CSE 431/531: Algorithm Analysis and Design (Spring 2020) Divide-and-Conquer — Recitation

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

$$T(n) = 4T(n/3) + O(n). T(n) = O()$$

②
$$T(n) = 3T(n/3) + O(n)$$
. $T(n) = O($

3
$$T(n) = 4T(n/2) + O(n^2\sqrt{n}).$$
 $T(n) = O($

•
$$T(n) = 8T(n/2) + O(n^3)$$
. $T(n) = O($

$$T(n) = 4T(n/3) + O(n).$$
 $T(n) = O(n^{\lg_3 4})$

②
$$T(n) = 3T(n/3) + O(n)$$
. $T(n) = O($

$$T(n) = 4T(n/2) + O(n^2\sqrt{n}). T(n) = O()$$

•
$$T(n) = 8T(n/2) + O(n^3)$$
. $T(n) = O($

$$T(n) = 4T(n/3) + O(n).$$
 $T(n) = O(n^{\lg_3 4})$

②
$$T(n) = 3T(n/3) + O(n)$$
. $T(n) = O(n \lg n)$

3
$$T(n) = 4T(n/2) + O(n^2\sqrt{n}).$$
 $T(n) = O($

$$T(n) = 8T(n/2) + O(n^3). T(n) = O()$$

$$T(n) = 4T(n/3) + O(n).$$
 $T(n) = O(n^{\lg_3 4})$

②
$$T(n) = 3T(n/3) + O(n)$$
. $T(n) = O(n \lg n)$

3
$$T(n) = 4T(n/2) + O(n^2\sqrt{n}).$$
 $T(n) = O(n^2\sqrt{n})$

$$T(n) = 8T(n/2) + O(n^3). T(n) = O()$$

$$T(n) = 4T(n/3) + O(n).$$
 $T(n) = O(n^{\lg_3 4})$

②
$$T(n) = 3T(n/3) + O(n)$$
. $T(n) = O(n \lg n)$

3
$$T(n) = 4T(n/2) + O(n^2\sqrt{n}).$$
 $T(n) = O(n^2\sqrt{n})$

•
$$T(n) = 8T(n/2) + O(n^3)$$
. $T(n) = O(n^3 \lg n)$

Covering Chessboard using L-shape Tiles

Consider a $2^n \times 2^n$ chessboard with one arbitrary chosen square removed. Prove that any such chessboard can be tiled without gaps by L-shaped pieces, each composed of 3 squares. The following figure shows how to tile a 4×4 chessboard with the square on the left-top corner removed, using 5 L-shaped pieces.

Finding Local Minimum In a 1-D Array

Given an array $A[1 \dots n]$ of n **distinct** numbers, we say that some index $i \in \{1, 2, 3 \dots, n\}$ is a local minimum of A, if A[i] < A[i-1] and A[i] < A[i+1] (we assume that $A[0] = A[n+1] = \infty$). Suppose the array A is already stored in memory. Give an $O(\lg n)$ -time algorithm to find a local minimum of A.

Finding Local Minimum In a 2-D Matrix(Hard Problem)

Given a two-dimensional array $A[1\ldots n,1\ldots n]$ of n^2 **distinct** numbers, and $i,j\in\{1,2,\cdots,n\}$, we say that (i,j) is a local minimum of A, if A[i,j]< A[i,j-1], A[i,j]< A[i,j+1], A[i,j]< A[i-1,j] and A[i,j]< A[i+1,j] (we assume that $A[i,j]=\infty$ if $i\in\{0,n+1\}$ or $j\in\{0,n+1\}$).

Suppose the array A is already stored in memory. Give an O(n)-time

algorithm to find a local minimum of A.

5/8

Integer Multiplication

Given two n-digit integers, output their product. Design a $n^{\log_2 3}$ -time algorithm to solve the problem. Notice that you can not multiple two big integers directly using a single operation.

Majority and Weak Majority

Given an array of integers A[1..n], we would like to decide if

- there exists an integer x which occurs in A more than n/2 times. Give an algorithm which runs in time O(n).
- ② there exists an integer x which occurs in A more than n/3 times. Give an algorithm which runs in time O(n).

You can assume we have the algorithm Select as a black-box, which, given an n-size array A and integer $1 \leq i \leq n$, can return the i-th smallest element in a size n-array in O(n)-time.

Median of Two Sorted Arrays

Given two sorted arrays A and B with total size n, you need to design and analyze an $O(\log n)$ -time algorithm that outputs the median of the n numbers in A and B. You can assume n is odd and all the numbers are distinct. For example,

- $\bullet \ \, \mathsf{Input:} \ \, A = [3, 5, 12, 18, 50] \mathsf{,} \\$
- B = [2, 7, 11, 30],
- Output: 11
- ullet Explanation: the merged set is [2, 3, 5, 7, 11, 12, 18, 30, 50]