CSE 431/531: Algorithm Analysis and Design (Spring 2020)
Graph Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.

Lemma Let 7' = (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G,

@ T is acyclic and connected;

@ T is connected and has n — 1 edges;

@ T is acyclic and has n — 1 edges;

@ T is minimally connected: removal of any edge disconnects it;
@ T is maximally acyclic: addition of any edge creates a cycle;
°

T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : £ — R
Output: the spanning tree T" of G with the minimum total weight

12

Recall: Steps of Designing A Greedy Algorithm
@ Design a “reasonable” strategy
@ Prove that the reasonable strategy is “safe” (key, usually done
by “exchanging argument”)
@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
o Kruskal's Algorithm
@ Prim’'s Algorithm

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
Assume the lightest edge ¢* is not in T’
There is a unique path in 7" connecting v and v
Remove any edge e in the path to obtain tree T’
w(e*) <w(e) = w(T") <w(T): T'is also a MST O

lightest edge e* ~ .

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*

Remove all edges (u,v) from E

For every edge (v, w) € E,w # u, change it to

°
°

@ For every edge (u,w) € E,w # v, change it to (u*,w)
° (u*, w)
°

May create parallel edges! E.g. : two edges (i, g*)

Greedy Algorithm

Repeat the following step until G contains only one vertex:
@ Choose the lightest edge e¢*, add e* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected

Greedy Algorithm

MST-Greedy(G, w)

Q F=10

© sort edges in E in non-decreasing order of weights w
@ for each edge (u,v) in the order

© if uw and v are not connected by a path of edges in F’
(5] F=FU{(u,v)}

Q return (V) F)

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,q,h,d, e}

Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

Q@ F« 0

QS+ {{v}:veV}

© sort the edges of F in non-decreasing order of weights w
© for each edge (u,v) € E in the order
Q@ S, < thesetin S containing u

Q@ S, < thesetin S containing v

Q@ ifS, #5,

(%] F+— FU{(u,v)}

Q9 SS\{SH\{SFu{S.US,}
@ return (V, F)

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

Q@ F«+ 0

Q@ S+ {{v}:veV}

© sort the edges of F in non-decreasing order of weights w
@ for each edge (u,v) € E in the order
@ S, <« thesetin S containing u

Q@ S, < thesetin S containing v

Q@ IfS,.#5,

(%] F+— FU{(u,v)}

Q@ S S\{SH\{S}u{S.US,}
@ return (V) F)

Use union-find data structure to support @, @, @, @. ©.

Union-Find Data Structure

e V: ground set

@ We need to maintain a partition of V' and support following
operations:
o Check if w and v are in the same set of the partition
o Merge two sets in partition

o V={1,23,,16}
o Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4, 8,11}, {6, 14}

@ parli]: parent of i, (par[i] = nil if ¢ is a root).

Union-Find Data Structure

A

@ Q: how can we check if 4 and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root and r": par|r] < .

Union-Find Data Structure

root(v)
@ if par[v] = nil then
Q@ returnw

Q else
Q@ parv] < root(par|v])

root(v)
Q if par[v] = nil then
Q@ returnv

Q else
@ return root(par(v])

A

@ return par[v]

@ Problem: the tree might too deep; running time might be large

@ Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v)

Q if par[v] = nil then

Q@ returnv

Q else

Q@ par[v] « root(par[v])
@ return parjv

Aok 201

MST-Kruskal(G, w)

Q@ F«0

Q@ S+ {{v}:veV}

© sort the edges of E in non-decreasing order of weights w
© for each edge (u,v) € E in the order
@ S, <« thesetin S containing u

Q@ 5, < thesetin S containing v

@ ifS,#£S,

(5] F «+ FU{(u,v)}

o S+ S\ {Su}\{S,}u{S, US,}
@ return (V, F)

MST-Kruskal(G, w)

Q@ F« 0

@ for every v € V: let par[v] < nil

© sort the edges of F in non-decreasing order of weights w
@ for each edge (u,v) € E in the order

Q@ u < root(u)

Q@ v <« root(v)

Q@ ifu #

o F <+ FU{(u,v)}
o parfu'] < v

@ return (V) F)

° .60 .0 0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 10%,
@ Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different. J

Lemma An edge e € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J

@ (i,g) is not in the MST because of cycle (i, ¢, f, g)
@ (e, f) isin the MST because no such cycle exists

Outline

@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm

Two Methods to Build a MST

@ Start from F <+ (), and add edges to F' one by one until we
obtain a spanning tree

@ Start from F < FE, and remove edges from F' one by one until
we obtain a spanning tree

Lemma It is safe to exclude the heaviest non-bridge edge: there is
a MST that does not contain the heaviest non-bridge edge. J

Reverse Kruskal's Algorithm

MST-Greedy(G, w)

Q F+FE

@ sort E in non-increasing order of weights
© for every e in this order

Q@ if (V,F\ {e}) is connected then

(5] F « F\{e}

Q return (V) F)

Reverse Kruskal's Algorithm: Example

Outline

@ Minimum Spanning Tree

@ Prim’s Algorithm

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallesé we|gh}fc\ 13

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.

Lemma It is safe to include the lightest edge incident to a.

lightest edge e* incident to a
/

Proof.
o Let 7" be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component '

Let e be the edge in T' connecting a to C'
T"=T\ eU{e*} is a spanning tree with w(7") < w(T)

Prim’s Algorithm: Example

Greedy Algorithm

MST-Greedyl(G, w)

Q S < {s}, where s is arbitrary vertex in V
Q F« 1

@ while S £V

Q@ (u,v) < lightest edge between S and V' \ S,
where w € Sandv e V\ S

Q@ S+ Su{v}
Q@ F+ Fu{(u,v)}
@ return (V) F)

@ Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ S maintain
o d(v) = minyes.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m(v) = arg minyeg.(uv)cr WU, v):
(m(v),v) is the lightest edge between v and S

(13,¢)

Prim’s Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ S maintain

o d(v) = minyeg.(uv)er W(U, V):
the weight of the lightest edge between v and S

o m(v) = arg minyeg:(u,v)cr (U, v):
(m(v),v) is the lightest edge between v and S
In every iteration
e Pick uw € V'\ S with the smallest d(u) value
e Add (m(u),u) to F
@ Add u to S, update d and 7 values.

Prim’s Algorithm

MST-Prim(G, w)
Q@ s < arbitrary vertex in GG
Q S+ 0,d(s) + 0and d(v) < oo for every v € V' \ {s}
@ while S # V, do
Q@ u < vertexin V'\ S with the minimum d(u)
S« SuU{u}
for each v € V'\ S such that (u,v) € F
if w(u,v) < d(v) then
d(v) + w(u v)
m(v)

()
(6]
(7]
o
o
@ return {(u,7(u))|u€ V\ {s}}

Example

Prim’s Algorithm

For every v € V'\ S maintain

o d(v) = minyes.(uv)er W, v):
the weight of the lightest edge between v and S

o 7m(v) = argminyeg.(uv)cr WU, v):
(m(v),v) is the lightest edge between v and S

In every iteration

e Pick u € V'\ S with the smallest d(u) value extract_min
e Add (m(u),u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:
@ insert(v, key_value): insert an element v, whose associated key
value is key_value.
o decrease key(v, new_key_value): decrease the key value of an
element v in queue to new_key_value
@ extract_min(): return and remove the element in queue with the
smallest key value

Prim’s Algorithm

MST-Prim(G, w)

Q@ s < arbitrary vertex in GG

Q S+ 0,d(s) + 0and d(v) < oo for every v € V' \ {s}

o

Q while S #V, do

Q@ u < vertex in V'\ S with the minimum d(u)

S+ SuU{u}

for each v € V'\ S such that (u,v) € E

if w(u,v) < d(v) then

d(v
7(v)

return {(u, 7(u))]u e V\{s}}

)<—w(u v)

o
o
o
o
[0
o

Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
©Q s < arbitrary vertex in G
Q@ S <+ 0,d(s) « 0and d(v) < oo for every v € V' \ {s}
Q@ () < empty queue, for each v € V: Q.insert(v, d(v))
Q while S #V, do
Q@ u <« Q.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E

if w(u,v) < d(v) then

d(v) «+ w(u v), (.decrease key(v,d(v))
(U)

o
o
o
o
[0
@ return {(u,m]u e V\{s}}

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) O(1) O(nlogn +m)

Assumption Assume all edge weights are different. J

Lemma (u,v) isin MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. J

(¢, f) is in MST because of cut ({a,b,c,i},V '\ {a,b,c,i})

°
@ (i,g) is not in MST because no such cut exists

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which e is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

Input: (directed or undirected) graph G = (V. E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

47/89

Single Source Shortest Paths
Input: directed graph G = (V, E), sV
w: B — Ry
Output: shortest paths from s to all other vertices v € V'

Reason for Considering Single Source Shortest Paths Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight

@ Shortest path from s to v may contain 2(n) edges
@ There are 2(n) different vertices v
@ Thus, printing out all shortest paths may take time Q(n?)

@ Not acceptable if graph is sparse

Shortest Path Tree
@ O(n)-size data structure to represent all shortest paths

o For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)

Input: directed graph G = (V, E), s€ V
w:E — Ry
Output: 7(v),v € V '\ s: the parent of v
d(v),v € V'\ s: the length of shortest path from s to v

51/89

Q: How to compute shortest paths from s when all edges have
weight 17

J

A: Breadth first search (BFS) from source s

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; 1 ; o hohobol

Shortest Path Algorithm by Running BFS

@ replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

@ run BFS virtually

@ 7(v) = vertex from which v is visited

Q d(v) = index of the level containing v

@ Problem: w(u,v) may be too large!

Shortest Path Algorithm by Running BFS Virtually
Q S« {s},d(s) <0
@ while |S| <n

@ find av ¢ S that minimizes min {d(u) + w(u,v)}
ueS:(u,v)eEE

Q S« Suf{v}
Q@ d(v) + minges.(unepf{d(u) + w(u,v)}

Virtual BFS: Example

Time 10

Outline

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

Dijkstra’s Algorithm

Dijkstra(G, w, s)

Q@ S« 0,d(s) «+ 0and d(v) < oo for every v € V '\ {s}
Q while S #V do

@ u < vertexin V' \ S with the minimum d(u)

Q@ addutoS

@ foreachv € V'\ S such that (u,v) € £
(5] if d(u) +w(u,v) < d(v) then

o d(v) ()+ w(u,v)

o m(v)

Q return (d, 7

)

@ Running time = O(n?)

Improved Running Time using Priority Queue

Dijkstra(G, w, s)

o

Q@ S« 0,d(s) «+ 0and d(v) + oo for every v € V' \ {s}
Q@ () < empty queue, for each v € V: Q.insert(v, d(v))
Q while S #V, do

Q@ u <« Q.extract_min()

S+ SuU{u}

for each v € V'\ S such that (u,v) € F

if d(u) + w(u,v) < d(v) then
d(v) + d(u) + w(u,v), Q).decrease key(v,d(v))
m(v) < u

o
o
o
o
[0
o

return (7, d)

Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
©Q s < arbitrary vertex in G
Q@ S <+ 0,d(s) « 0and d(v) < oo for every v € V' \ {s}
Q@ () < empty queue, for each v € V: Q.insert(v, d(v))
Q while S #V, do
Q@ u <« Q.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E

if w(u,v) < d(v) then

d(v) «+ w(u v), (.decrease key(v,d(v))
(U)

o
o
o
o
[0
@ return {(u,m]u e V\{s}}

Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)

Outline

© Shortest Paths in Graphs with Negative Weights
@ Bellman-Ford Algorithm

Recall: Single Source Shortest Path Problem

Single Source Shortest Paths
Input: directed graph G = (V| E), s€ V
w: B — Ry
Output: shortest paths from s to all other vertices v € V/

@ Algorithm for the problem: Dijkstra’s algorithm

Dijkstra’s Algorithm Using Priorty Queue

Dijkstra(G, w, s)
Q S <+ 0,d(s) « 0and d(v) < oo for every v € V' \ {s}
Q@ () < empty queue, for each v € V: Q.insert(v, d(v))
© while S £V, do
Q@ u <« Q.extract_min()
S« SuU{u}
for each v € V'\ S such that (u,v) € E
if d(u) +w(u,v) < d(v) then
d(v) < () + w(u,v), Q.decrease_key(v, d(v))
m(v)

o
o
o
o
o
@ return (7, d)

@ Running time = O(m + nlgn).

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V. E), sV
assume all vertices are reachable from s
w:FE—R
Output: shortest paths from s to all other vertices v € V/

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra’s algorithm does not work any more!

Dijkstra’s Algorithm Fails if We Have Negative
Weights

Q: What is the length of the shortest path from s to d?

A: —

Def. A negative cycle is a cycle in which the total weight of edges
is negative.

Dealing with Negative Cycles
@ assume the input graph does not contain negative cycles, or
o allow algorithm to report “negative cycle exists”

Q: What is the length of the shortest simple path from s to d?

)

A: 1

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Outline

© Shortest Paths in Graphs with Negative Weights
@ Bellman-Ford Algorithm

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V. E), sV
assume all vertices are reachable from s
w:FE—R
Output: shortest paths from s to all other vertices v € V/

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

o ffv], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most / edges

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that
uses at most ¢ edges

e f?la] =6
e f3a] =2

0 (=0,v=s
00 (=0,v+#s
£

min (>0
{ minu:(u,v)EE (fé—l[u] + w(u7 /U))

dynamic-programming(G, w, s)

Q@ f[s] + 0 and fOv] + oo for any v € V' \ {s}
Q forl{+1ton—1do

Q@ copy fH = ff

© foreach (u,v) € E

@ if fMu)+ w(wv) < £y

o Fol = f7) 4+ w(u, v)

@ return (f"7[v])per

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Dynamic Programming: Example

dynamic-programming(G, w, s)

Q /f°[s] « 0and fO[v] oo forany v € V'\ {s}
Q forl{+1ton—1do

Q@ copy ffl = ff

Q@ foreach (u,v) € E

() if 7 u] 4+ w(u,v) < fu]

[Fio) = £ u) + w(u, v)

@ return (" v))per

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Q: What if there are negative cycles?

Dynamic Programming With Negative Cycle
Detection

dynamic-programming(G, w, s)

Q@ /%s] < 0and fOv] < oo for any v € V' \ {s}
Q forl{«+1ton—1do

Q@ copy [= ff

Q@ foreach (u,v) € E

(5] if 7 u] + w(u,v) < fu]

0 Fo) = £ u) + w(u, v)

@ for each (u,v) € E

@ if f"Hul +w(u,v) < 7]

Qo report “negative cycle exists” and exit
@ return (" v])pey

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

Q@ f[s] < 0and f[v] - oo for any v € V'\ {s}
@ for{«+1ton—1do

@ foreach (u,v) € E

Q if flu] +w(u,v) < flv]

o flv] = flu] + wlu, v)

Q return f

o Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration
This is OK: it can only “accelerate” the process!

After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges
f[v] is always the length of some path from s to v

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

Q f[s] < 0and f[v] < oo for any v € V' \ {s}
@ for{<1ton—1do

@ foreach (u,v) € E

0 if flu] +w(u,v) < flv]

o flo] = flu] +w(u,v)

Q return f

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges

e f[v] is always the length of some path from s to v

@ Assuming there are no negative cycles, after iteration n — 1,
f[v] = length of shortest path from s to v

Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

Q f[s] + 0and f[v] + oo for any v € V' \ {s}

Q for /< 1tondo

© updated < false

for each (u,v) € E

if flul +w(u, v) < flv]

flv] < flu] + w(u,v), 7[v] < u
updated <— true

© if not updated, then return f

© output “negative cycle exists”

@ m[v]: the parent of v in the shortest path tree
@ Running time = O(nm)

Outline

© All-Pair Shortest Paths and Floyd-Warshall

Summary of Shortest Path Algorithms we learned

‘ graph ‘ weights ‘ SS? ‘ running time

algorithm
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source

U = undirected D = directed

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w: E — R (can be negative)
Output: shortest path from u to v for every u,v € V

@ for every starting point s € V' do
@ run Bellman-Ford(G, w, s)

@ Running time = O(n%m)

Design a Dynamic Programming Algorithm

@ It is convenient to assume V = {1,2,3,--- ,n}

@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = § weight of edge (i,j) i #j,(i,j) € E
00 i#5,(,7) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: f[i,] is length of shortest path from i to j
@ Issue: do not know in which order we compute f[i, j]'s

e f*[i, j]: length of shortest path from i to j that only uses
vertices {1,2,3,--- ,k} as intermediate vertices

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
00 i#5,(4,5) ¢ £

e f¥[i,j]: length of shortest path from i to j that only uses
vertices {1,2,3,--- , k} as intermediate vertices

wli,) k=0

Plidl=1 £, L
m{ N 1 I

Floyd-Warshall(G, w)
QO O+ w
Q for k< 1tondo
Q@ copy fF = f*
for i <— 1 ton do
for j <~ 1ton do
if fEi, k) + fALk, 4] < f*[d, 4] then

o
o
o
o Pl g) < R+ R R 5]

Floyd-Warshall(G, w)
Q f +w
Q for k< 1tondo

Q@ copyf —f
fori < 1tondo

if £l k) + f R, g] < fU[E,] then

o

(5] for j < 1ton do

o

Q Sl gl = fl R+ TR,]

Lemma Assume there are no negative cycles in GG. After iteration
k, for i, € V, fl[i, j] is exactly the length of shortest path from i to
Jj that only uses vertices in {1,2,3,--- ,k} as intermediate vertices.

4

@ Running time = O(n?).

Recovering Shortest Paths

Floyd-Warshall(G, w)

Q f«— w, n[i,jl« Lforeveryi,jeV
Q for k<« 1tondo

©@ fori+ 1tondo

Q for j < 1ton do
o if fli, k] + flk,] < fli,J] then
o flisg] < fli k] + flk, 5], wli, j] < &

print-path(i,)

Q if n[i,j] = L then

@ if i # j then print(i,",")

Q else

Q@ print-path(i, 7[¢, j]), print-path(n[i, j],7)

Detecting Negative Cycles

Floyd-Warshall(G, w)

Q f+ w n[i,jl «+ L foreveryi,j eV
Q for k< 1tondo

Q@ fori+1tondo

Q for j < 1 ton do
° it £li, k] + Ik, 3] < £li,] then
o fli, g) < fli, K]+ flk,j], wli j] < &

@ fork <+ 1tondo

Q@ fori+1tondo

o for j < 1ton do

° i fli, k] + flk, 4] < fli, j] then

(1) report “negative cycle exists” and exit

Summary of Shortest Path Algorithms

‘ graph ‘ weights ‘ SS? ‘ running time

algorithm
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Shortest Paths in Graphs with Negative Weights
	Bellman-Ford Algorithm

	All-Pair Shortest Paths and Floyd-Warshall

