CSE 431/531: Algorithm Analysis and Design (Spring 2020) Dynamic Programming

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer

- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

Fib(n)

- $\bullet F[0] \leftarrow 0$
- $F[1] \leftarrow 1$
- \bullet for $i \leftarrow 2$ to n do
- $F[i] \leftarrow F[i-1] + F[i-2]$
- return F[n]
 - Store each F[i] for future use.

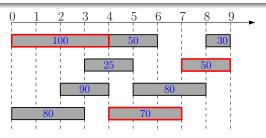
Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Recall: Interval Schduling

Input: n jobs, job i with start time s_i and finish time f_i each job has a weight (or value) $v_i > 0$ i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: a maximum-size subset of mutually compatible jobs

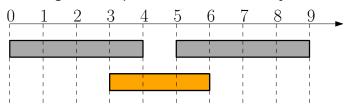


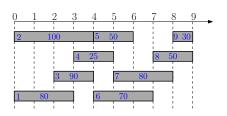
Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest $\frac{\text{weight}}{\text{length}}$?

No, when weights are equal, this is the shortest job

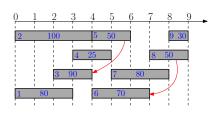




•	$Sort\ jobs$	${\it according}$	to	non-decreasing order
	of finish t	imes		

• opt[i]: optimal value for instance only containing jobs $\{1, 2, \cdots, i\}$

i	opt[i]
0	0
1	80
2	100
3	100
4	105
5	150
6	170
7	185
8	220
9	220



- Focus on instance $\{1, 2, 3, \dots, i\}$,
- opt[i]: optimal value for the instance
- assume we have computed $opt[0], opt[1], \cdots, opt[i-1]$

Q: The value of optimal solution that does not contain *i*?

A: opt[i-1]

Q: The value of optimal solution that contains job i?

A: $v_i + opt[p_i]$, $p_i = \text{the largest } j \text{ such that } f_j \leq s_i$

Q: The value of optimal solution that does not contain *i*?

A: opt[i-1]

Q: The value of optimal solution that contains job *i*?

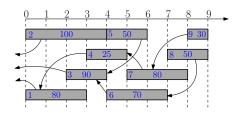
A: $v_i + opt[p_i]$, $p_i = \text{the largest } j \text{ such that } f_j \leq s_i$

Recursion for opt[i]:

 $opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$

Recursion for opt[i]:

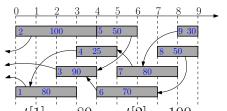
$$opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$$



- opt[0] = 0
- $opt[1] = max{opt[0], 80 + opt[0]} = 80$
- $opt[2] = max{opt[1], 100 + opt[0]} = 100$
- $opt[3] = max{opt[2], 90 + opt[0]} = 100$
- $opt[4] = max{opt[3], 25 + opt[1]} = 105$
- $opt[5] = max{opt[4], 50 + opt[3]} = 150$

Recursion for opt[i]:

$$opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$$



- opt[0] = 0, opt[1] = 80, opt[2] = 100
- opt[3] = 100, opt[4] = 105, opt[5] = 150
- $opt[6] = max{opt[5], 70 + opt[3]} = 170$
- $opt[7] = max{opt[6], 80 + opt[4]} = 185$
- $opt[8] = max{opt[7], 50 + opt[6]} = 220$
- $opt[9] = max{opt[8], 30 + opt[7]} = 220$

Recursive Algorithm to Compute opt[n]

- sort jobs by non-decreasing order of finishing times
- $oldsymbol{\circ}$ return compute-opt(n)

compute-opt(i)

- \bullet if i = 0 then
- return 0
- else
- return $\max\{\mathsf{compute}\mathsf{-opt}(i-1), v_i + \mathsf{compute}\mathsf{-opt}(p_i)\}$
- \bullet Running time can be exponential in n
- ullet Reason: we are computed each opt[i] many times
- ullet Solution: store the value of opt[i], so it's computed only once

Memoized Recursive Algorithm

- sort jobs by non-decreasing order of finishing times
- $\bullet \ opt[0] \leftarrow 0 \ \text{and} \ opt[i] \leftarrow \bot \ \text{for every} \ i=1,2,3,\cdots,n$
- lacktriangledown return compute-opt(n)

compute-opt(i)

- if $opt[i] = \bot$ then
- lacktriangledown return opt[i]
 - Running time sorting: $O(n \lg n)$
 - Running time for computing p: $O(n \lg n)$ via binary search
 - Running time for computing opt[n]: O(n)

Dynamic Programming

- sort jobs by non-decreasing order of finishing times
- $opt[0] \leftarrow 0$
- \bullet for $i \leftarrow 1$ to n
- Running time sorting: $O(n \lg n)$
- Running time for computing p: $O(n \lg n)$ via binary search
- Running time for computing opt[n]: O(n)

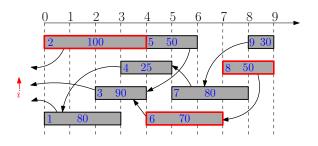
How Can We Recover the Optimum Schedule?

- sort jobs by non-decreasing order of finishing times
- $opt[0] \leftarrow 0$
- for $i \leftarrow 1$ to n
- $if opt[i-1] \ge v_i + opt[p_i]$
- $opt[i] \leftarrow opt[i-1]$
- $b[i] \leftarrow \mathsf{N}$
- else
- $opt[i] \leftarrow v_i + opt[p_i]$
- $b[i] \leftarrow \mathsf{Y}$

- $i \leftarrow n, S \leftarrow \emptyset$
- ② while $i \neq 0$
- $0 \qquad i \leftarrow i 1$
- else
- $i \leftarrow p_i$
- lacktriangledown return S

Recovering Optimum Schedule: Example

i	opt[i]	b[i]
0	0	1
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	Υ
9	220	N



Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Subset Sum Problem

Input: an integer bound W > 0

a set of ${\color{red}n}$ items, each with an integer weight ${\color{red}w_i}>0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{ s.t. } \sum_{i \in S} w_i \leq W.$$

ullet Motivation: you have budget W, and want to buy a subset of items, so as to spend as much money as possible.

Example:

- W = 35, n = 5, w = (14, 9, 17, 10, 13)
- Optimum: $S = \{1, 2, 4\}$ and 14 + 9 + 10 = 33

Greedy Algorithms for Subset Sum

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change "non-increasing" to "non-decreasing"?

A: No. W = 100, n = 3, w = (1, 50, 50)

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain i?

A: opt[i-1, W']

Q: The value of the optimum solution that contains *i*?

A: $opt[i-1, W'-w_i] + w_i$

Dynamic Programming

- Consider the instance: $i, W', (w_1, w_2, \dots, w_i)$;
- opt[i, W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0\\ opt[i - 1, W'] & i > 0, w_i > W'\\ \max \left\{ \begin{array}{c} opt[i - 1, W']\\ opt[i - 1, W' - w_i] + w_i \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

Dynamic Programming

```
\begin{array}{ll} \text{ for } W' \leftarrow 0 \text{ to } W \\ & opt[0,W'] \leftarrow 0 \\ \text{ of } i \leftarrow 1 \text{ to } n \\ \text{ of } i \leftarrow 1 \text{ to } n \\ \text{ opt}[i,W'] \leftarrow 0 \text{ to } W \\ \text{ opt}[i,W'] \leftarrow opt[i-1,W'] \\ \text{ if } w_i \leq W' \text{ and } opt[i-1,W'-w_i] + w_i \geq opt[i,W'] \text{ then } \\ & opt[i,W'] \leftarrow opt[i-1,W'-w_i] + w_i \\ \text{ opt}[n,W] \end{array}
```

Recover the Optimum Set

```
• for W' \leftarrow 0 to W
      opt[0, W'] \leftarrow 0
\bullet for i \leftarrow 1 to n
       for W' \leftarrow 0 to W
          opt[i, W'] \leftarrow opt[i-1, W']
5
6
         b[i, W'] \leftarrow \mathsf{N}
7
          if w_i \leq W' and opt[i-1, W'-w_i] + w_i \geq opt[i, W'] then
             opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
8
             b[i, W'] \leftarrow Y
    return opt[n, W]
```

Recover the Optimum Set

- if b[i, W'] = Y then
- $W' \leftarrow W' w_i$
- $S \leftarrow S \cup \{i\}$
- $i \leftarrow i 1$
- \circ return S

Running Time of Algorithm

- for $W' \leftarrow 0$ to W
- $opt[0, W'] \leftarrow 0$
- \bullet for $i \leftarrow 1$ to n
- of for $W' \leftarrow 0$ to W
- $opt[i, W'] \leftarrow opt[i-1, W']$
- if $w_i \leq W'$ and $opt[i-1,W'-w_i]+w_i \geq opt[i,W']$ then
- $opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i$
- lacktriangledown return opt[n,W]
- Running time is O(nW)
- Running time is pseudo-polynomial because it depends on value of the input integers.

Avoiding Unncessary Computation and Memory Using Memoized Algorithm and Hash Map

compute-opt(i, W')

- if $opt[i, W'] \neq \bot$ return opt[i, W']
- \bullet if i=0 then $r \leftarrow 0$
- else
- $r \leftarrow \mathsf{compute-opt}(i-1, W')$
- \bullet if $w_i < W'$ then
- $oldsymbol{o}$ $r' \leftarrow \text{compute-opt}(i-1, W'-w_i) + w_i$
- if r' > r then $r \leftarrow r'$
- $opt[i, W'] \leftarrow r$
- $loodsymbol{o}$ return r
- Use hash map for *opt*

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Knapsack Problem

Input: an integer bound W>0 a set of n items, each with an integer weight $w_i>0$ a value $v_i>0$ for each item i

Output: a subset S of items that

• Motivation: you have budget W, and want to buy a subset of items of maximum total value

DP for Knapsack Problem

- opt[i,W']: the optimum value when budget is W' and items are $\{1,2,3,\cdots,i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i - 1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{c} opt[i - 1, W'] \\ opt[i - 1, W' - w_i] + \mathbf{v_i} \end{array} \right\} & i > 0, w_i \le W' \end{cases}$$

Exercise: Items with 3 Parameters

```
Input: integer bounds W>0, Z>0, a set of n items, each with an integer weight w_i>0 a size z_i>0 for each item i a value v_i>0 for each item i Output: a subset S of items that
```

maximizes
$$\sum_{i \in S} v_i$$
 s.t.
$$\sum_{i \in S} w_i \leq W \text{ and } \sum_{i \in S} z_i \leq Z$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Subsequence

- \bullet A = bacdca
- \bullet C = adca
- ullet C is a subsequence of A

Def. Given two sequences $A[1 \dots n]$ and $C[1 \dots t]$ of letters, C is called a subsequence of A if there exists integers $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ such that $A[i_j] = C[j]$ for every $j = 1, 2, 3, \dots, t$.

• Exercise: how to check if sequence C is a subsequence of A?

Longest Common Subsequence

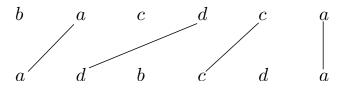
Input: $A[1 \dots n]$ and $B[1 \dots m]$

Output: the longest common subsequence of A and B

Example:

- A = `bacdca'
- \bullet B = 'adbcda'
- LCS(A, B) = `adca'
- Applications: edit distance (diff), similarity of DNAs

Matching View of LCS



• Goal of LCS: find a maximum-size non-crossing matching between letters in A and letters in B.

Reduce to Subproblems

- A = 'bacdca'
- B = `adbcda'
- either the last letter of A is not matched:
- need to compute LCS('bacd', 'adbcd')
- or the last letter of B is not matched:
- need to compute LCS('bacdc', 'adbc')

Dynamic Programming for LCS

- $opt[i, j], 0 \le i \le n, 0 \le j \le m$: length of longest common sub-sequence of A[1 ... i] and B[1 ... j].
- if i = 0 or j = 0, then opt[i, j] = 0.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] + 1 & \text{if } A[i] = B[j] \\ \max \begin{cases} opt[i-1,j] & \text{if } A[i] \neq B[j] \end{cases} \end{cases}$$

Dynamic Programming for LCS

```
• for i \leftarrow 0 to m do
      opt[0,j] \leftarrow 0
\bullet for i \leftarrow 1 to n
      opt[i,0] \leftarrow 0
      for i \leftarrow 1 to m
5
           if A[i] = B[j] then
6
              opt[i, j] \leftarrow opt[i-1, j-1] + 1, \pi[i, j] \leftarrow "\\"
7
           elseif opt[i, j-1] > opt[i-1, j] then
8
9
              opt[i, j] \leftarrow opt[i, j-1], \pi[i, j] \leftarrow "\leftarrow"
10
           else
              opt[i,j] \leftarrow opt[i-1,j], \pi[i,j] \leftarrow "\uparrow"
◍
```

Example

	1	2	3	4	5	6
A	b	а	С	d	С	a
В	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 <	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	$1 \leftarrow$	$1 \leftarrow$	$1 \leftarrow$	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	$1 \leftarrow$	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2	2 ←	2 ←	3	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3	3 ←	3 ←
6	0 ⊥	1 🔨	2 ↑	2 ←	3 ↑	3 ←	4 🔨

Example: Find Common Subsequence

	1	2	3	4	5	6
	b					
B	a	d	b	С	d	a

	0	1	2	3	4	5	6
0						0 ⊥	
1	0 ⊥	0 ←	0 ←	1 <	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	$1 \leftarrow$	$1 \leftarrow$	1 ←	1 ←	2 <
						2 ←	
4	0 ⊥	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0	1 <	$2\uparrow$	2 ←	3 ↑	3 ←	4 <

Find Common Subsequence

 \bullet $i \leftarrow n, j \leftarrow m, S \leftarrow "$ ② while i > 0 and j > 0if $\pi[i,j] = "\nwarrow"$ then $S \leftarrow A[i] \bowtie S, i \leftarrow i-1, j \leftarrow j-1$ else if $\pi[i, j] = "\uparrow"$ $i \leftarrow i-1$ else $j \leftarrow j-1$

 $oldsymbol{o}$ return S

Variants of Problem

Edit Distance with Insertions and Deletions

Input: a string A

each time we can delete a letter from ${\cal A}$ or insert a letter to ${\cal A}$

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A = ocurrance, B = occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Obs. $\#\mathsf{OPs} = \mathsf{length}(A) + \mathsf{length}(B) - 2 \cdot \mathsf{length}(\mathsf{LCS}(A, B))$

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing

Input: a string A,

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A = ocurrance, B = occurrence.
- 2 operations: insert 'c', change 'a' to 'e'
- Not related to LCS any more

Edit Distance (with Replacing)

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.
- if i=0 then opt[i,j]=j; if j=0 then opt[i,j]=i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] & \text{if } A[i] = B[j] \\ opt[i-1,j] + 1 & \\ opt[i,j-1] + 1 & \text{if } A[i] \neq B[j] \\ opt[i-1,j-1] + 1 & \end{cases}$$

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or forward.

• example: "racecar", "wasitacaroracatisaw", "putitup"

Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:

• Input: acbcedeacab

Output: acedeca

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Computing the Length of LCS

```
• for i \leftarrow 0 to m do
   opt[0,j] \leftarrow 0
\bullet for i \leftarrow 1 to n
     opt[i,0] \leftarrow 0
5
    for i \leftarrow 1 to m
          if A[i] = B[j]
6
             opt[i, j] \leftarrow opt[i-1, j-1] + 1
7
8
          elseif opt[i, j-1] > opt[i-1, j]
             opt[i, i] \leftarrow opt[i, i-1]
9
10
          else
•
             opt[i, j] \leftarrow opt[i-1, j]
```

Obs. The *i*-th row of table only depends on (i-1)-th row.

Reducing Space to O(n+m)

Obs. The *i*-th row of table only depends on (i-1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i-1)-th row and the i-th row.

Linear Space Algorithm to Compute Length of LCS

```
• for i \leftarrow 0 to m do
      opt[0, j] \leftarrow 0
\bullet for i \leftarrow 1 to n
      opt[i \bmod 2, 0] \leftarrow 0
      for i \leftarrow 1 to m
5
         if A[i] = B[j]
6
7
            opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j-1] + 1
         elseif opt[i \mod 2, j-1] > opt[i-1 \mod 2, j]
8
            opt[i \mod 2, j] \leftarrow opt[i \mod 2, j-1]
9
10
         else
            opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j]
◍
   return opt[n \mod 2, m]
```

How to Recover LCS Using Linear Space?

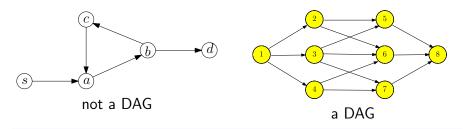
- \bullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)
 - Time: O(nm)

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.



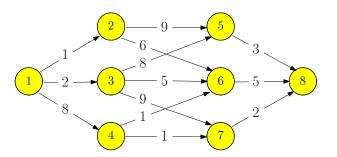
Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

Shortest Paths in DAG

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$



Shortest Paths in DAG

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \min_{j:(j,i) \in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

Shortest Paths in DAG

ullet Use an adjacency list for incoming edges of each vertex i

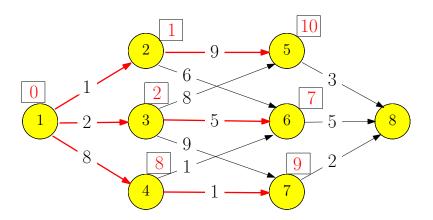
Shortest Paths in DAG

- ② for $i \leftarrow 2$ to n do
- for each incoming edge $(j,i) \in E$ of i
- if f[j] + w(j,i) < f[i]
- $f[i] \leftarrow f[j] + w(j,i)$

$\mathsf{print}\text{-}\mathsf{path}(t)$

- if t = 1 then
- print(1)
- return
- $\qquad \text{print-path}(\pi(t))$
- print(",", t)

Example



Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the path with the largest weight (the heaviest path) from 1 to n.

• f[i]: weight of the heaviest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \max_{j:(j,i)\in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices A_1, A_2, \cdots, A_n of sizes

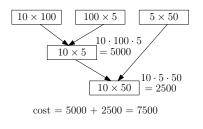
 $r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n$, such that $c_i = r_{i+1}$ for every $i=1,2,\cdots,n-1$.

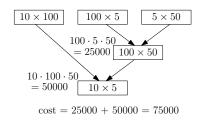
Output: the order of computing $A_1A_2\cdots A_n$ with the minimum number of multiplications

Fact Multiplying two matrices of size $r \times k$ and $k \times c$ takes $r \times k \times c$ multiplications.

Example:

• $A_1: 10 \times 100$, $A_2: 100 \times 5$, $A_3: 5 \times 50$





- $(A_1A_2)A_3$: $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $A_1(A_2A_3)$: $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$

Matrix Chain Multiplication: Design DP

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$
- Optimality for sub-instances: we need to compute $A_1A_2\cdots A_i$ and $A_{i+1}A_{i+2}\cdots A_n$ optimally
- ullet opt[i,j] : the minimum cost of computing $A_iA_{i+1}\cdots A_j$

$$opt[i,j] = \begin{cases} 0 & i = j \\ \min_{k:i \le k < j} \left(opt[i,k] + opt[k+1,j] + r_i c_k c_j \right) & i < j \end{cases}$$

Matrix Chain Multiplication: Design DP

```
matrix-chain-multiplication(n, r[1..n], c[1..n])
 • let opt[i, i] \leftarrow 0 for every i = 1, 2, \dots, n
 \bullet for \ell \leftarrow 2 to n do
        for i \leftarrow 1 to n - \ell + 1 do
           i \leftarrow i + \ell - 1
           opt[i,j] \leftarrow \infty
 5
 6
           for k \leftarrow i to j-1 do
              if opt[i, k] + opt[k+1, j] + r_i c_k c_i < opt[i, j] then
 7
                 opt[i, j] \leftarrow opt[i, k] + opt[k+1, j] + r_i c_k c_i
 8
                 \pi[i,j] \leftarrow k
     return opt[1, n]
```

Constructing Optimal Solution

```
Print-Optimal-Order(i, j)
\bullet if i=j
       print("A"<sub>i</sub>)
 else
       print( "(")
       Print-Optimal-Order(i, \pi[i, j])
 5
       Print-Optimal-Order(\pi[i, j] + 1, j)
       print(")")
```

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Optimum Binary Search Tree

- n elements $e_1 < e_2 < e_3 < \cdots < e_n$
- e_i has frequency f_i
- goal: build a binary search tree for $\{e_1, e_2, \cdots, e_n\}$ with the minimum accessing cost:

$$\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})$$

Optimum Binary Search Tree

• Example: $f_1 = 10, f_2 = 5, f_3 = 3$

- $10 \times 1 + 5 \times 2 + 3 \times 3 = 29$
- $10 \times 2 + 5 \times 1 + 3 \times 2 = 31$
- $10 \times 3 + 5 \times 2 + 3 \times 1 = 43$

- ullet suppose we decided to let e_i be the root
- $e_1, e_2, \cdots, e_{i-1}$ are on left sub-tree
- $e_{i+1}, e_{i+2}, \cdots, e_n$ are on right sub-tree
- d_j : depth of e_j in our tree
- ullet C, C_L, C_R : cost of tree, left sub-tree and right sub-tree respectively

$$C = \sum_{j=1}^{n} f_j d_j = \sum_{j=1}^{n} f_j + \sum_{j=1}^{n} f_j (d_j - 1)$$

$$= \sum_{j=1}^{n} f_j + \sum_{j=1}^{i-1} f_j (d_j - 1) + \sum_{j=i+1}^{n} f_j (d_j - 1)$$

$$= \sum_{j=1}^{n} f_j + C_L + C_R$$

$$C = \sum_{j=1}^{n} f_j + C_L + C_R$$

- In order to minimize C, need to minimize C_L and C_R respectively
- ullet $opt_{i,j}$: the optimum cost for the instance (f_i,f_{i+1},\cdots,f_j)
- for every $i \in \{1, 2, \dots, n, n+1\}$: opt[i, i-1] = 0
- for every i, j such that $1 \le i \le j \le n$,

$$opt[i, j] = \sum_{k:i \le k \le j}^{J} f_k + \min_{k:i \le k \le j} (opt[i, k-1] + opt[k+1, j])$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.

Definition of Cells for Problems We Learnt

- Weighted interval scheduling: opt[i] = value of instance defined by jobs $\{1, 2, \cdots, i\}$
- Subset sum, knapsack: opt[i,W']= value of instance with items $\{1,2,\cdots,i\}$ and budget W'
- Longest common subsequence: opt[i,j] = value of instance defined by A[1..i] and B[1..j]
- \bullet Shortest paths in DAG: $f[v] = \mbox{length of shortest path from } s$ to v
- Matrix chain multiplication, optimum binary search tree: opt[i,j] = value of instances defined by matrices i to j