CSE 431/531: Algorithm Analysis and Design (Spring 2020)
Divide-and-Conquer — Recitation

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Solving Recurrences

For each of the following recurrences, use the master theorem to
give the tight asymptotic upper bound.

Q@ T(n) =4T(n/3) + O(n). Tn)=0()
T(n)=3T(n/3) + O(n). T(n) = O()
T(n) = 4T (n/2) + O(n*y/n). T(n) = O()

Q T(n) =8T(n/2) + O(n?). T(n) = O()

Solving Recurrences

For each of the following recurrences, use the master theorem to
give the tight asymptotic upper bound.

@ T(n) = 4T(n/3) + O(n). T(n) = O(n'#:%)
T(n) = 3T(n/3) + O(n). T(n)=0()
T(n) = 4T (n/2) + O(n*v/n). Tm)=0()

@ T(n) =87(n/2) + O(n*). rmy=0()

Solving Recurrences

For each of the following recurrences, use the master theorem to
give the tight asymptotic upper bound.

Q@ T'(n) =4T(n/3) + O(n). T(n) = O(n'ss?)
T(n) =3T(n/3) 4+ O(n). T(n) =0O(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T'(n) = O()

Q@ T'(n) =8T(n/2)+ O(n?). T(n)=O()

Solving Recurrences

For each of the following recurrences, use the master theorem to
give the tight asymptotic upper bound.

Q@ T'(n) =4T(n/3) + O(n). T(n) = O(n'ss?)
T(n) =3T(n/3) 4+ O(n). T(n) =0O(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T(n) = O(n*y/n)

Q@ T'(n) =8T(n/2)+ O(n?). T(n)=O()

Solving Recurrences

For each of the following recurrences, use the master theorem to
give the tight asymptotic upper bound.

Q@ T'(n) =4T(n/3) + O(n). T(n) = O(n'ss?)
T(n) =3T(n/3) 4+ O(n). T(n) =0O(nlgn)
T(n) = 4T (n/2) + O(n*y/n). T(n) = O(n*y/n)

Q@ T'(n) =8T(n/2)+ O(n?). T(n) = O(n’lgn)

Covering Chessboard using L-shape Tiles

Consider a 2" x 2" chessboard with one arbitrary chosen square
removed. Prove that any such chessboard can be tiled without gaps
by L-shaped pieces, each composed of 3 squares. The following
figure shows how to tile a 4 x 4 chessboard with the square on the
left-top corner removed, using 5 L-shaped pieces.

Finding Local Minimum In a 1-D Array

Given an array A[l .. n] of n distinct numbers, we say that some
index i € {1,2,3--- ,n} is a local minimum of A, if A[i] < A[i — 1]
and A[i] < A[i + 1] (we assume that A[0] = A[n + 1] = o0).
Suppose the array A is already stored in memory. Give an
O(lgn)-time algorithm to find a local minimum of A.

Finding Local Minimum In a 2-D Matrix(Hard
Problem)

Given a two-dimensional array A[l .. n,1 .. n] of n? distinct
numbers, and i,j € {1,2,--- ,n}, we say that (¢, 7) is a local
minimum of A, if

Ali, j] < Ali,j — 1), Ali, j] < Ali, j + 1], Ali, j] < A[i — 1,] and
Ali, j] < Ali+ 1, j] (we assume that Afi, j] = oo if i € {0,n+ 1} or
j€{0,n+1}).

Suppose the array A is already stored in memory. Give an O(n)-time
algorithm to find a local minimum of A.

Integer Multiplication

Given two n-digit integers, output their product. Design a
n'°823_time algorithm to solve the problem. Notice that you can not
multiple two big integers directly using a single operation.

Majority and Weak Majority

Given an array of integers A[l..n|, we would like to decide if

@ there exists an integer « which occurs in A more than n/2 times.
Give an algorithm which runs in time O(n).

@ there exists an integer x which occurs in A more than n/3 times.
Give an algorithm which runs in time O(n).

You can assume we have the algorithm Select as a black-box, which,
given an n-size array A and integer 1 < ¢ < n, can return the i-th
smallest element in a size n-array in O(n)-time.

Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n, you need to
design and analyze an O(logn)-time algorithm that outputs the
median of the n numbers in A and B. You can assume n is odd and
all the numbers are distinct.For example,

e Input: A =[3,5,12,18,50],

° B =12,7,11,30],

e Output: 11

@ Explanation: the merged set is [2,3,5,7,11,12, 18, 30, 50]

