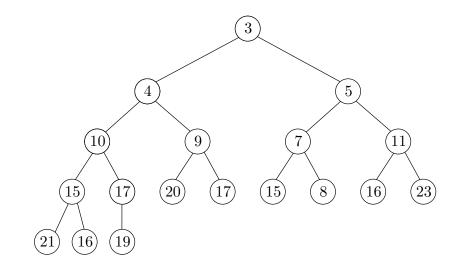












- $1 ret \leftarrow A[1]$
- $\textcircled{o} p[A[1]] \gets 1$
- if $s \ge 1$ then
- heapify_down(1)

🗿 return ret

$decrease_key(v, key_value)$

2 heapify-up(p[v])

heapify-down(i)

- $\textcircled{0} \text{ while } 2i \leq s$
- if 2i = s or $key[A[2i]] \le key[A[2i+1]]$ then $i \leftarrow 2i$

else

4

5

6

7

8

9

10

$$j \leftarrow 2i + 1$$

if key[A[j]] < key[A[i]] then swap A[i] and A[i]

$$p[A[i]] \leftarrow i, \ p[A[j]] \leftarrow j$$
$$i \leftarrow j$$

 $\bullet\,$ Running time of heapify_up and heapify_down: $O(\lg n)$

- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$

- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Two Definitions Needed to Prove that the Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too big if we can decrease key[A[i]] to make H a heap.

1) Heap: Concrete Data Structure for Priority Queue

Self-Balancing Binary-Search Tree

- Counting inversions using Self-Balancing Binary-Search Tree
- Binary Search Tree
- Longest Increasing Subsequence using Self-Balancing BST

Heap: Concrete Data Structure for Priority Queue

Self-Balancing Binary-Search Tree

- Counting inversions using Self-Balancing Binary-Search Tree
- Binary Search Tree
- Longest Increasing Subsequence using Self-Balancing BST

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

15 3	16	12	32	7
------	----	----	----	---

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

$$\begin{array}{|c|c|c|c|c|}\hline 15 & 3 & 16 & 12 & 32 & 7 \\ \hline & & & \\ \hline & & & \\ i = 1: \ \mathrm{rank}(15) = 1 \\ i = 2: \ \mathrm{rank}(3) = 1 \end{array}$$

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

Counting Inversions

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

) return c

Counting Inversions

inversions(A, n)

- $T \leftarrow \text{empty Binary Search}$ Tree
- $\bigcirc c \leftarrow 0$
- $\textbf{ o for } i \leftarrow 1 \text{ to } n$
- $c \leftarrow c + i T.\mathsf{rank}(A[i])$
- T.insert(A[i])

) return c

1 Heap: Concrete Data Structure for Priority Queue

Self-Balancing Binary-Search Tree

- Counting inversions using Self-Balancing Binary-Search Tree
- Binary Search Tree
- Longest Increasing Subsequence using Self-Balancing BST

A self-balancing binary search tree T maintains a set of comparable elements and supports:

- $\bullet\,$ Insertion of an element to T
- Deletion of an element from ${\cal T}$
- $\bullet\,$ Whether an element exists in T
- Return the rank of an element in T (i.e, 1 plus number of elements in T smaller than the element)
- Return the i-th smallest element in T

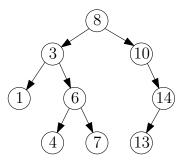
• ...

Each operation takes time $O(\lg n)$

Binary Search Trees

For any node v in tree:

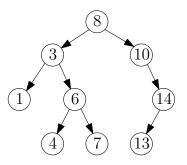
- key in v must be greater than all keys on the left-sub-tree of v
- key in v must be smaller than all keys on the right-sub-tree of v

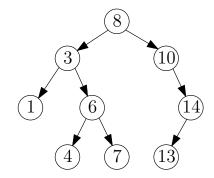


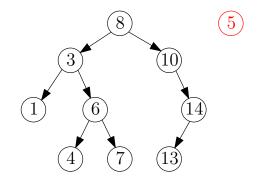
Binary Search Trees

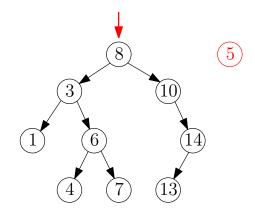
For any node v in tree:

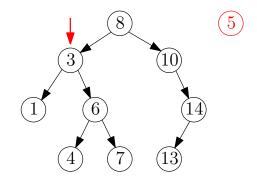
- key in v must be greater than all keys on the left-sub-tree of v
- key in v must be smaller than all keys on the right-sub-tree of v
- in-order traversal of tree gives a sorted list of keys

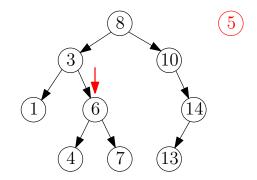


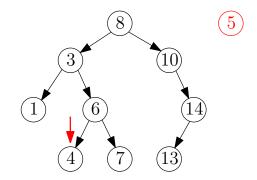


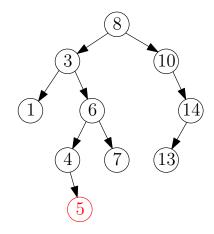












insert(v, key)

- if key < v.key
- 2 if v.left = nil then
- \bigcirc create a new node u

$$u.key \leftarrow key, u.left \leftarrow \mathsf{nil}, u.right \leftarrow \mathsf{nil}$$

$$v.left \leftarrow u$$

• else insert
$$(v.left, key)$$

🗿 else

5

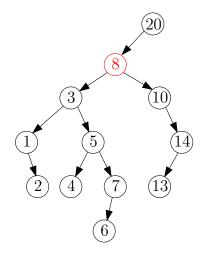
10

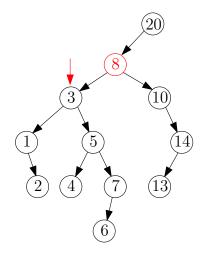
- if v.right = nil then
- ${f 0}$ create a new node u

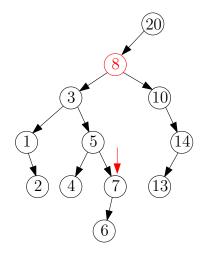
$$u.key \leftarrow key, u.left \leftarrow \mathsf{nil}, u.right \leftarrow \mathsf{nil}$$

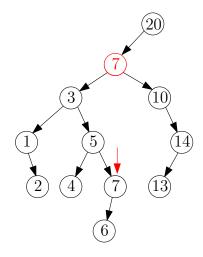
$$u v.right \leftarrow u$$

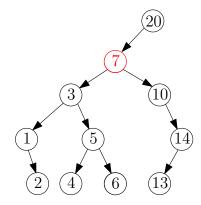
 \mathbf{Q} else insert(v.right, key)







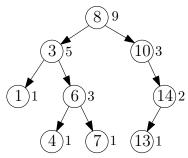




Binary Search Trees: Rank

Binary Search Trees: Rank

• Need to maintain a field "size"



Binary Search Trees: Rank

$\mathsf{rank}(v, key)$

- if $key \leq v.key$
- 2 if v.left = nil then return 1
- \odot else return rank(v.left, key)

🕘 else

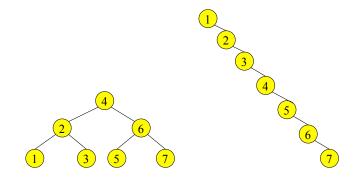
- S if v.right = nil then return v.size + 1
- else return v.size v.right.size + rank(v.right, key)

- each operation takes time O(d).
- d = depth of tree
- best case:
- worst case:

- each operation takes time O(d).
- d = depth of tree
- best case: $d = \Theta(\lg n)$
- worst case:

- each operation takes time O(d).
- d = depth of tree
- best case: $d = \Theta(\lg n)$
- worst case: $d = \Theta(n)$

- each operation takes time O(d).
- d = depth of tree
- best case: $d = \Theta(\lg n)$
- worst case: $d = \Theta(n)$



Self-Balancing BST: automatically keep the height of tree small

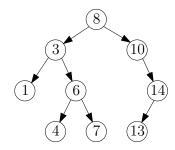
Self-Balancing BST: automatically keep the height of tree small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...

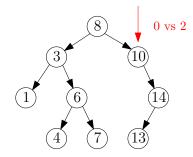
Self-Balancing BST: automatically keep the height of tree small

- AVL tree
- red-black tree
- Splay tree
- Treap
- ...

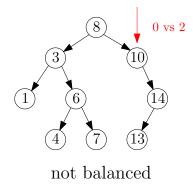
Property of an AVL tree



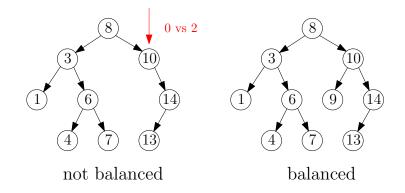
Property of an AVL tree



Property of an AVL tree



Property of an AVL tree



Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.

• Why does the property guarantee that the height of a tree is $O(\log n)$?

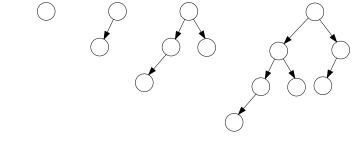
Property of an AVL tree

- Why does the property guarantee that the height of a tree is $O(\log n)$?
- f(d): minimum number of nodes in an AVL tree of depth d

Property of an AVL tree

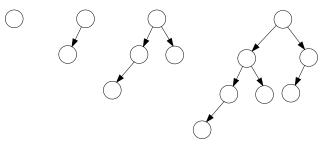
For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.

- Why does the property guarantee that the height of a tree is $O(\log n)$?
- f(d): minimum number of nodes in an AVL tree of depth d



• $f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 4, f(4) = 7 \cdots$

• f(d): minimum number of nodes in an AVL tree of depth d



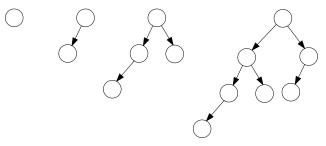
• Recursion:

$$f(0) = 0$$

$$f(1) = 1$$

$$f(d) = f(d-1) + f(d-2) + 1 \qquad d \ge 2$$

• f(d): minimum number of nodes in an AVL tree of depth d



• Recursion:

$$f(0) = 0$$

$$f(1) = 1$$

$$f(d) = f(d-1) + f(d-2) + 1 \qquad d \ge 2$$

• $f(d) = 2^{\Theta(d)}$

• f(d): minimum number of nodes in an AVL tree of depth d • $f(d)=2^{\Theta(d)}$

- f(d): minimum number of nodes in an AVL tree of depth d• $f(d) = 2^{\Theta(d)}$
- If a AVL tree has size \boldsymbol{n} and depth \boldsymbol{d} , then

 $n \geq f(d)$

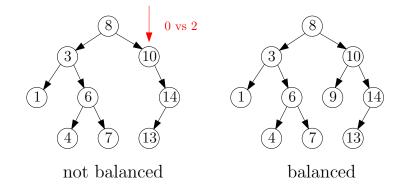
- f(d): minimum number of nodes in an AVL tree of depth d• $f(d) = 2^{\Theta(d)}$
- $\bullet~$ If a AVL tree has size n and depth d, then

 $n \geq f(d)$

• Thus, $d = O(\log n)$

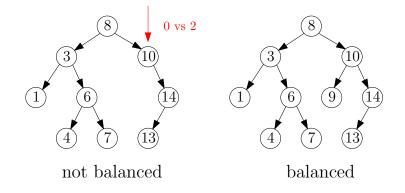
Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.



Property of an AVL tree

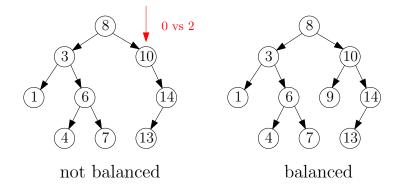
For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.



• How can we maintain the property?

Property of an AVL tree

For every node v in the tree, the depths of the left-sub-tree of v and right-sub-tree of v differ by at most 1.



- How can we maintain the property?
- Assume we only do insertions; there are no deletions.

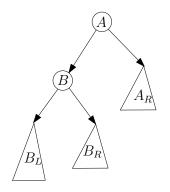
• A: the deepest node such that the balance property is not satisfied after insertion

- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A

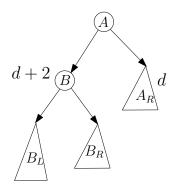
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A

- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B

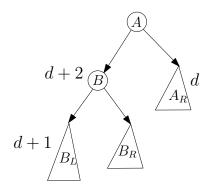
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 1: we inserted an element to the left-sub-tree of ${\boldsymbol B}$



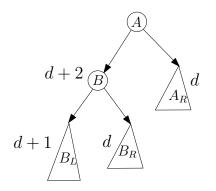
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 1: we inserted an element to the left-sub-tree of ${\boldsymbol B}$



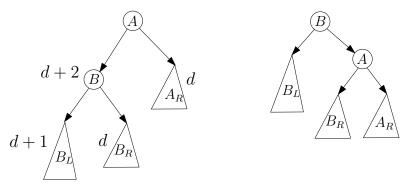
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 1: we inserted an element to the left-sub-tree of ${\boldsymbol B}$



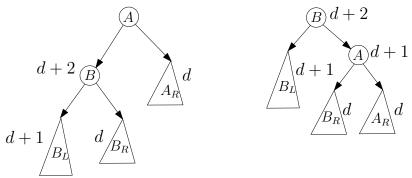
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 1: we inserted an element to the left-sub-tree of ${\boldsymbol B}$



- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- \bullet case 1: we inserted an element to the left-sub-tree of B

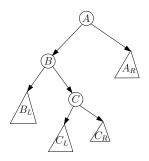


- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A

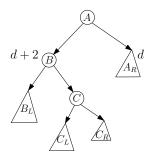
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B

- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B

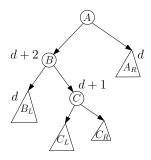
- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



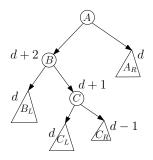
- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



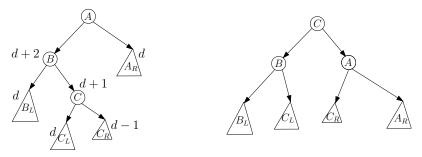
- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



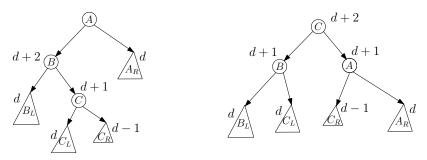
- A: the deepest node such that the balance property is not satisfied after insertion
- Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



- A: the deepest node such that the balance property is not satisfied after insertion
- $\bullet\,$ Wlog, we inserted an element to the left-sub-tree of A
- B: the root of left-sub-tree of A
- case 2: we inserted an element to the right-sub-tree of B
- C: the root of right-sub-tree of B



1) Heap: Concrete Data Structure for Priority Queue

Self-Balancing Binary-Search Tree

- Counting inversions using Self-Balancing Binary-Search Tree
 Binary Search Tree
- Longest Increasing Subsequence using Self-Balancing BST

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence $A = (a_1, a_2, \dots, a_n)$ of n numbers, an increasing subsequence of A is a subsequence $(A_{i_1}, A_{i_2}, A_{i_3}, \dots, A_{i,t})$ such that $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ and $a_{i_1} < a_{i_2} < a_{i_3} < \dots < a_{i_t}$.

Exercise: Longest Increasing Subsequence

Input: $A = (a_1, a_2, \cdots, a_n)$ of n numbers

Output: The length of the longest increasing sub-sequence of A

Example:

• Input: (10, 3, 9, 8, 2, 5, 7, 1, 12)

Recall: Longest Increasing Subsequence Problem

Def. Given a sequence $A = (a_1, a_2, \dots, a_n)$ of n numbers, an increasing subsequence of A is a subsequence $(A_{i_1}, A_{i_2}, A_{i_3}, \dots, A_{i,t})$ such that $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ and $a_{i_1} < a_{i_2} < a_{i_3} < \dots < a_{i_t}$.

Exercise: Longest Increasing Subsequence

Input: $A = (a_1, a_2, \cdots, a_n)$ of n numbers

Output: The length of the longest increasing sub-sequence of A

Example:

- Input: (10, 3, 9, 8, 2, 5, 7, 1, 12)
- Output: 4

Dynamic Programming for Longest Increasing Sub-sequence Problem

- f[i]: longest increasing sub-sequence ending at i.
- For every $i = 1, 2, 3, \cdots, n$,

$$f[i] = \max_{j < i: a_j < a_i} f(j) + 1,$$

assuming $\max_{j < i: a_j < a_i} f(j) = 0$ if no such j exists.

${\cal O}(n^2)\text{-}{\rm Time}$ Algorithm for LIS

$\mathsf{LIS}(A, n)$

- $1 ans \leftarrow 0$
- **2** for $i \leftarrow 1$ to n do
- for $j \leftarrow 1$ to i 1 do
- \bullet if A[j] < A[i] and f[j] + 1 > f[i] then $f[i] \leftarrow f[j] + 1$
- if f[i] > ans then $ans \leftarrow f[i]$
- 🗿 return ans

Improving Running Time to $O(n\log n)$ Using Self-Balancing BST

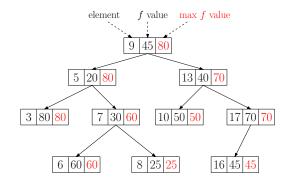
$\mathsf{LIS}(A,n)$

- $T \leftarrow$ empty Self-Balancing BST, $\setminus \setminus$ each element in T is an integer and associated with a f value
- 2 $ans \leftarrow 1$
- **3** for $i \leftarrow 1$ to n do
- $f[i] \leftarrow T$.max-f-value-over-elements-less-than(A[i])+1\\ the function returns the maximum f value over all elements in T that are less than A[i]
- if f[i] > ans then $ans \leftarrow f[i]$

🔰 return ans

A: In each node of BST, we maintain the maximum f value over all nodes in the sub-tree rooted at the node.

A: In each node of BST, we maintain the maximum f value over all nodes in the sub-tree rooted at the node.



A: In each node of BST, we maintain the maximum f value over all nodes in the sub-tree rooted at the node.

