CSE 431/531: Algorithm Analysis and Design (Spring 2020) Graph Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

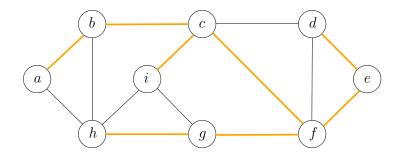
Outline

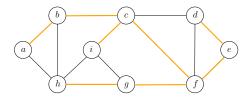
Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest PathsDijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree T = (V, F) of G is a sub-graph of G that is a tree including all vertices V.





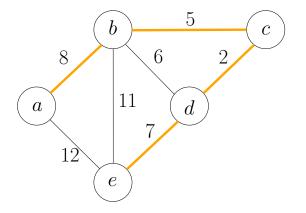
Lemma Let T = (V, F) be a subgraph of G = (V, E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- $\bullet~T$ has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight



Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

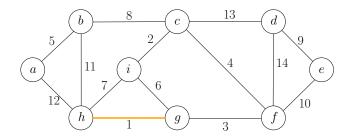
Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm



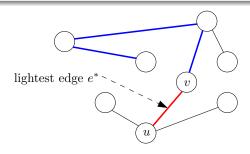
Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

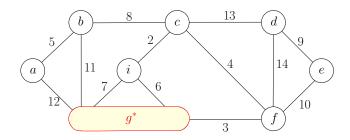
Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- $\bullet\,$ Take a minimum spanning tree T
- \bullet Assume the lightest edge e^{\ast} is not in T
- $\bullet\,$ There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^\prime
- $\bullet \ w(e^*) \leq w(e) \implies w(T') \leq w(T): \ T' \text{ is also a MST}$

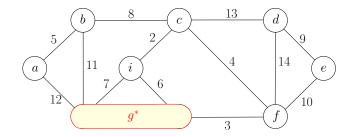


Is the Residual Problem Still a MST Problem?



- Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

Contraction of an Edge (u, v)



- Remove u and v from the graph, and add a new vertex u^{\ast}
- Remove all edges (u, v) from E
- For every edge $(u,w) \in E, w \neq v,$ change it to (u^*,w)
- For every edge $(v,w) \in E, w \neq u$, change it to (u^*,w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- $\textcircled{0} Choose the lightest edge <math>e^*$, add e^* to the spanning tree
- **②** Contract e^* and update G be the contracted graph

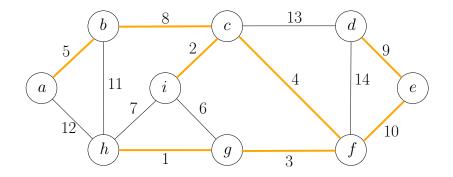
Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

$\mathsf{MST-Greedy}(G,w)$

- $\bullet F = \emptyset$
- ${\it @}$ sort edges in E in non-decreasing order of weights w
- (a) for each edge (u, v) in the order
- if u and v are not connected by a path of edges in F
- ${\small \small \bigcirc } \ {\rm return} \ (V,F)$

Kruskal's Algorithm: Example



Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal(G, w)

- $\ensuremath{\mathfrak{S}}$ sort the edges of E in non-decreasing order of weights w

$$S_u \leftarrow \text{the set in } S \text{ containing } u$$

• if
$$S_u \neq S_v$$

$$\bullet \qquad F \leftarrow F \cup \{(u,v)\}$$

$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$$

 $lacksymbol{0}$ return (V,F)

9

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

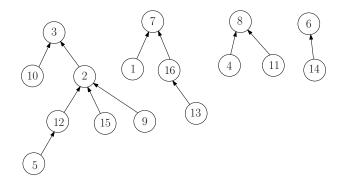
- $\textcircled{1} F \leftarrow \emptyset$
- ${\small \textcircled{\sc 0}}$ sort the edges of E in non-decreasing order of weights w
- for each edge $(u, v) \in E$ in the order
- $S_u \leftarrow \text{the set in } \mathcal{S} \text{ containing } u$
- if $S_u \neq S_v$
- $\bullet \qquad F \leftarrow F \cup \{(u,v)\}$

) return (V, F)

Use union-find data structure to support **2**, **5**, **6**, **7**, **9**.

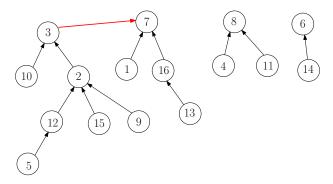
- V: ground set
- We need to maintain a partition of V and support following operations:
 - Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$



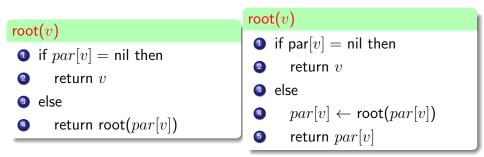
• par[i]: parent of *i*, (par[i] = nil if i is a root).

Union-Find Data Structure



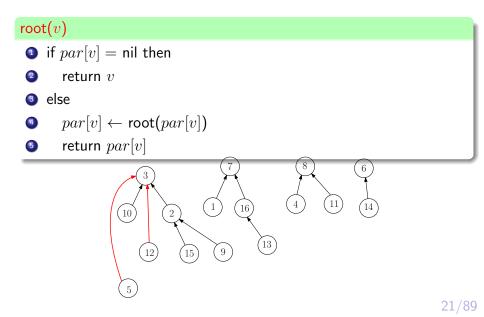
- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and $r': par[r] \leftarrow r'$.

Union-Find Data Structure



- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

Union-Find Data Structure



MST-Kruskal(G, w)

- ${\small \textcircled{\sc 0}}$ sort the edges of E in non-decreasing order of weights w
- $S_u \leftarrow \text{the set in } \mathcal{S} \text{ containing } u$
- if $S_u \neq S_v$

 \bigcirc return (V, F)

MST-Kruskal(G, w)

- $I F \leftarrow \emptyset$
- $e for every \ v \in V: \ let \ par[v] \leftarrow nil$
- ${\small \textcircled{\sc 0}}$ sort the edges of E in non-decreasing order of weights w
- ${\ensuremath{ \bullet } }$ for each edge $(u,v) \in E$ in the order
- $u' \leftarrow \mathsf{root}(u)$
- $\textbf{0} \quad v' \leftarrow \mathsf{root}(v)$

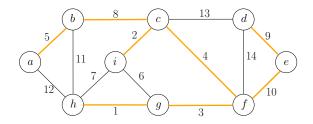
 \bigcirc return (V, F)

• 2,5,6,7,9 takes time $O(m\alpha(n))$

- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.
- Running time = time for $\mathbf{3} = O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



(i,g) is not in the MST because of cycle (i, c, f, g)
(e, f) is in the MST because no such cycle exists

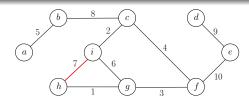
Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- 2 Single Source Shortest Paths• Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

Two Methods to Build a MST

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **2** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



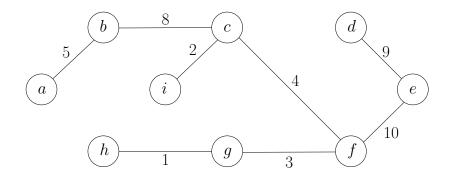
Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

Reverse Kruskal's Algorithm

$\mathsf{MST-Greedy}(G,w)$

- $I F \leftarrow E$
- **2** sort E in non-increasing order of weights
- $\ensuremath{\mathfrak{G}}$ for every e in this order
- if $(V, F \setminus \{e\})$ is connected then
- return (V, F)

Reverse Kruskal's Algorithm: Example



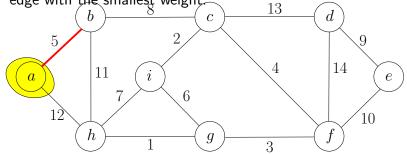
Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- 2 Single Source Shortest Paths• Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

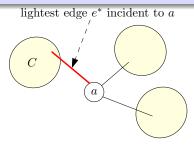
Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight ________



• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

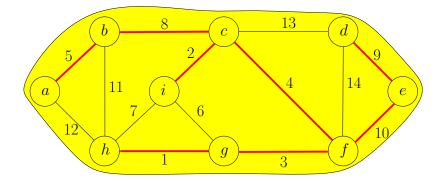
Lemma It is safe to include the lightest edge incident to *a*.



Proof.

- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in ${\cal T}$ connecting a to ${\cal C}$
- $T' = T \setminus e \cup \{e^*\}$ is a spanning tree with $w(T') \leq w(T)$

Prim's Algorithm: Example



Greedy Algorithm

$\mathsf{MST-Greedy1}(G, w)$

- $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- $P \leftarrow \emptyset$
- $\textbf{ o while } S \neq V$

- $\bullet \qquad F \leftarrow F \cup \{(u,v)\}$

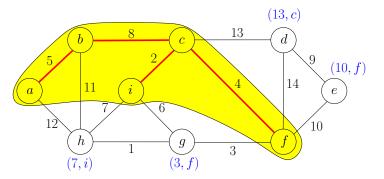
• return (V, F)

• Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

 d(v) = min_{u∈S:(u,v)∈E} w(u, v): the weight of the lightest edge between v and S
 π(v) = arg min_{u∈S:(u,v)∈E} w(u, v): (π(v), v) is the lightest edge between v and S



Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

• $d(v) = \min_{u \in S:(u,v) \in E} w(u, v)$: the weight of the lightest edge between v and S• $\pi(v) = \arg\min_{u \in S:(u,v) \in E} w(u, v)$: $(\pi(v), v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value
- $\bullet~\operatorname{Add}~(\pi(u),u)$ to F
- Add u to S, update d and π values.

Prim's Algorithm

$\mathsf{MST-Prim}(G, w)$

- $\ \, \bullet \ \, \mathsf{s} \leftarrow \mathsf{arbitrary vertex in} \ \, G$
- $\ \ \, {\it O} \ \ \, S \leftarrow \emptyset, d(s) \leftarrow 0 \ \, {\rm and} \ \, d(v) \leftarrow \infty \ \, {\rm for \ every} \ v \in V \setminus \{s\}$
- $\textcircled{\textbf{o}} \text{ while } S \neq V \text{, do}$
- $u \leftarrow$ vertex in $V \setminus S$ with the minimum d(u)
- $\begin{tabular}{ll} \bullet & \end{tabular} \en$

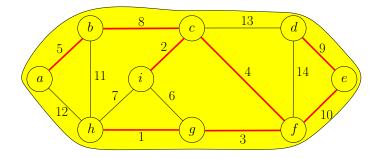
if
$$w(u, v) < d(v)$$
 then

$$\mathbf{3} \qquad \quad d(v) \leftarrow w(u,v)$$

7

 $\textcircled{0} \ \text{return} \ \left\{ (u, \pi(u)) | u \in V \setminus \{s\} \right\}$

Example



Prim's Algorithm

For every $v \in V \setminus S$ maintain

 d(v) = min_{u∈S:(u,v)∈E} w(u, v): the weight of the lightest edge between v and S
 π(v) = arg min_{u∈S:(u,v)∈E} w(u, v): (π(v), v) is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value extract_min
- $\bullet \ \operatorname{Add} \, (\pi(u), u) \ \mathrm{to} \ F$
- Add u to S, update d and π values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element v, whose associated key value is key_value .
- decrease_key(v, new_key_value): decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value

o . . .

Prim's Algorithm

$\mathsf{MST-Prim}(G, w)$

3

1

- $\ \, \bullet \ \, s \leftarrow \text{arbitrary vertex in } G$
- $\ \ \, {\it O} \ \ \, S \leftarrow \emptyset, d(s) \leftarrow 0 \ \, {\rm and} \ \, d(v) \leftarrow \infty \ \, {\rm for \ every} \ v \in V \setminus \{s\}$

• while
$$S \neq V$$
, do

 $\begin{tabular}{ll} \bullet & u \leftarrow {\sf vertex in } V \setminus S {\rm \ with \ the \ minimum \ } d(u) \\ \end{tabular}$

• for each
$$v \in V \setminus S$$
 such that $(u, v) \in E$

• if
$$w(u,v) < d(v)$$
 then

$$d(v) \leftarrow w(u, v$$

$$\pi(v) \leftarrow u$$

 $\ \, {\color{black} 0} \ \, {\rm return} \ \, \left\{(u,\pi(u))|u\in V\setminus\{s\}\right\}$

Prim's Algorithm Using Priority Queue

$\mathsf{MST-Prim}(G, w)$

- $\ \, \bullet \ \, \mathsf{s} \leftarrow \mathsf{arbitrary vertex in} \ \, G$
- $\ \ \, {\it O} \ \ \, S \leftarrow \emptyset, d(s) \leftarrow 0 \ \, {\rm and} \ \, d(v) \leftarrow \infty \ \, {\rm for \ every} \ v \in V \setminus \{s\}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \bullet \\ Q \leftarrow \mbox{empty queue, for each } v \in V \colon Q.\mbox{insert}(v,d(v)) \end{tabular} \end{tabular}$
- while $S \neq V$, do
- $u \leftarrow Q.\mathsf{extract_min}()$
- $\ \ \, {\rm or \ each} \ \, v\in V\setminus S \ \, {\rm such \ that} \ \, (u,v)\in E$

• if
$$w(u, v) < d(v)$$
 then

9
$$d(v) \leftarrow w(u, v), Q.\text{decrease}_{key}(v, d(v))$$

10 $\pi(v) \leftarrow u$

D return $\left\{ (u, \pi(u)) | u \in V \setminus \{s\} \right\}$

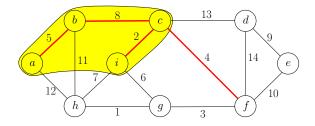
Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.



(c, f) is in MST because of cut ({a, b, c, i}, V \ {a, b, c, i})
(i, g) is not in MST because no such cut exists

Assumption Assume all edge weights are different.

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

Single Source Shortest PathsDijkstra's Algorithm

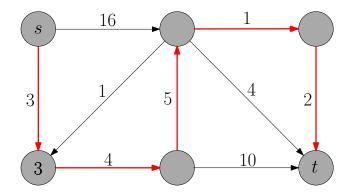
Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

$$w: E \to \mathbb{R}_{>0}$$

Output: shortest path from s to t



Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

$$w: E \to \mathbb{R}_{\geq 0}$$

Output: shortest paths from s to all other vertices $v \in V$

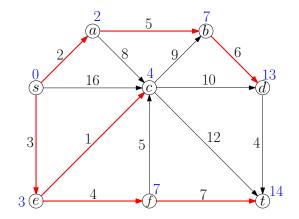
Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

- \bullet Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices \boldsymbol{v}
- $\bullet\,$ Thus, printing out all shortest paths may take time $\Omega(n^2)$
- Not acceptable if graph is sparse

Shortest Path Tree

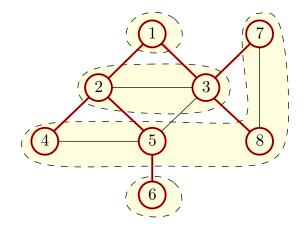
- O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)



Single Source Shortest Paths Input: directed graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: $\pi(v), v \in V \setminus s$: the parent of v $d(v), v \in V \setminus s$: the length of shortest path from s to v

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s



Assumption Weights w(u, v) are integers (w.l.o.g).

• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- replace (u, v) of length w(u, v) with a path of w(u, v) unit-weight edges, for every $(u, v) \in E$
- In the second second
- **③** $\pi(v) =$ vertex from which v is visited
- d(v) = index of the level containing v
 - Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

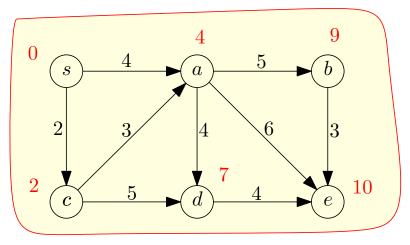
$$S \leftarrow \{s\}, d(s) \leftarrow 0$$

 $\textcircled{2} \text{ while } |S| \leq n$

• find a
$$v \notin S$$
 that minimizes $\min_{u \in S: (u,v) \in E} \{ d(u) + w(u,v) \}$

$$\textcircled{9} \qquad S \leftarrow S \cup \{v\}$$

Virtual BFS: Example



Time 10

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

Single Source Shortest PathsDijkstra's Algorithm

Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

Dijkstra's Algorithm

 $\mathsf{Dijkstra}(G, w, s)$

- $\ \ \, {\bf S} \leftarrow \emptyset, d(s) \leftarrow 0 \ \, {\rm and} \ \, d(v) \leftarrow \infty \ \, {\rm for \ every} \ v \in V \setminus \{s\}$
- $\textcircled{2} \quad \text{while } S \neq V \ \text{do}$
- **3** $u \leftarrow$ vertex in $V \setminus S$ with the minimum d(u)

$$\bigcirc$$
 add u to S

5 for each $v \in V \setminus S$ such that $(u, v) \in E$

if
$$d(u) + w(u, v) < d(v)$$
 ther

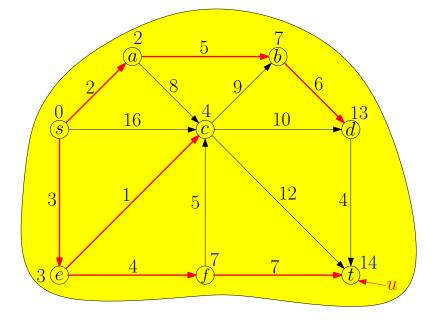
$$d(v) \leftarrow d(u) + w(u, v)$$

$$\bullet \qquad \pi(v) \leftarrow u$$

• return (d, π)

7

• Running time = $O(n^2)$



Improved Running Time using Priority Queue

$\mathsf{Dijkstra}(G, w, s)$ 1 2 $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d(v) \leftarrow \infty$ for every $v \in V \setminus \{s\}$ **1** $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))• while $S \neq V$, do $u \leftarrow Q.\mathsf{extract_min}()$ 6 $S \leftarrow S \cup \{u\}$ 6 for each $v \in V \setminus S$ such that $(u, v) \in E$ 7 if d(u) + w(u, v) < d(v) then 8 $d(v) \leftarrow d(u) + w(u, v), Q.\mathsf{decrease_key}(v, d(v))$ 9 $\pi(v) \leftarrow u$ 10 return (π, d)

Recall: Prim's Algorithm for MST

$\mathsf{MST-Prim}(G, w)$

- $\ \, \bullet \ \, \mathsf{s} \leftarrow \mathsf{arbitrary vertex in} \ \, G$
- $\ \ \, {\it O} \ \ \, S \leftarrow \emptyset, d(s) \leftarrow 0 \ \, {\rm and} \ \, d(v) \leftarrow \infty \ \, {\rm for \ every} \ v \in V \setminus \{s\}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \bullet \\ Q \leftarrow \mbox{empty queue, for each } v \in V \colon Q.\mbox{insert}(v,d(v)) \end{tabular} \end{tabular}$
- while $S \neq V$, do
- $u \leftarrow Q.\mathsf{extract_min}()$
- for each $v \in V \setminus S$ such that $(u, v) \in E$

• if
$$w(u, v) < d(v)$$
 then

$$d(v) \leftarrow w(u, v), \ Q. \text{decrease}_{key}(v, d(v))$$
$$\pi(v) \leftarrow u$$

 $\textcircled{0} \text{ return } \left\{ (u, \pi(u)) | u \in V \setminus \{s\} \right\}$

Running time:

 $O(n) \times (\text{time for extract}_min) + O(m) \times (\text{time for decrease}_key)$

Priority-Queue	extract_min	decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- 2 Single Source Shortest Paths• Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

Recall: Single Source Shortest Path Problem

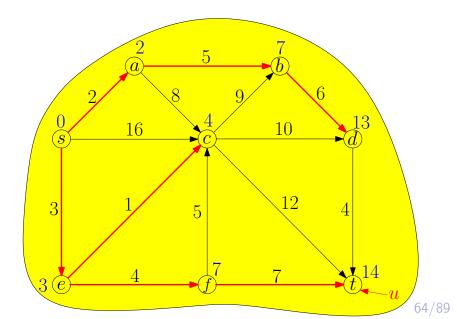
Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

$$w: E \to \mathbb{R}_{\geq 0}$$

Output: shortest paths from s to all other vertices $v \in V$

• Algorithm for the problem: Dijkstra's algorithm



Dijkstra's Algorithm Using Priorty Queue

$\mathsf{Dijkstra}(G, w, s)$ $S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}$ 2 $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v)) \bigcirc while $S \neq V$, do $u \leftarrow Q.\mathsf{extract_min}()$ 4 $S \leftarrow S \cup \{u\}$ 5 for each $v \in V \setminus S$ such that $(u, v) \in E$ 6 if d(u) + w(u, v) < d(v) then 7 $d(v) \leftarrow d(u) + w(u, v), Q.\mathsf{decrease_key}(v, d(v))$ 8 $\pi(v) \leftarrow u$ 9 return (π, d) 10

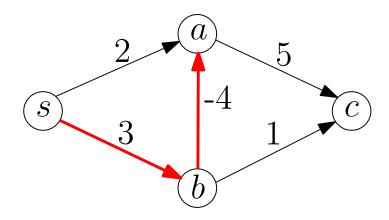
• Running time = $O(m + n \lg n)$.

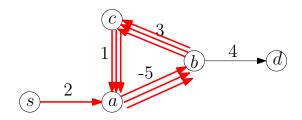
Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices $v \in V$

• In transition graphs, negative weights make sense

- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

Dijkstra's Algorithm Fails if We Have Negative Weights





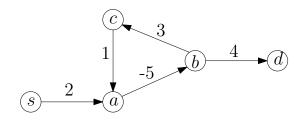
Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"



Q: What is the length of the shortest simple path from s to d?

A: 1

 Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

Outline

Minimum Spanning Tree

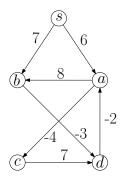
- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- 2 Single Source Shortest Paths• Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: f[v]: length of shortest path from s to v
- issue: do not know in which order we compute f[v]'s
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges



• $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \min \begin{cases} f^{\ell-1}[v] & \\ \min_{u:(u,v)\in E} \left(f^{\ell-1}[u] + w(u,v)\right) & \ell > 0 \end{cases}$$

dynamic-programming(G, w, s)

$$\ \, {\bf 0} \ \, f^0[s] \leftarrow 0 \ \, {\rm and} \ \, f^0[v] \leftarrow \infty \ \, {\rm for \ \, any} \ \, v \in V \setminus \{s\}$$

2 for
$$\ell \leftarrow 1$$
 to $n-1$ do

$$o \qquad \text{copy } f^{\ell-1} \to f^{\ell}$$

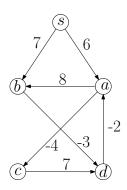
• for each
$$(u, v) \in E$$

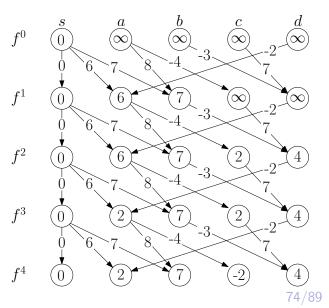
5 if
$$f^{\ell - 1}[u] + w(u, v) < f^{\ell}[v]$$

• return
$$(f^{n-1}[v])_{v \in V}$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Dynamic Programming: Example





dynamic-programming (G, w, s)

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Q: What if there are negative cycles?

Dynamic Programming With Negative Cycle Detection

dynamic-programming(G, w, s)• $f^0[s] \leftarrow 0$ and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ **2** for $\ell \leftarrow 1$ to n-1 do • for each $(u, v) \in E$ if $f^{\ell-1}[u] + w(u, v) < f^{\ell}[v]$ 5 $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)$ 6 • for each $(u, v) \in E$ if $f^{n-1}[u] + w(u, v) < f^{n-1}[v]$ 8 9 report "negative cycle exists" and exit return $(f^{n-1}[v])_{v \in V}$ 10

Bellman-Ford Algorithm

$\begin{array}{l} \textbf{Bellman-Ford}(G,w,s) \\ \textcircled{1}{2} \quad f[s] \leftarrow 0 \ \text{and} \ f[v] \leftarrow \infty \ \text{for any} \ v \in V \setminus \{s\} \\ \textcircled{2} \quad \text{for} \ \ell \leftarrow 1 \ \text{to} \ n-1 \ \text{do} \\ \textcircled{3} \quad \text{for each} \ (u,v) \in E \\ \textcircled{3} \quad \text{if} \ f[u] + w(u,v) < f[v] \\ \textcircled{3} \quad f[v] \leftarrow f[u] + w(u,v) \\ \textcircled{3} \quad return \ f \end{array}$

- \bullet Issue: when we compute $f[u]+w(u,v),\ f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, \ f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges

77/89

 $\bullet \ f[v]$ is always the length of some path from s to v

Bellman-Ford Algorithm

$\begin{array}{l} \textbf{Bellman-Ford}(G,w,s)\\ \textbf{@} \quad f[s] \leftarrow 0 \text{ and } f[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s\}\\ \textbf{@} \quad \text{for } \ell \leftarrow 1 \text{ to } n-1 \text{ do}\\ \textbf{@} \quad \text{for each } (u,v) \in E\\ \textbf{@} \quad \text{if } f[u] + w(u,v) < f[v]\\ \textbf{@} \quad f[v] \leftarrow f[u] + w(u,v)\\ \textbf{@} \quad \text{return } f \end{array}$

- After iteration $\ell, \ f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- f[v] is always the length of some path from s to v
- Assuming there are no negative cycles, after iteration n-1, f[v] =length of shortest path from s to v

Bellman-Ford Algorithm

Bellman-Ford
$$(G, w, s)$$

 $f[s] \leftarrow 0 \text{ and } f[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s \}$
for $\ell \leftarrow 1$ to n do
 $updated \leftarrow false$
for each $(u, v) \in E$
if $f[u] + w(u, v) < f[v]$
 $f[v] \leftarrow f[u] + w(u, v), \pi[v] \leftarrow u$
 $updated \leftarrow true$
if not $updated$, then return f
output "negative cycle exists"

• $\pi[v]$: the parent of v in the shortest path tree

• Running time = O(nm)

79/89

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm

Shortest Paths in Graphs with Negative Weights
 Bellman-Ford Algorithm

4 All-Pair Shortest Paths and Floyd-Warshall

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph
$$G = (V, E)$$
,

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

• for every starting point
$$s \in V$$
 do

2 run Bellman-Ford
$$(G, w, s)$$

• Running time = $O(n^2m)$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3,\cdots,n\}$
- \bullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- Issue: do not know in which order we compute f[i, j]'s
- f^k[i, j]: length of shortest path from i to j that only uses vertices {1, 2, 3, · · · , k} as intermediate vertices

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• $f^k[i, j]$: length of shortest path from i to j that only uses vertices $\{1, 2, 3, \cdots, k\}$ as intermediate vertices

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] & k = 1, 2, \cdots, n \end{cases} \\ f^{k-1}[i,k] + f^{k-1}[k,j] & k = 1, 2, \cdots, n \end{cases}$$

$\mathsf{Floyd} ext{-Warshall}(G,w)$

$$\begin{array}{l} \bullet f^{0} \leftarrow w \\ \hline \ensuremath{ 2 \ } \ensuremath{ f \ } \ensuremath{ e \ } \ensuremath{ f \ } \ensuremath{ g \ } \ensuremath{ f \ } \ensuremath{ g \ } \ensuremath{ f \ } \ensurem$$

$\mathsf{Floyd}\operatorname{-Warshall}(G, w)$

1	$f^{\text{old}} \leftarrow w$
2	for $k \leftarrow 1$ to n do
3	$copy\ f^{old} \to f^{new}$
4	for $i \leftarrow 1$ to n do
5	for $j \leftarrow 1$ to n do
6	if $f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j]$ then
7	$f^{\mathrm{new}}[i,j] \leftarrow f^{\mathrm{old}}[i,k] + f^{\mathrm{old}}[k,j]$

Lemma Assume there are no negative cycles in G. After iteration k, for $i, j \in V$, f[i, j] is exactly the length of shortest path from i to j that only uses vertices in $\{1, 2, 3, \dots, k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

Recovering Shortest Paths

Floyd-Warshall(G, w) a) $f \leftarrow w, \pi[i, j] \leftarrow \bot$ for every $i, j \in V$ a) for $k \leftarrow 1$ to n do b) for $i \leftarrow 1$ to n do c) for $j \leftarrow 1$ to n do c) if f[i, k] + f[k, j] < f[i, j] then c) $f[i, j] \leftarrow f[i, k] + f[k, j], \pi[i, j] \leftarrow k$

print-path(i, j)

• if
$$\pi[i, j] = \bot$$
 then

2 if
$$i \neq j$$
 then print $(i, ", ")$

else

print-path($i, \pi[i, j]$), print-path($\pi[i, j], j$)

Detecting Negative Cycles

$\mathsf{Floyd}\operatorname{-Warshall}(G, w)$ • $f \leftarrow w, \pi[i, j] \leftarrow \bot$ for every $i, j \in V$ **2** for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do 3 4 for $i \leftarrow 1$ to n do if f[i, k] + f[k, j] < f[i, j] then 5 6 $f[i, j] \leftarrow f[i, k] + f[k, j], \pi[i, j] \leftarrow k$ • for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do 8 for $i \leftarrow 1$ to n do 9 if f[i, k] + f[k, j] < f[i, j] then 10 report "negative cycle exists" and exit •

Summary of Shortest Path Algorithms

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- $\bullet \ \mathsf{DAG} = \mathsf{directed} \ \mathsf{acyclic} \ \mathsf{graph} \quad \mathsf{U} = \mathsf{undirected} \quad \mathsf{D} = \mathsf{directed}$
- SS = single source AP = all pairs