
CSE 431/531: Algorithm Analysis and Design (Spring 2020)

Divide-and-Conquer

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo



2/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



3/73

Greedy Algorithm

mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an efficient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer

not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more efficient algorithm

main focus of analysis: running time



4/73

Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance



5/73

merge-sort(A, n)

1 if n = 1 then

2 return A

3 else

4 B ← merge-sort
(
A
[
1..bn/2c

]
, bn/2c

)

5 C ← merge-sort
(
A
[
bn/2c+ 1..n

]
, dn/2e

)

6 return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4 , 5

Combine: 6



6/73

Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

Better than insertion sort



7/73

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

{
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n ≥ 2

With some tolerance of informality:

T (n) =

{
O(1) if n = 1

2T (n/2) +O(n) if n ≥ 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall
show how later)



8/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



9/73

Def. Given an array A of n integers, an inversion in A is a pair
(i, j) of indices such that i < j and A[i] > A[j].

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)



10/73

Naive Algorithm for Counting Inversions

count-inversions(A, n)

1 c← 0

2 for every i← 1 to n− 1

3 for every j ← i+ 1 to n

4 if A[i] > A[j] then c← c+ 1

5 return c



11/73

Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.



12/73

Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
∣∣{(i, j) : B[i] > C[j]

}∣∣

Lemma If both B and C are sorted, then we can compute m in
O(n) time!



13/73

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32 48

2581318B:

C:

+0 +2 +3 +3 +5 +5



14/73

Count Inversions between B and C

Procedure that merges B and C and counts inversions between
B and C at the same time

merge-and-count(B,C, n1, n2)

1 count← 0;

2 A← []; i← 1; j ← 1

3 while i ≤ n1 or j ≤ n2

4 if j > n2 or (i ≤ n1 and B[i] ≤ C[j]) then

5 append B[i] to A; i← i+ 1

6 count← count+ (j − 1)

7 else

8 append C[j] to A; j ← j + 1

9 return (A, count)



15/73

Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1 if n = 1 then

2 return (A, 0)

3 else

4 (B,m1)← sort-and-count
(
A
[
1..bn/2c

]
, bn/2c

)

5 (C,m2)← sort-and-count
(
A
[
bn/2c+ 1..n

]
, dn/2e

)

6 (A,m3)← merge-and-count(B,C, bn/2c, dn/2e)
7 return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4 , 5

Combine: 6 , 7



16/73

sort-and-count(A, n)

1 if n = 1 then

2 return (A, 0)

3 else

4 (B,m1)← sort-and-count
(
A
[
1..bn/2c

]
, bn/2c

)

5 (C,m2)← sort-and-count
(
A
[
bn/2c+ 1..n

]
, dn/2e

)

6 (A,m3)← merge-and-count(B,C, bn/2c, dn/2e)
7 return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)



17/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



18/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



19/73

Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers

Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial



20/73

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429



21/73

Quicksort

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Recurrence T (n) ≤ 2T (n/2) +O(n)

Running time = O(n lg n)



22/73

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



23/73

Quicksort Using A Random Pivot

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR



24/73

Randomized Algorithm Model

Assumption There is a procedure to produce a random real
number in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



25/73

Quicksort Using A Random Pivot

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← a random element of A (x is called a pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR

Lemma The expected running time of the algorithm is O(n lg n).



26/73

Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.



27/73

partition(A, `, r)

1 p← random integer between ` and r, swap A[p] and A[`]

2 i← `, j ← r

3 while true do

4 while i < j and A[i] < A[j] do j ← j − 1

5 if i = j then break

6 swap A[i] and A[j]; i← i+ 1

7 while i < j and A[i] < A[j] do i← i+ 1

8 if i = j then break

9 swap A[i] and A[j]; j ← j − 1

10 return i



28/73

In-Place Implementation of Quick-Sort

quicksort(A, `, r)

1 if ` ≥ r then return

2 m← patition(A, `, r)

3 quicksort(A, `,m− 1)

4 quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.



29/73

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling
the total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48



30/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



31/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements



32/73

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Ω(n lg n).

Bob has one number x in his hand, x ∈ {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know
x?

A: dlog2Ne.

x = 1?

x ≤ 2?

x = 3?

1 2 3 4



33/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the
permutation π?

A: log2 n! = Θ(n lg n)



34/73

Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation π over {1, 2, 3, · · · , n} in his hand.

You can ask Bob questions of the form “does i appear before j
in π?”

Q: How many questions do you need to ask in order to get the
permutation π?

A: At least log2 n! = Θ(n lg n)



35/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



36/73

Selection Problem

Input: a set A of n numbers, and 1 ≤ i ≤ n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n lg n).

Our goal: O(n) running time



37/73

Recall: Quicksort with Median Finder

quicksort(A, n)

1 if n ≤ 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 BL ← quicksort(AL, AL.size) \\ Conquer

6 BR ← quicksort(AR, AR.size) \\ Conquer

7 t← number of times x appear A

8 return the array obtained by concatenating BL, the array
containing t copies of x, and BR



38/73

Selection Algorithm with Median Finder

selection(A, n, i)

1 if n = 1 then return A

2 x← lower median of A

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 if i ≤ AL.size then

6 return selection(AL, AL.size, i) \\ Conquer

7 elseif i > n− AR.size then

8 return selection(AR, AR.size, i− (n− AR.size)) \\ Conquer

9 else return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)



39/73

Randomized Selection Algorithm

selection(A, n, i)

1 if n = 1 then return A

2 x← random element of A (called pivot)

3 AL ← elements in A that are less than x \\ Divide

4 AR ← elements in A that are greater than x \\ Divide

5 if i ≤ AL.size then

6 return selection(AL, AL.size, i) \\ Conquer

7 elseif i > n− AR.size then

8 return selection(AR, AR.size, i− (n− AR.size)) \\ Conquer

9 else return x

expected running time = O(n)



40/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



41/73

Polynomial Multiplication

Input: two polynomials of degree n− 1

Output: product of two polynomials

Example:

(3x3 + 2x2 − 5x+ 4)× (2x3 − 3x2 + 6x− 5)

= 6x6 − 9x5 + 18x4 − 15x3

+ 4x5 − 6x4 + 12x3 − 10x2

− 10x4 + 15x3 − 30x2 + 25x

+ 8x3 − 12x2 + 24x− 20

= 6x6 − 5x5 + 2x4 + 20x3 − 52x2 + 49x− 20

Input: (4,−5, 2, 3), (−5, 6,−3, 2)

Output: (−20, 49,−52, 20, 2,−5, 6)



42/73

Näıve Algorithm

polynomial-multiplication(A,B, n)

1 let C[k] = 0 for every k = 0, 1, 2, · · · , 2n− 2

2 for i← 0 to n− 1

3 for j ← 0 to n− 1

4 C[i+ j]← C[i+ j] + A[i]×B[j]

5 return C

Running time: O(n2)



43/73

Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 − 5x+ 4 = (3x+ 2)x2 + (−5x+ 4)

q(x) = 2x3 − 3x2 + 6x− 5 = (2x− 3)x2 + (6x− 5)

p(x): degree of n− 1 (assume n is even)

p(x) = pH(x)xn/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2− 1.

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL



44/73

Divide-and-Conquer for Polynomial Multiplication

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

multiply(p, q) = multiply(pH , qH)× xn

+
(
multiply(pH , qL) + multiply(pL, qH)

)
× xn/2

+ multiply(pL, qL)

Recurrence: T (n) = 4T (n/2) +O(n)

T (n) = O(n2)



45/73

Reduce Number from 4 to 3

pq =
(
pHx

n/2 + pL
)(
qHx

n/2 + qL
)

= pHqHx
n +

(
pHqL + pLqH

)
xn/2 + pLqL

pHqL + pLqH = (pH + pL)(qH + qL)− pHqH − pLqL



46/73

Divide-and-Conquer for Polynomial Multiplication

rH = multiply(pH , qH)

rL = multiply(pL, qL)

multiply(p, q) = rH × xn

+
(
multiply(pH + pL, qH + qL)− rH − rL

)
× xn/2

+ rL

Solving Recurrence: T (n) = 3T (n/2) +O(n)

T (n) = O(nlg2 3) = O(n1.585)



47/73

Assumption n is a power of 2. Arrays are 0-indexed.

multiply(A,B, n)

1 if n = 1 then return (A[0]B[0])

2 AL ← A[0 .. n/2− 1], AH ← A[n/2 .. n− 1]

3 BL ← B[0 .. n/2− 1], BH ← B[n/2 .. n− 1]

4 CL ← multiply(AL, BL, n/2)

5 CH ← multiply(AH , BH , n/2)

6 CM ← multiply(AL + AH , BL +BH , n/2)

7 C ← array of (2n− 1) 0’s

8 for i← 0 to n− 2 do

9 C[i]← C[i] + CL[i]

10 C[i+ n]← C[i+ n] + CH [i]

11 C[i+ n/2]← C[i+ n/2] + CM [i]− CL[i]− CH [i]

12 return C



48/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



49/73

Closest pair

Convex hull

Matrix multiplication

FFT(Fast Fourier Transform): polynomial multiplication in
O(n lg n) time



50/73

Closest Pair

Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time



51/73

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

δ

δ
2

δ
2



52/73

Divide-and-Conquer Algorithm for Closest Pair

δ

δ
2

δ
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)



53/73

O(n lg n)-Time Algorithm for Convex Hull



54/73

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two n× n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)

1 for i← 1 to n

2 for j ← 1 to n

3 C[i, j]← 0

4 for k ← 1 to n

5 C[i, j]← C[i, j] + A[i, k]×B[k, j]

6 return C

running time = O(n3)



55/73

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·

Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)



56/73

Strassen’s Algorithm

T (n) = 8T (n/2) +O(n2)

Strassen’s Algorithm: improve the number of multiplications
from 8 to 7!

New recurrence: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)



57/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



58/73

Methods for Solving Recurrences

The recursion-tree method

The master theorem



59/73

Recursion-Tree Method

T (n) = 2T (n/2) +O(n)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)



60/73

Recursion-Tree Method

T (n) = 3T (n/2) +O(n)
n

n/2 n/2 n/2

n/4 n/4 n/4 n/4 n/4 n/4

· · · · · ·· · ·n
8

n
8

n
8

n
8

n
8

n
8

n/4 n/4 n/4

· · · · · ·· · ·

Total running time at level i? n
2i
× 3i =

(
3
2

)i
n

Index of last level? lg2 n

Total running time?

lg2 n∑

i=0

(
3

2

)i

n = O

(
n

(
3

2

)lg2 n
)

= O(3lg2 n) = O(nlg2 3).



61/73

Recursion-Tree Method

T (n) = 3T (n/2) +O(n2)
n2

(n/2)2 (n/2)2 (n/2)2

(n4)
2

· · · · · ·· · ·(n
8
)2 · · · · · ·· · ·

(n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2 (n4)
2 (n4)

2

(n
8
)2 (n

8
)2 (n

8
)2 (n

8
)2 (n

8
)2(n

8
)2

Total running time at level i?
(
n
2i

)2 × 3i =
(
3
4

)i
n2

Index of last level? lg2 n

Total running time?

lg2 n∑

i=0

(
3

4

)i

n2 = O(n2).



62/73

Master Theorem

Recurrences a b c time
T (n) = 2T (n/2) +O(n) 2 2 1 O(n lg n)
T (n) = 3T (n/2) +O(n) 3 2 1 O(nlg2 3)
T (n) = 3T (n/2) +O(n2) 3 2 2 O(n2)

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlgb a) if c < lgb a

O(nc lg n) if c = lgb a

O(nc) if c > lgb a



63/73

Theorem T (n) = aT (n/b) +O(nc), where a ≥ 1, b > 1, c ≥ 0 are
constants. Then,

T (n) =





O(nlgb a) if c < lgb a

O(nc lg n) if c = lgb a

O(nc) if c > lgb a

Ex: T (n) = 4T (n/2) +O(n2). Case 2. T (n) = O(n2 lg n)

Ex: T (n) = 3T (n/2) +O(n). Case 1. T (n) = O(nlg2 3)

Ex: T (n) = T (n/2) +O(1). Case 2. T (n) = O(lg n)

Ex: T (n) = 2T (n/2) +O(n2). Case 3. T (n) = O(n2)



64/73

Proof of Master Theorem Using Recursion Tree

T (n) = aT (n/b) +O(nc)

nc

(n/b)c (n/b)c

(n/b2)c (n/b2)c (n/b2)c (n/b2)c

(
n
b3

)c

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

(
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c (
n
b3

)c

1 node

a nodes

a2 nodes

a3 nodes

nc

a
bcn

c

(
a
bc

)2
nc

(
a
bc

)3
nc

c < lgb a : bottom-level dominates:
(

a
bc

)lgb n nc = nlgb a

c = lgb a : all levels have same time: nc lgb n = O(nc lg n)

c > lgb a : top-level dominates: O(nc)



65/73

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



66/73

Fibonacci Numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2,∀n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

n-th Fibonacci Number

Input: integer n > 0

Output: Fn



67/73

Computing Fn : Stupid Divide-and-Conquer

Algorithm

Fib(n)

1 if n = 0 return 0

2 if n = 1 return 1

3 return Fib(n− 1) + Fib(n− 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least Ω(Fn)

Fn is exponential in n



68/73

Computing Fn: Reasonable Algorithm

Fib(n)

1 F [0]← 0

2 F [1]← 1

3 for i← 2 to n do

4 F [i]← F [i− 1] + F [i− 2]

5 return F [n]

Dynamic Programming

Running time = O(n)



69/73

Computing Fn: Even Better Algorithm

(
Fn

Fn−1

)
=

(
1 1
1 0

)(
Fn−1

Fn−2

)

(
Fn

Fn−1

)
=

(
1 1
1 0

)2(
Fn−2

Fn−3

)

· · ·
(

Fn

Fn−1

)
=

(
1 1
1 0

)n−1(
F1

F0

)



70/73

power(n)

1 if n = 0 then return

(
1 0
0 1

)

2 R← power(bn/2c)
3 R← R×R
4 if n is odd then R← R×

(
1 1
1 0

)

5 return R

Fib(n)

1 if n = 0 then return 0

2 M ← power(n− 1)

3 return M [1][1]

Recurrence for running time? T (n) = T (n/2) +O(1)

T (n) = O(lg n)



71/73

Running time = O(lg n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: Θ(n)

We can not add (or multiply) two integers of Θ(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(lg n)

Fixing the Problem

To compute Fn, we need O(lg n) basic arithmetic operations on
integers



72/73

Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem



73/73

Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, · · · :
T (n) = 2T (n/2) +O(n)⇒ T (n) = O(n lg n)

Integer Multiplication:
T (n) = 3T (n/2) +O(n)⇒ T (n) = O(nlg2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)⇒ T (n) = O(nlg2 7)

Usually, designing better algorithm for “combine” step is key to
improve running time


	Divide-and-Conquer
	Counting Inversions
	Quicksort and Selection
	Quicksort
	Lower Bound for Comparison-Based Sorting Algorithms
	Selection Problem

	Polynomial Multiplication
	Other Classic Algorithms using Divide-and-Conquer
	Solving Recurrences
	Computing n-th Fibonacci Number

