CSE 431/531: Algorithm Analysis and Design (Spring 2020) Graph Algorithms

Lecturer: Shi Li

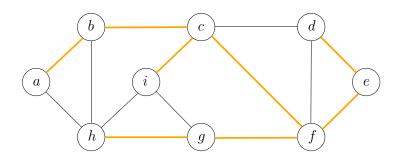
Department of Computer Science and Engineering University at Buffalo

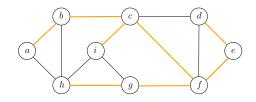
Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

Spanning Tree

Def. Given a connected graph G=(V,E), a spanning tree T=(V,F) of G is a sub-graph of G that is a tree including all vertices V.





Lemma Let T=(V,F) be a subgraph of G=(V,E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- T has a unique simple path between every pair of nodes.

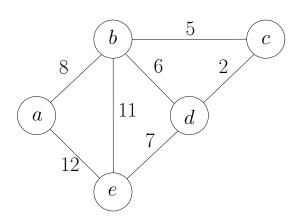
Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

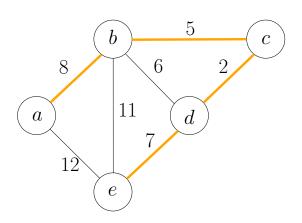
Output: the spanning tree T of G with the minimum total weight



Minimum Spanning Tree (MST) Problem

Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight



Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

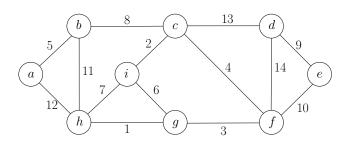
Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

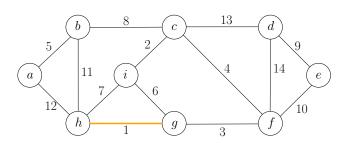
- Kruskal's Algorithm
- Prim's Algorithm

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall



Q: Which edge can be safely included in the MST?

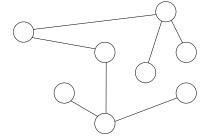


Q: Which edge can be safely included in the MST?

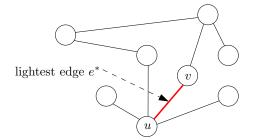
A: The edge with the smallest weight (lightest edge).

Proof.

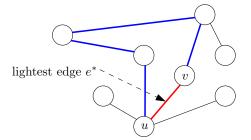
ullet Take a minimum spanning tree T



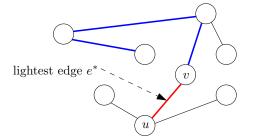
- ullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T



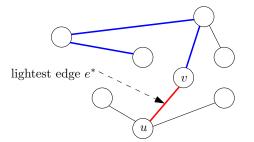
- ullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- \bullet There is a unique path in T connecting u and v

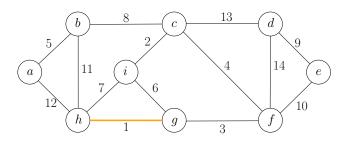


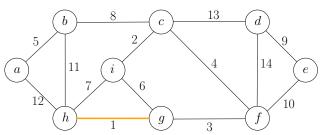
- ullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'



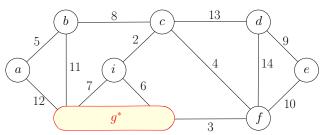
- \bullet Take a minimum spanning tree T
- Assume the lightest edge e^* is not in T
- \bullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'
- $w(e^*) \le w(e) \implies w(T') \le w(T)$: T' is also a MST



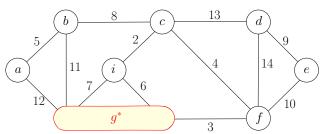




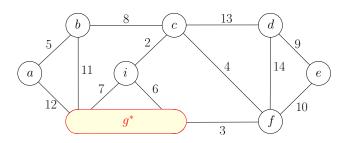
 \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)

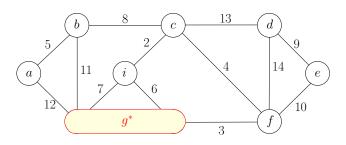


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g,h)

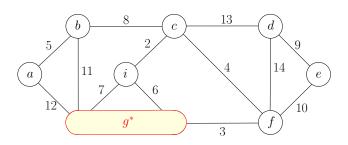


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- ullet Contract the edge (g,h)
- Residual problem: find the minimum spanning tree in the contracted graph

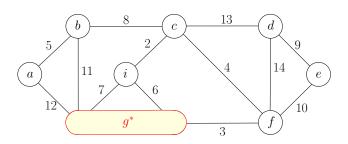




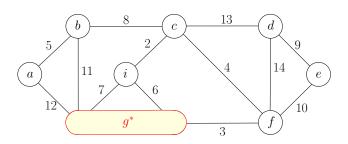
 \bullet Remove u and v from the graph, and add a new vertex u^*



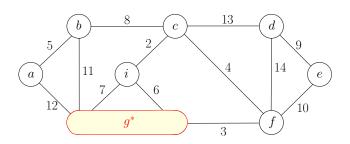
- ullet Remove u and v from the graph, and add a new vertex u^*
- ullet Remove all edges (u,v) from E



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- \bullet For every edge $(u,w) \in E, w \neq v$, change it to (u^*,w)



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- \bullet For every edge $(v,w) \in E, w \neq u$, change it to (u^*,w)



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- $oldsymbol{\circ}$ Contract e^* and update G be the contracted graph

Repeat the following step until G contains only one vertex:

- **①** Choose the lightest edge e^* , add e^* to the spanning tree
- $\hbox{ @ Contract e^* and update G be the contracted graph}$

Q: What edges are removed due to contractions?

Repeat the following step until G contains only one vertex:

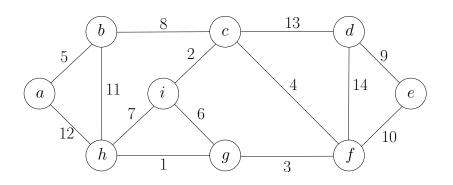
- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- f 2 Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

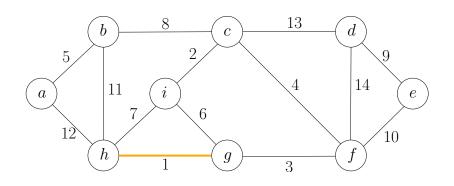
 $\mbox{\bf A:} \;\; \mbox{Edge}\;(u,v)$ is removed if and only if there is a path connecting u and v formed by edges we selected

$\mathsf{MST}\text{-}\mathsf{Greedy}(G,w)$

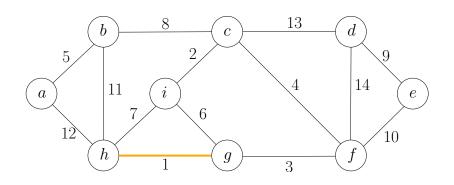
- f 2 sort edges in E in non-decreasing order of weights w
- $oldsymbol{0}$ for each edge (u,v) in the order
- lacktriangle if u and v are not connected by a path of edges in F
- $F = F \cup \{(u, v)\}$
- return (V, F)



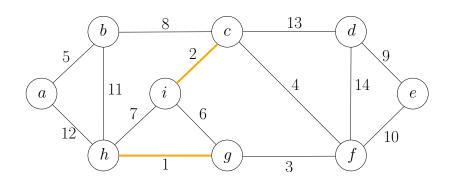
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



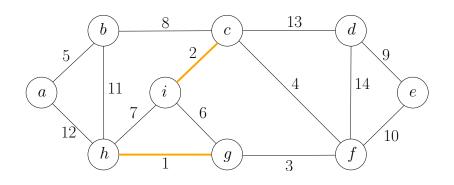
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



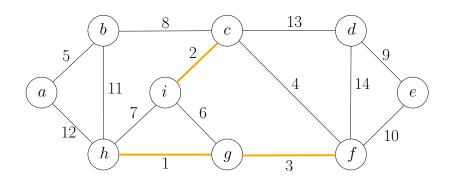
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



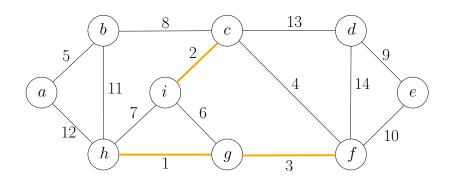
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



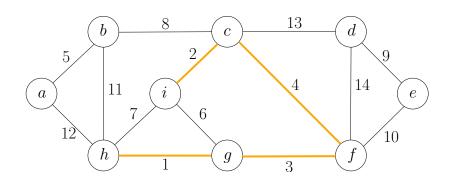
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



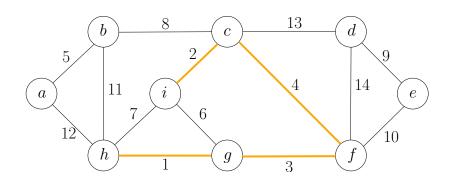
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



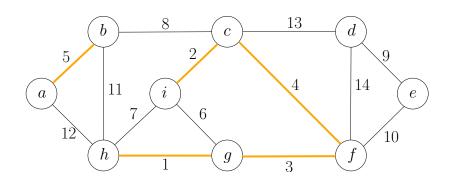
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



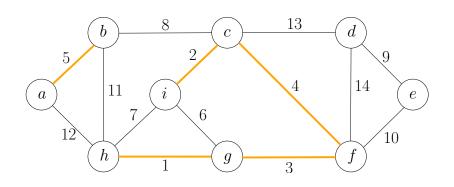
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



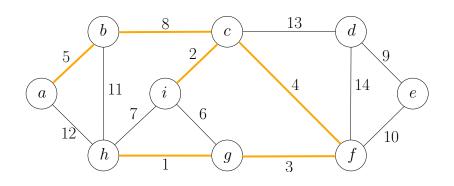
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



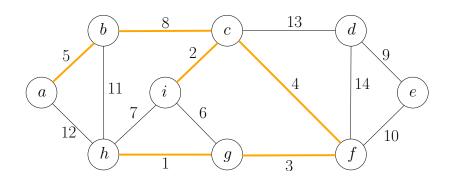
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



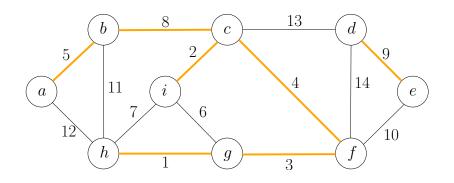
Sets: $\{a,b\}, \{c,i,f,g,h\}, \{d\}, \{e\}$



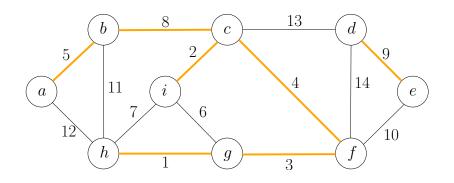
Sets: $\{a,b\}, \{c,i,f,g,h\}, \{d\}, \{e\}$



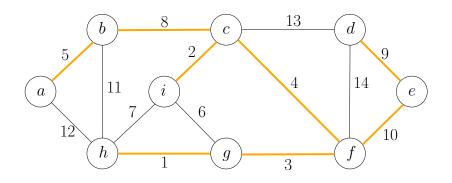
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



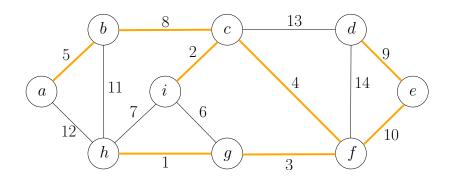
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$



Sets: $\{a, b, c, i, f, g, h\}, \{d, e\}$



Sets: $\{a, b, c, i, f, g, h, d, e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

- \bullet $F \leftarrow \emptyset$
- ② $S \leftarrow \{\{v\} : v \in V\}$
- lacksquare sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $S_u \leftarrow \text{the set in } S \text{ containing } u$
- $S_v \leftarrow \text{the set in } S \text{ containing } v$
- $F \leftarrow F \cup \{(u,v)\}$
- $\mathfrak{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$
- $oldsymbol{\omega}$ return (V,F)

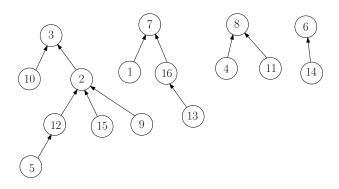
Running Time of Kruskal's Algorithm

- \bullet $F \leftarrow \emptyset$
- **2** $S \leftarrow \{\{v\} : v \in V\}$
- $oldsymbol{3}$ sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order

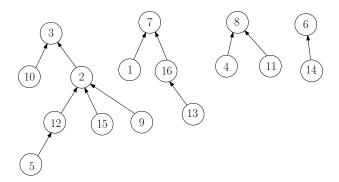
- o if $S_u \neq S_v$
- $F \leftarrow F \cup \{(u,v)\}$
- $oldsymbol{0}$ return (V,F)

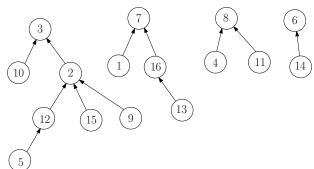
- ullet V: ground set
- ullet We need to maintain a partition of V and support following operations:
 - ullet Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

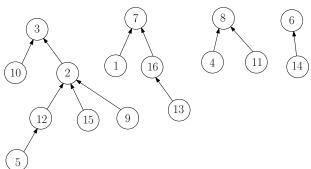


• par[i]: parent of i, (par[i] = nil if i is a root).

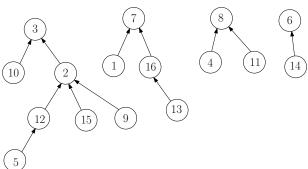




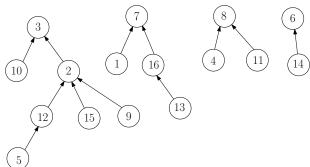
• Q: how can we check if u and v are in the same set?



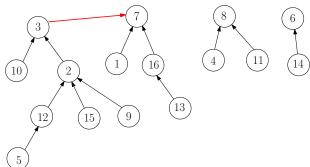
- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.

- if par[v] = nil then
- $oldsymbol{2}$ return v
- else
- return root(par[v])

root(v)

- if par[v] = nil then
- $oldsymbol{2}$ return v
- else
- $oldsymbol{o}$ return root(par[v])

• Problem: the tree might too deep; running time might be large

- if par[v] = nil then
- $oldsymbol{2}$ return v
- else
- $oldsymbol{o}$ return root(par[v])

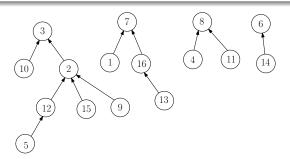
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)

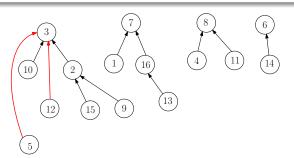
- if par[v] = nil then
- \circ return v
- else
- return root(par[v])

- if par[v] = nil then
- $oldsymbol{2}$ return v
- else
- $oldsymbol{o}$ return par[v]
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

- if par[v] = nil then
- \circ return v
- else
- $oldsymbol{o}$ return par[v]



- if par[v] = nil then
- \circ return v
- else
- $oldsymbol{o}$ return par[v]



- \bullet $F \leftarrow \emptyset$
- **2** $S \leftarrow \{\{v\} : v \in V\}$
- lacksquare sort the edges of E in non-decreasing order of weights w
- lacktriangledown for each edge $(u,v)\in E$ in the order

- $F \leftarrow F \cup \{(u,v)\}$
- \bullet return (V, F)

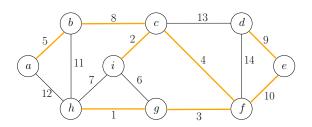
- $\bullet F \leftarrow \emptyset$
- ② for every $v \in V$: let $par[v] \leftarrow \mathsf{nil}$
- ullet sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $v' \leftarrow \text{root}(v)$
- $F \leftarrow F \cup \{(u,v)\}$
- $par[u'] \leftarrow v'$
- \bigcirc return (V, F)
 - 2,5,6,7,9 takes time $O(m\alpha(n))$
 - $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

- \bullet $F \leftarrow \emptyset$
- ② for every $v \in V$: let $par[v] \leftarrow \mathsf{nil}$
- ullet sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $v' \leftarrow \text{root}(v)$
- $F \leftarrow F \cup \{(u,v)\}$
- $par[u'] \leftarrow v'$
- \bullet return (V, F)
 - 2,5,6,7,9 takes time $O(m\alpha(n))$
 - $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

- 2 for every $v \in V$: let $par[v] \leftarrow \mathsf{nil}$
- ullet sort the edges of E in non-decreasing order of weights w
- \bullet for each edge $(u,v) \in E$ in the order
- $u' \leftarrow \text{root}(u)$
- $v' \leftarrow \text{root}(v)$
- o if $u' \neq v'$
- $F \leftarrow F \cup \{(u,v)\}$
- $par[u'] \leftarrow v'$
- \bullet return (V, F)
 - Running time = time for $3 = O(m \lg n)$.

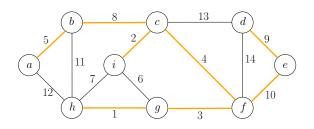
Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



Assumption Assume all edge weights are different.

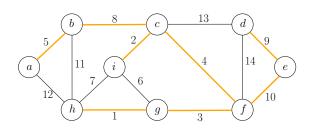
Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



• (i,g) is not in the MST because of cycle (i,c,f,g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



- (i,g) is not in the MST because of cycle (i,c,f,g)
- \bullet (e, f) is in the MST because no such cycle exists

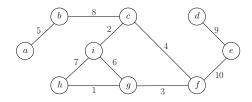
Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

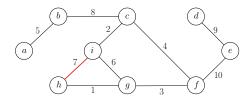
 $\textbf{ 9} \ \, \mathsf{Start} \,\, \mathsf{from} \,\, F \leftarrow \emptyset, \, \mathsf{and} \,\, \mathsf{add} \,\, \mathsf{edges} \,\, \mathsf{to} \,\, F \,\, \mathsf{one} \,\, \mathsf{by} \,\, \mathsf{one} \,\, \mathsf{until} \,\, \mathsf{we} \,\, \mathsf{obtain} \,\, \mathsf{a} \,\, \mathsf{spanning} \,\, \mathsf{tree}$

- $\textbf{ Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

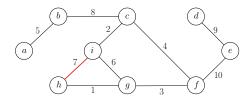
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



- $\textbf{ Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



- $\textbf{ Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

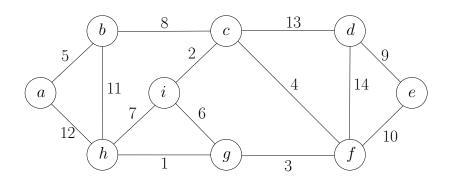


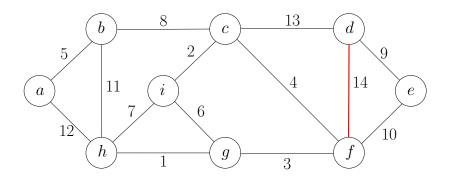
Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

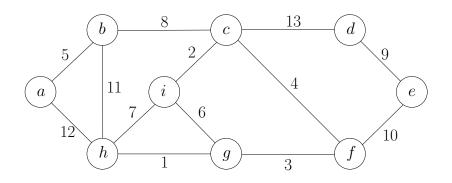
Reverse Kruskal's Algorithm

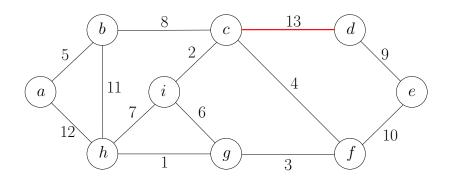
$\mathsf{MST}\text{-}\mathsf{Greedy}(G,w)$

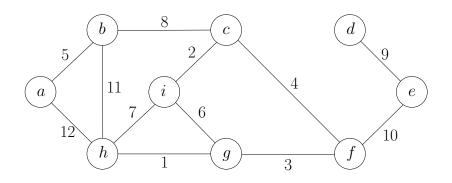
- $\bullet F \leftarrow E$
- $oldsymbol{2}$ sort E in non-increasing order of weights
- $oldsymbol{0}$ for every e in this order
- if $(V, F \setminus \{e\})$ is connected then
- \bullet return (V, F)

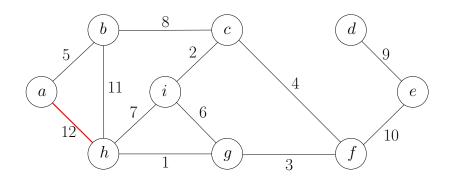


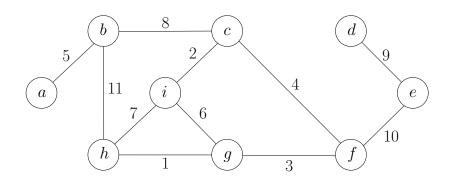


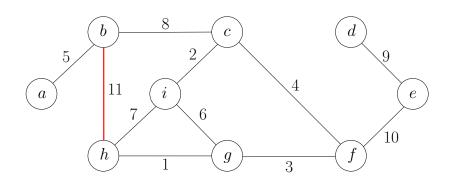


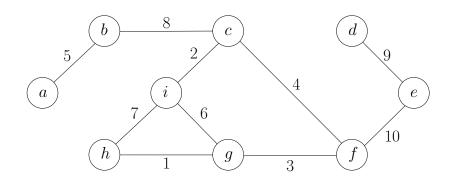


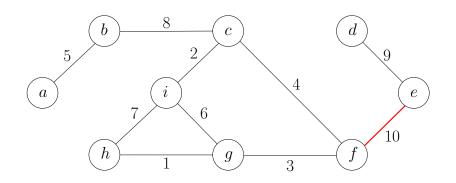


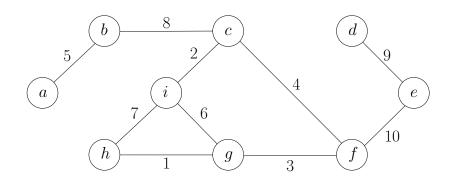


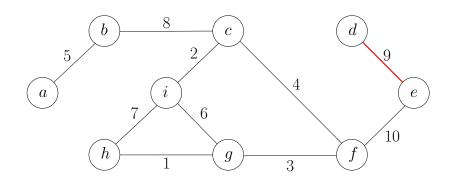


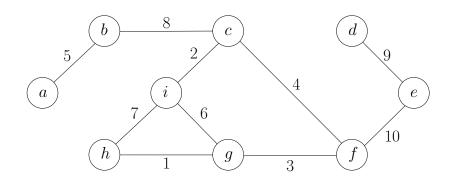


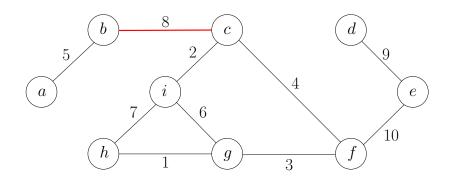


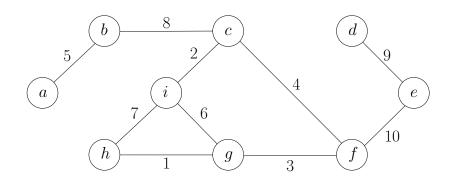




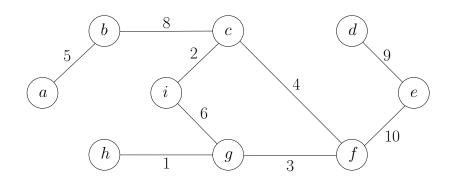


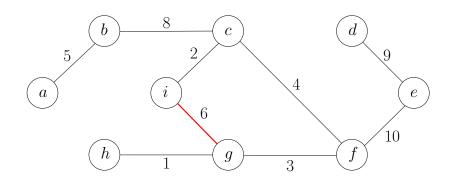


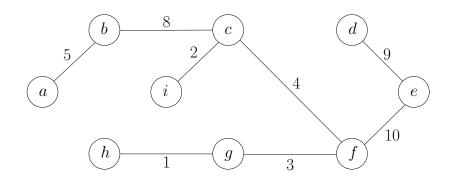










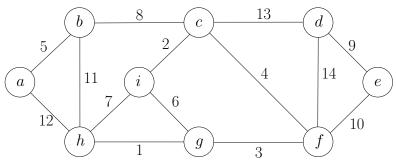


Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

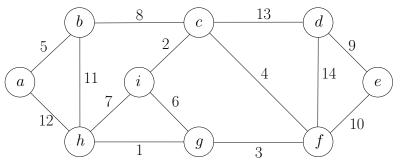
Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



Design Greedy Strategy for MST

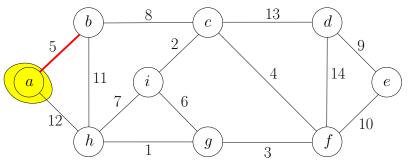
 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



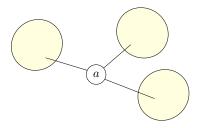
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

Design Greedy Strategy for MST

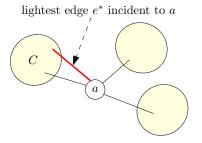
 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



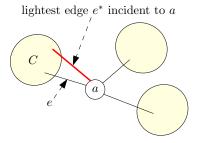
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.



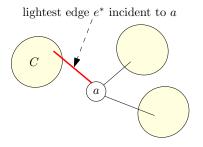
- \bullet Let T be a MST
- ullet Consider all components obtained by removing a from T



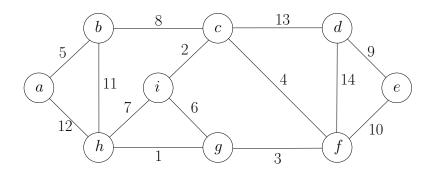
- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C

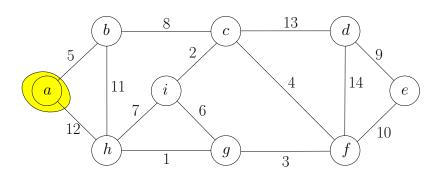


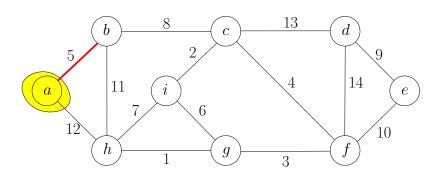
- \bullet Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C

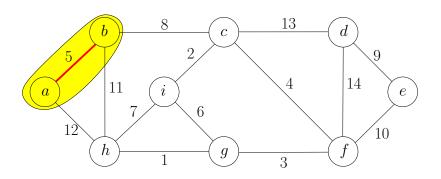


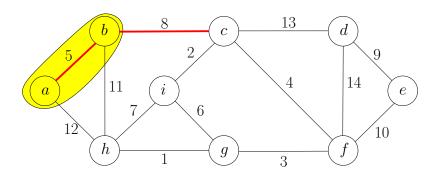
- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C
- $T' = T \setminus e \cup \{e^*\}$ is a spanning tree with $w(T') \le w(T)$

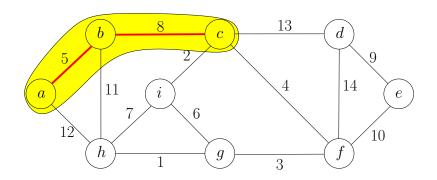


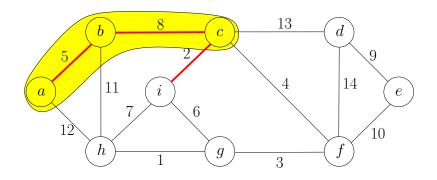


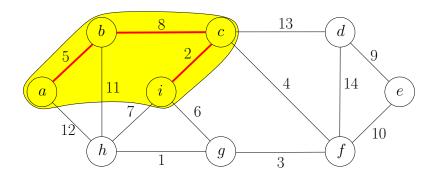


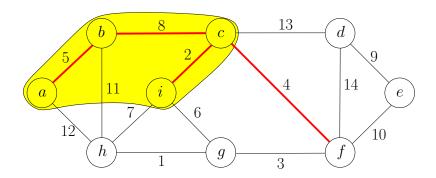


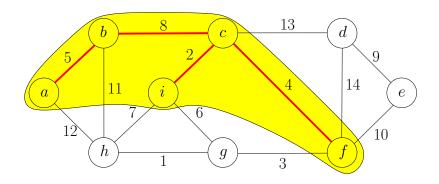


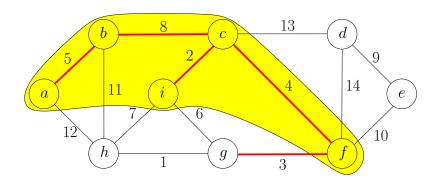


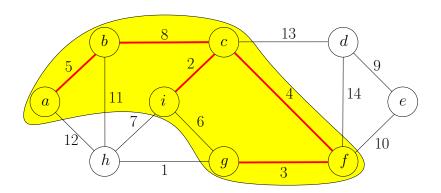


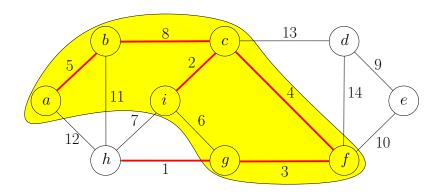


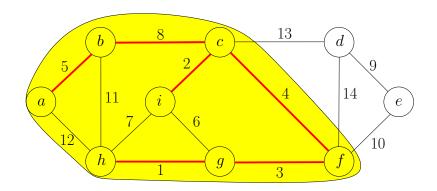


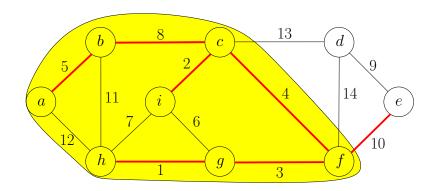


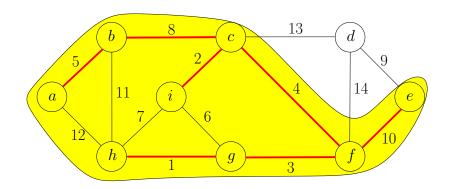


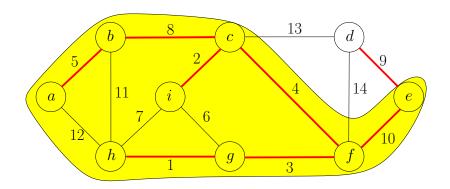


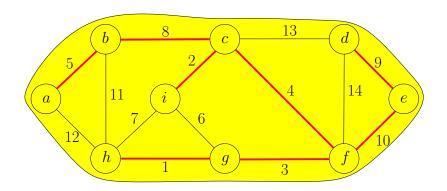












Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy1}(G,w)$

- \bullet $F \leftarrow \emptyset$
- while $S \neq V$
- $(u,v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S, \\ \text{where } u \in S \text{ and } v \in V \setminus S$

- \circ return (V, F)

Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy1}(G,w)$

- \bullet $F \leftarrow \emptyset$
- while $S \neq V$
- $(u,v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S, \\ \text{where } u \in S \text{ and } v \in V \setminus S$

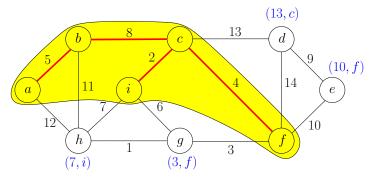
- \circ return (V, F)
 - Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$:

 $\pi(v) = \arg \min_{u \in S: (u,v) \in E} \omega(u,v).$ $(\pi(v),v)$ is the lightest edge between v and S



Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

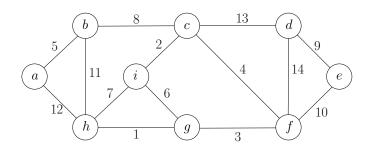
- Pick $u \in V \setminus S$ with the smallest d(u) value
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values.

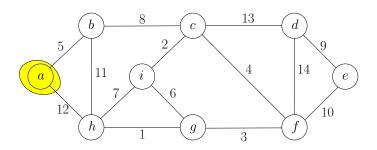
Prim's Algorithm

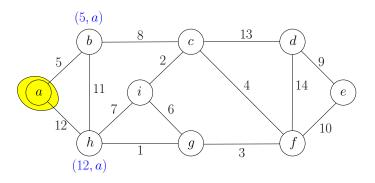
$\mathsf{MST}\text{-}\mathsf{Prim}(G,w)$

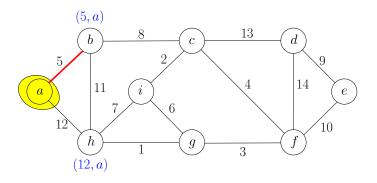
- \bullet $s \leftarrow$ arbitrary vertex in G
- $② S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}$
- \bullet $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$

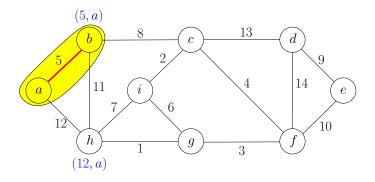
- if w(u, v) < d(v) then
- $d(v) \leftarrow w(u, v)$
- $\pi(v) \leftarrow u$

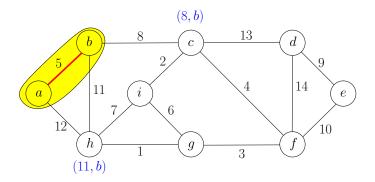




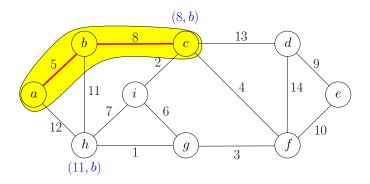


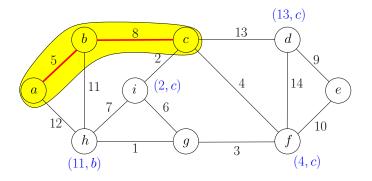


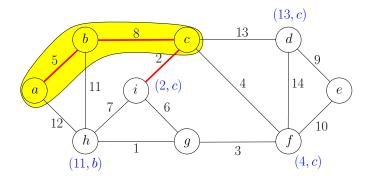


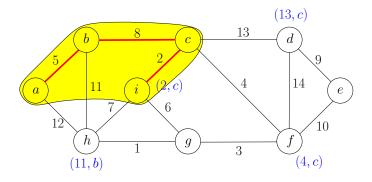


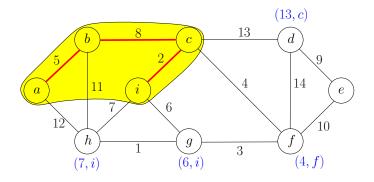


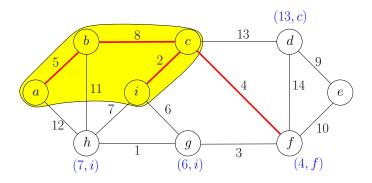


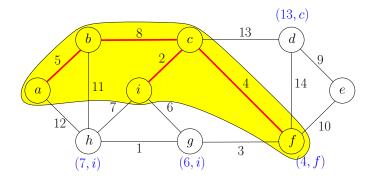


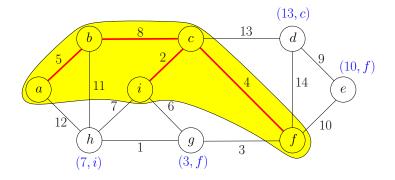


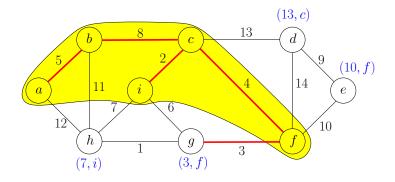


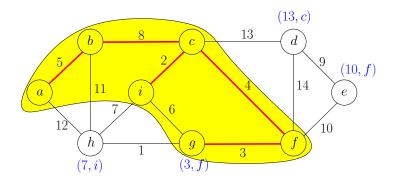


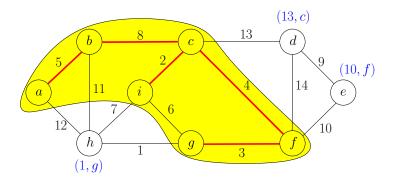


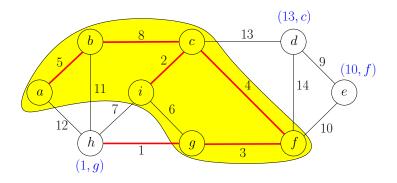


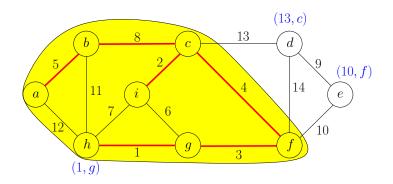


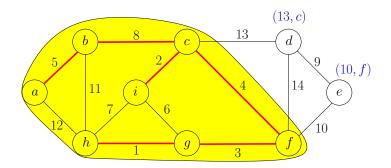


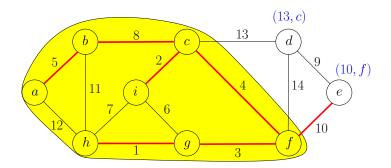


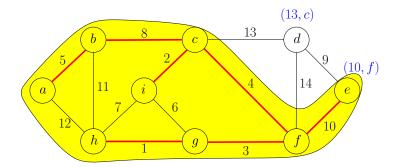


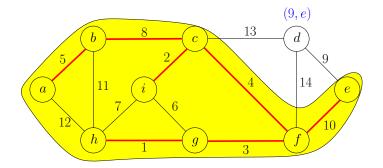


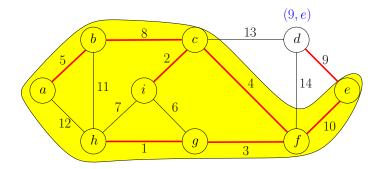


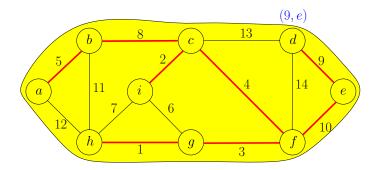














Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values.

Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- $\bullet \ \operatorname{Pick} \ u \in V \setminus S \ \text{with the smallest} \ d(u) \ \operatorname{value} \\ \bullet \ \operatorname{extract_min}$
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element v, whose associated key value is key_value .
- decrease_key (v, new_key_value) : decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value
- · · ·

Prim's Algorithm

$\mathsf{MST}\text{-}\mathsf{Prim}(G,w)$

- \bullet $s \leftarrow$ arbitrary vertex in G
- 3
- while $S \neq V$, do
- \bullet $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- of for each $v \in V \setminus S$ such that $(u, v) \in E$
- if w(u,v) < d(v) then
- $d(v) \leftarrow w(u, v)$
- $\mathbf{0} \qquad \qquad \pi(v) \leftarrow u$

Prim's Algorithm Using Priority Queue

$\mathsf{MST}\text{-}\mathsf{Prim}(G,w)$

- \bullet $s \leftarrow$ arbitrary vertex in G
- **③** $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))
- while $S \neq V$, do

- of for each $v \in V \setminus S$ such that $(u, v) \in E$
- if w(u, v) < d(v) then
- $\mathbf{0} \qquad \qquad \pi(v) \leftarrow u$
- $\bullet \text{ return } \left\{ (u, \pi(u)) | u \in V \setminus \{s\} \right\}$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

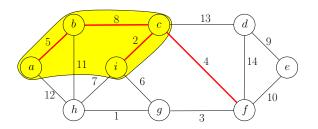
concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

Assumption Assume all edge weights are different.

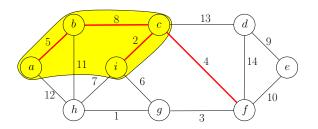
Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.



• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.



- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$
- (i,g) is not in MST because no such cut exists

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- ullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- ullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

s-t Shortest Paths

Input: (directed or undirected) graph G=(V,E), $s,t\in V$

 $w: E \to \mathbb{R}_{\geq 0}$

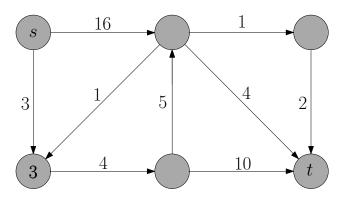
Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G=(V,E), $s,t\in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

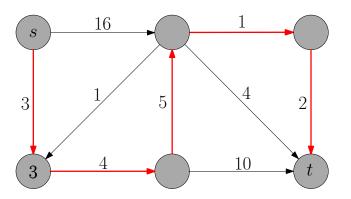


s-t Shortest Paths

Input: (directed or undirected) graph G=(V,E), $s,t\in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t



Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: shortest paths from s to all other vertices $v \in V$

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

ullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

 \bullet Shortest path from s to v may contain $\Omega(n)$ edges

- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v

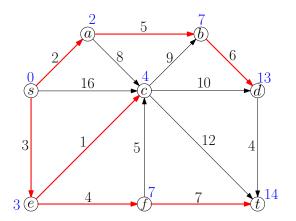
- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega(n^2)$

- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega(n^2)$
- Not acceptable if graph is sparse

 \bullet O(n)-size data structure to represent all shortest paths

- ullet O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)

- ullet O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)



Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

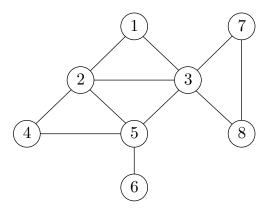
Output: $\pi(v), v \in V \setminus s$: the parent of v

 $d(v), v \in V \setminus s$: the length of shortest path from s to v

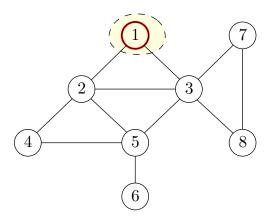
 ${f Q:}$ How to compute shortest paths from s when all edges have weight 1?

 $\mathbf{Q}\text{:}\ \ \text{How to compute shortest paths from }s$ when all edges have weight 1?

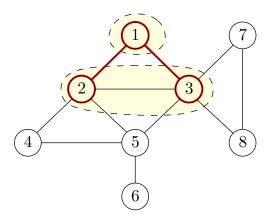
 ${f Q}$: How to compute shortest paths from s when all edges have weight 1?



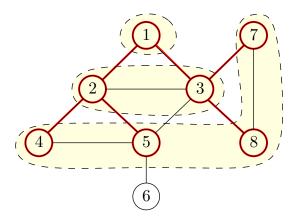
 $\mathbf{Q}\text{:}\ \ \text{How to compute shortest paths from }s$ when all edges have weight 1?



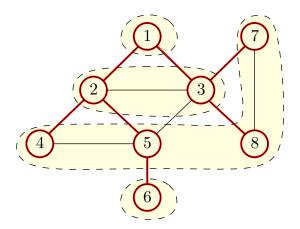
 ${f Q}$: How to compute shortest paths from s when all edges have weight 1?



 ${f Q}:$ How to compute shortest paths from s when all edges have weight 1?



Q: How to compute shortest paths from s when all edges have weight 1?



 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- run BFS
- 3 $\pi(v) = \text{vertex from which } v \text{ is visited}$
- \bullet d(v) = index of the level containing v

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2 run BFS
- \bullet d(v) = index of the level containing v
 - Problem: w(u, v) may be too large!

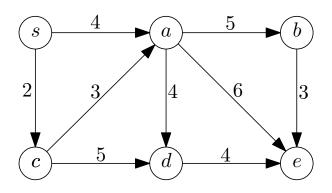
 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

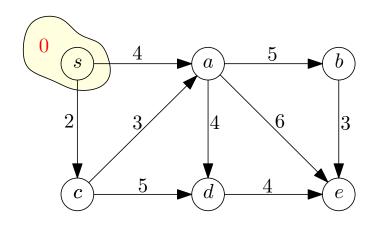
Shortest Path Algorithm by Running BFS

- replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- run BFS virtually
- 3 $\pi(v) = \text{vertex from which } v \text{ is visited}$
- \bullet d(v) = index of the level containing v
 - Problem: w(u, v) may be too large!

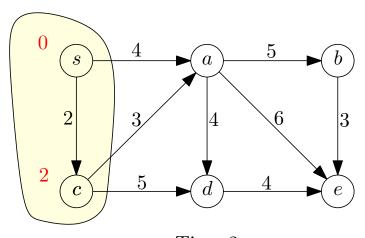
Shortest Path Algorithm by Running BFS Virtually

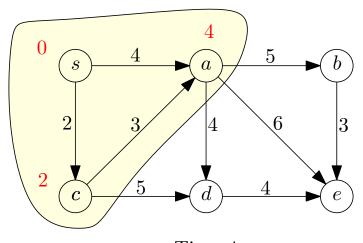
- while $|S| \leq n$

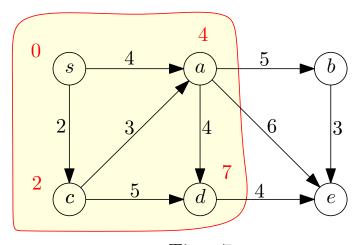




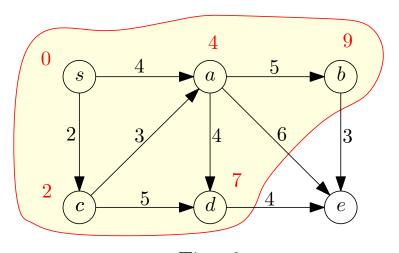
Time 0



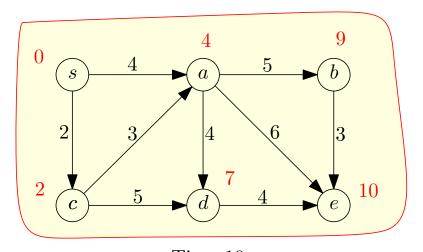




Time 7



Time 9



Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Dijkstra's Algorithm

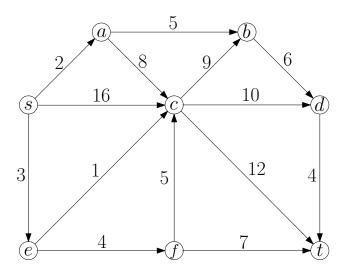
$\mathsf{Dijkstra}(G, w, s)$

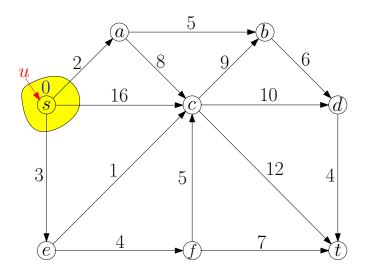
- ② while $S \neq V$ do
- lacktriangledown add u to S
- if d(u) + w(u, v) < d(v) then
- $d(v) \leftarrow d(u) + w(u, v)$
- $\pi(v) \leftarrow u$
- \bullet return (d,π)

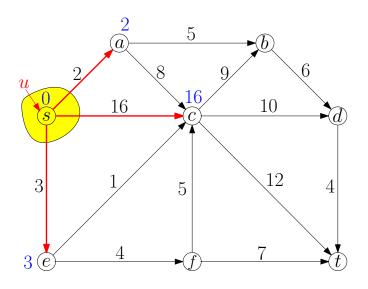
Dijkstra's Algorithm

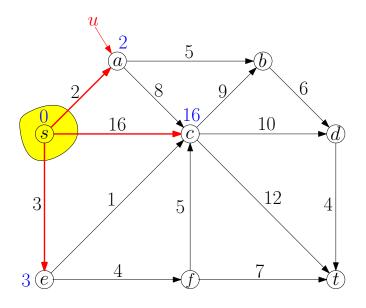
$\mathsf{Dijkstra}(G, w, s)$

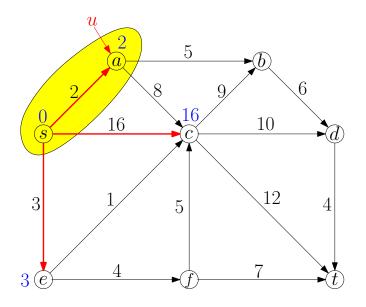
- $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)$
- lacktriangledown add u to S
- for each $v \in V \setminus S$ such that $(u, v) \in E$
- if d(u) + w(u, v) < d(v) then
- $d(v) \leftarrow d(u) + w(u, v)$
- \mathbf{a} $\pi(v) \leftarrow u$
- lacktriangle return (d,π)
- Running time = $O(n^2)$

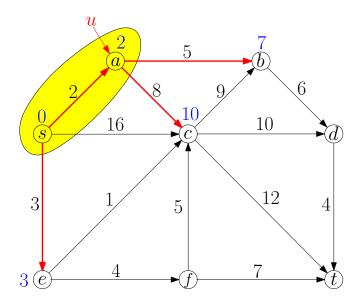


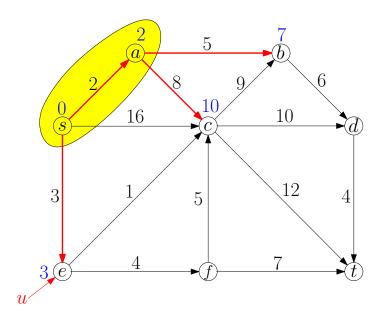


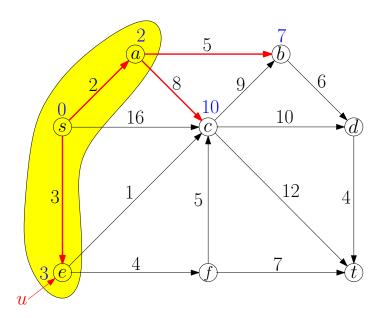


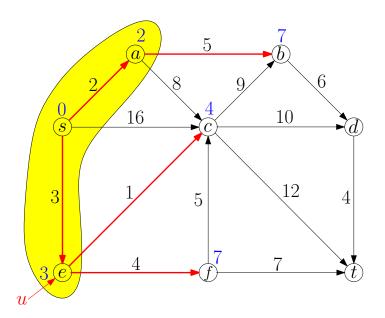


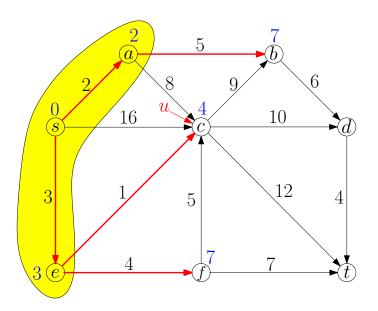


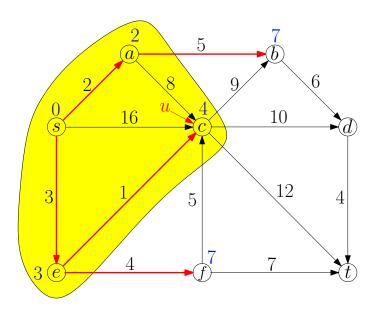


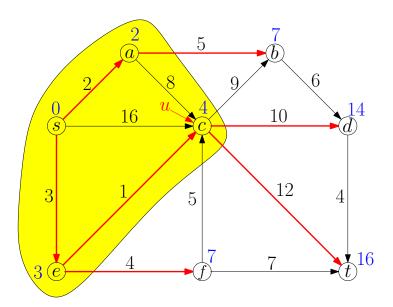


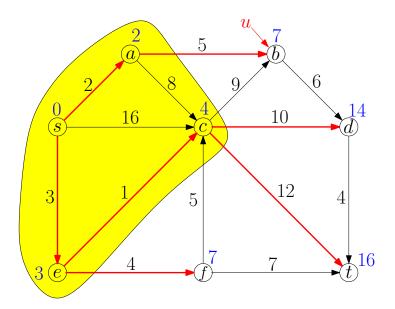


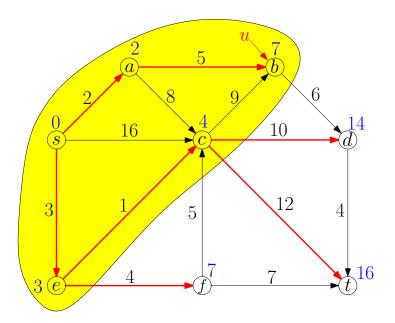


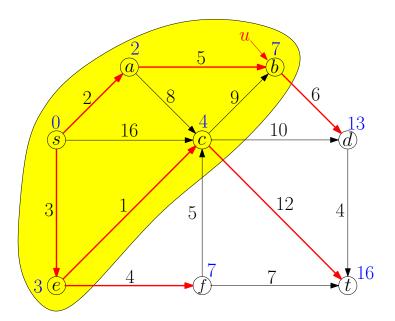


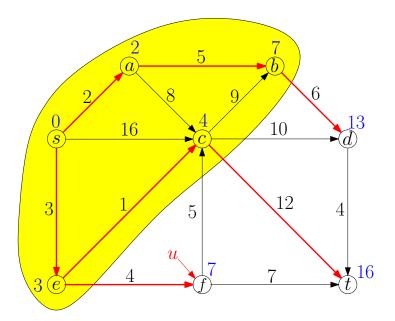


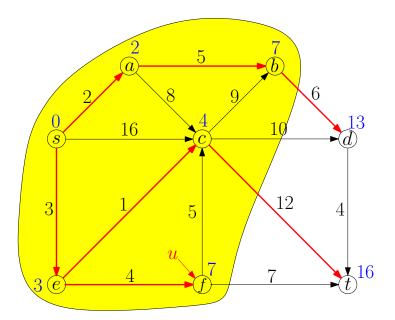


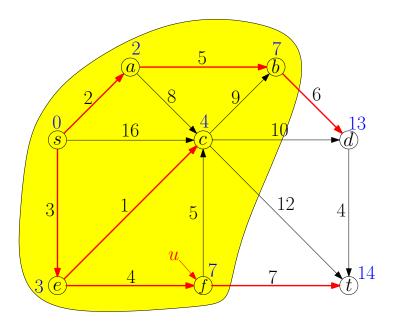


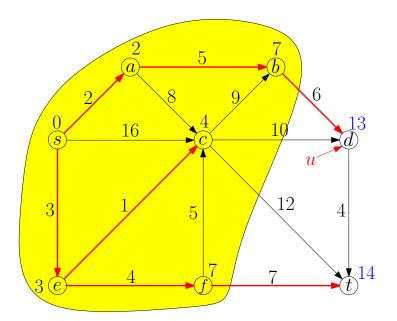


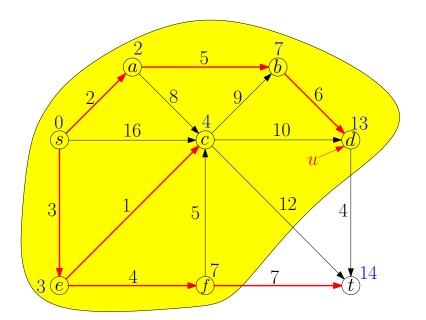


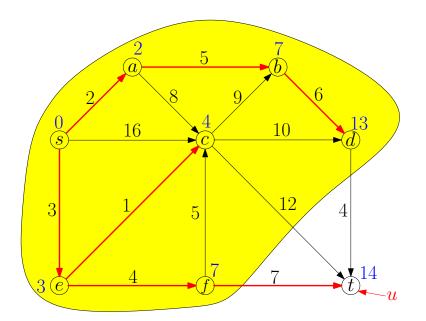


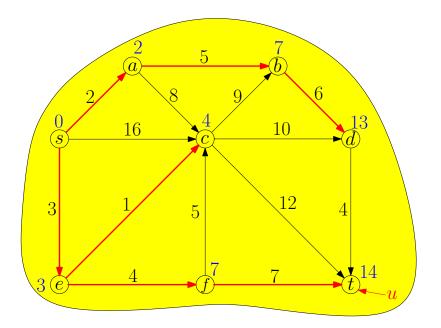












Improved Running Time using Priority Queue

```
\begin{array}{c} \mathsf{Dijkstra}(G,w,s) \\ \\ \bullet \end{array}
```

- **③** $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))
- while $S \neq V$, do

- of for each $v \in V \setminus S$ such that $(u, v) \in E$
- if d(u) + w(u, v) < d(v) then
- $\mathbf{0} \qquad \qquad \pi(v) \leftarrow u$
- return (π, d)

Recall: Prim's Algorithm for MST

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
```

- \bullet $s \leftarrow$ arbitrary vertex in G
- $S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d(v) \leftarrow \infty \text{ for every } v \in V \setminus \{s\}$
- **③** $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))
- \bullet while $S \neq V$, do
- $u \leftarrow Q.\mathsf{extract_min}()$
- of for each $v \in V \setminus S$ such that $(u, v) \in E$
- if w(u, v) < d(v) then
- $\mathbf{0} \qquad \qquad \pi(v) \leftarrow u$

Improved Running Time

Running time:

 $O(n) \times (\mathsf{time\ for\ extract_min}) + O(m) \times (\mathsf{time\ for\ decrease_key})$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Recall: Single Source Shortest Path Problem

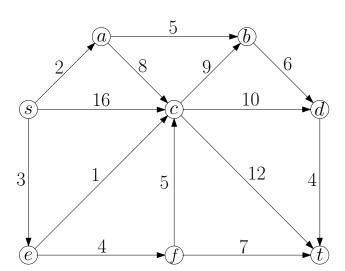
Single Source Shortest Paths

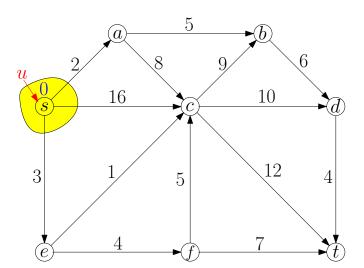
Input: directed graph G = (V, E), $s \in V$

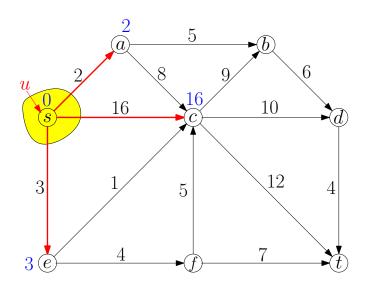
 $w: E \to \mathbb{R}_{>0}$

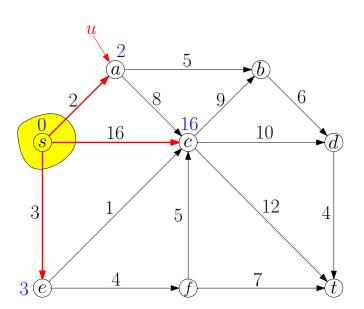
Output: shortest paths from s to all other vertices $v \in V$

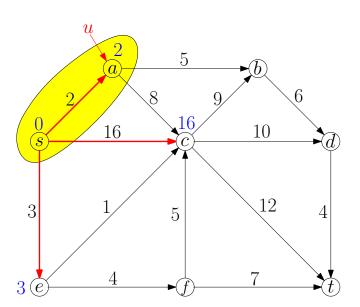
• Algorithm for the problem: Dijkstra's algorithm

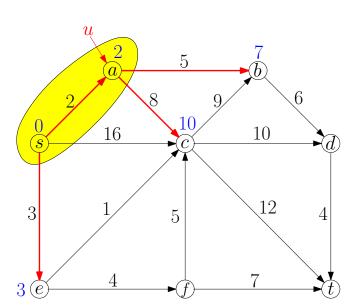


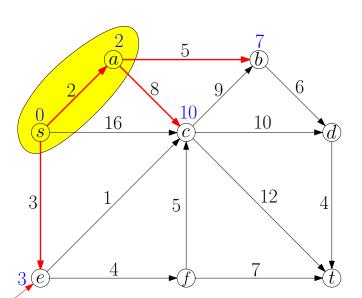


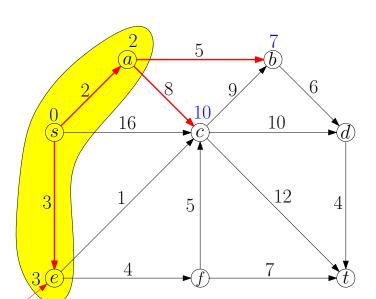


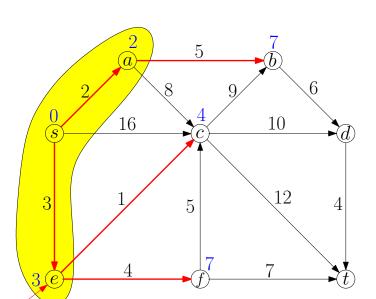


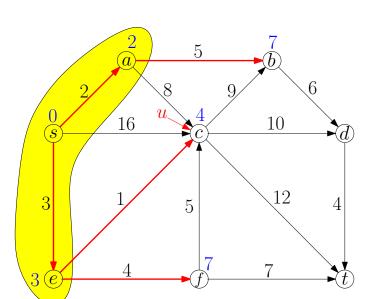


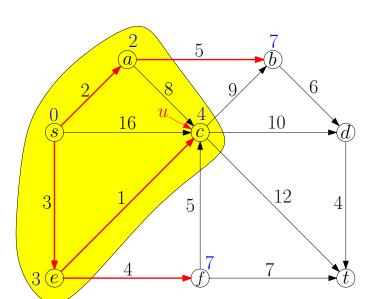


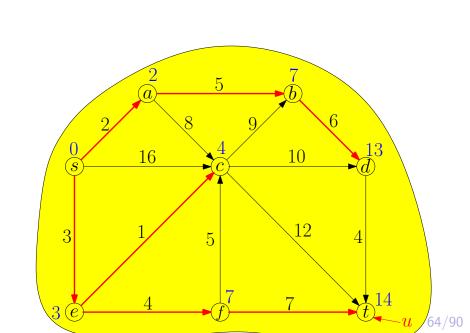












Dijkstra's Algorithm Using Priorty Queue

Dijkstra(G, w, s)

- 2 $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d(v))
- while $S \neq V$, do
- $u \leftarrow Q.\mathsf{extract_min}()$
- $S \leftarrow S \cup \{u\}$ 5
- for each $v \in V \setminus S$ such that $(u, v) \in E$ 6
- if d(u) + w(u, v) < d(v) then 7
- $d(v) \leftarrow d(u) + w(u, v), Q.decrease_key(v, d(v))$ 8
- $\pi(v) \leftarrow u$
- return (π, d)
- Running time = $O(m + n \lg n)$.

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Input: directed graph $G = (V, E), s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Input: directed graph $G=(V,E),\ s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

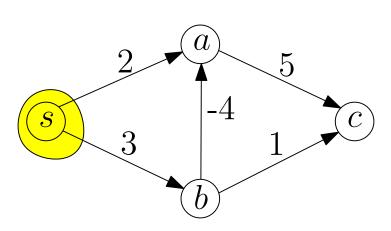
In transition graphs, negative weights make sense

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

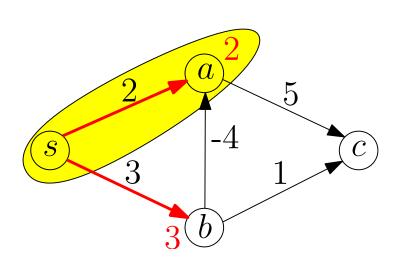
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)

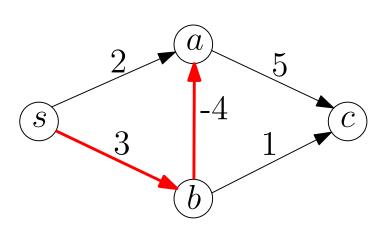
Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w: E\to \mathbb{R}$

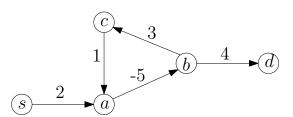
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

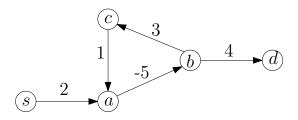


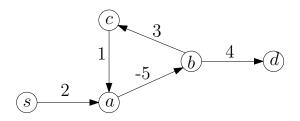


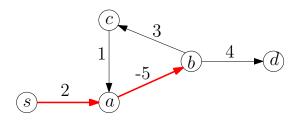


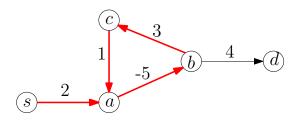


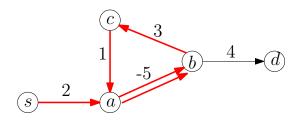


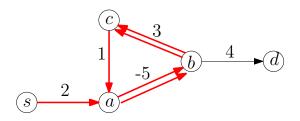


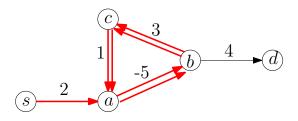


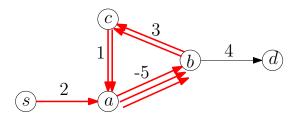


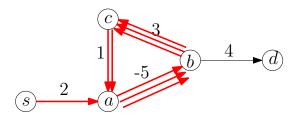


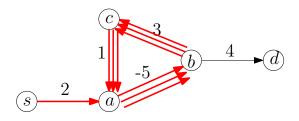


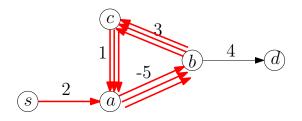






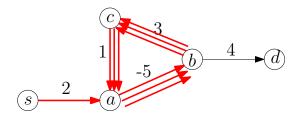






A: $-\infty$

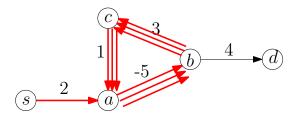
Def. A negative cycle is a cycle in which the total weight of edges is negative.



A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

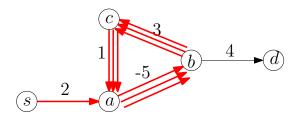


A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

• assume the input graph does not contain negative cycles, or

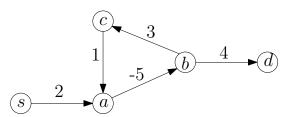


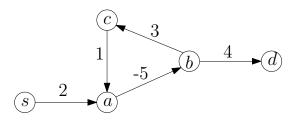
A: $-\infty$

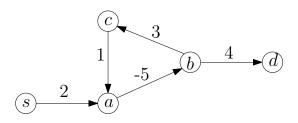
Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

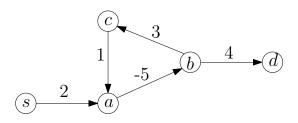
- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"







A: 1



A: 1

 Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

ullet first try: f[v]: length of shortest path from s to v

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

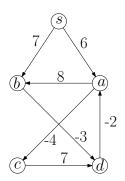
 $w: E \to \mathbb{R}$

- ullet first try: f[v]: length of shortest path from s to v
- ullet issue: do not know in which order we compute f[v]'s

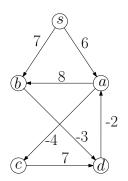
Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

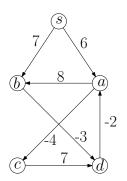
- first try: f[v]: length of shortest path from s to v
- ullet issue: do not know in which order we compute f[v]'s
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges



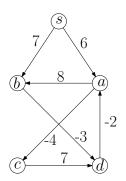
• $f^{\ell}[v]$, $\ell \in \{0,1,2,3\cdots,n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges



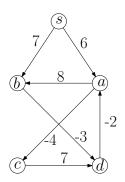
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] =$



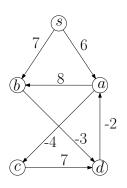
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] =$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

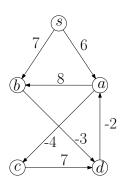
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \left\{$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

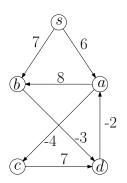
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

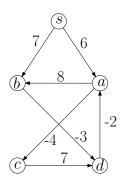
•
$$f^2[a] = 6$$

• $f^3[a] = 2$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

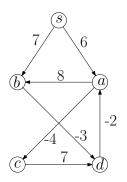
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

•
$$f^2[a] = 6$$

•
$$f^{2}[a] = 6$$

• $f^{3}[a] = 2$

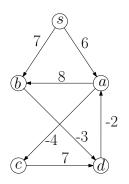
$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \end{cases}$$

$$\ell = 0, v = s$$

$$\ell = 0, v \neq s$$

$$f^{\ell-1}[v]$$

$$\ell > 0$$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \end{cases}$$

$$\min \begin{cases} f^{\ell-1}[v] & \ell > 0 \end{cases}$$

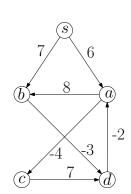
${\sf dynamic\text{-}programming}(G,w,s)$

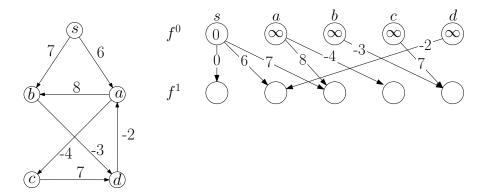
- ② for $\ell \leftarrow 1$ to n-1 do
- for each $(u, v) \in E$
- $if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$
- \circ return $(f^{n-1}[v])_{v \in V}$

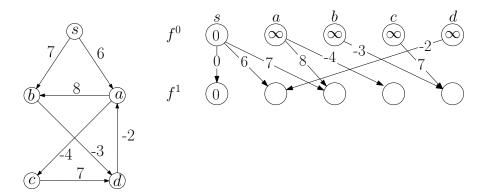
${\sf dynamic\text{-}programming}(G,w,s)$

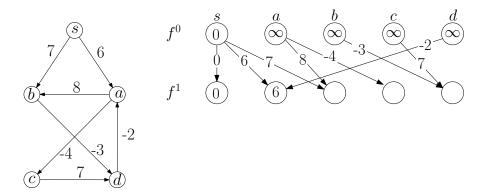
- ② for $\ell \leftarrow 1$ to n-1 do
- lacksquare copy $f^{\ell-1} o f^\ell$
- \bullet for each $(u, v) \in E$
- $if \ f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$
- \circ return $(f^{n-1}[v])_{v \in V}$

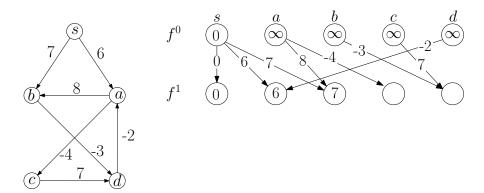
Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

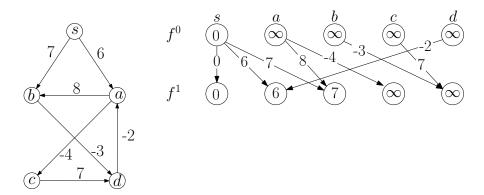


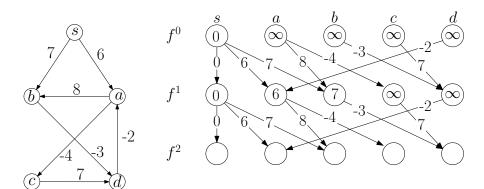


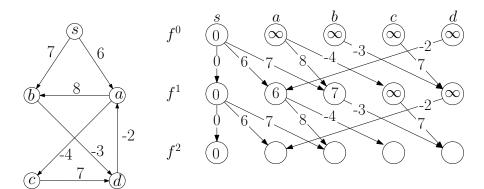


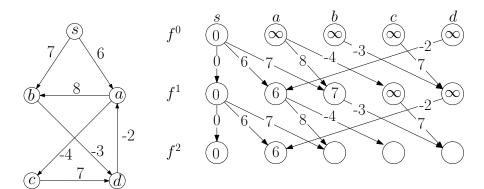


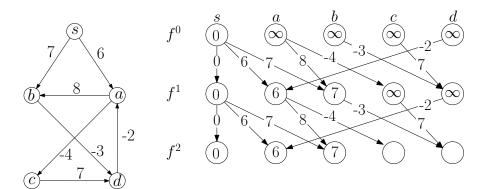


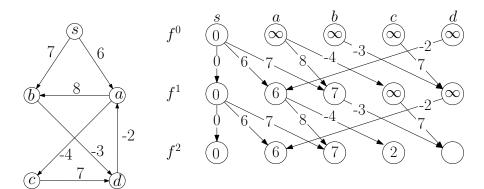


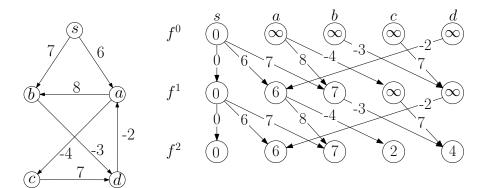


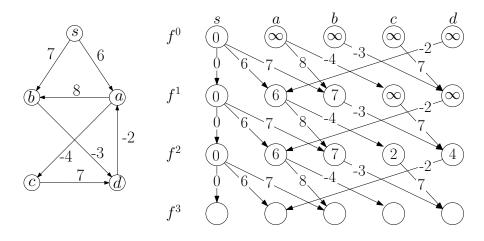


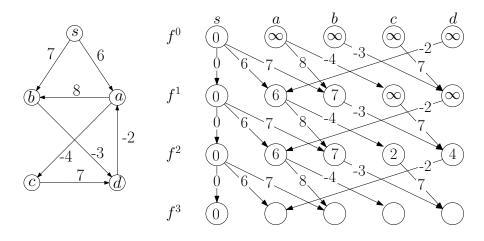


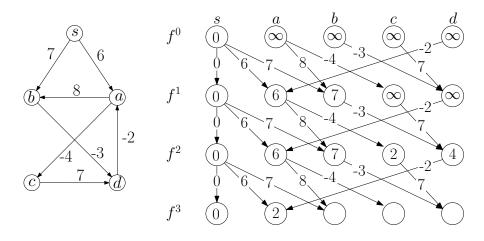


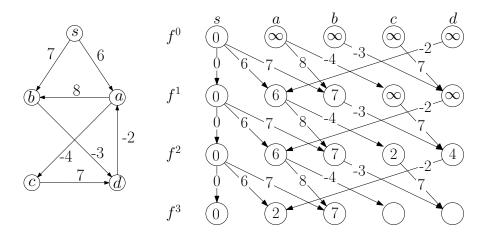


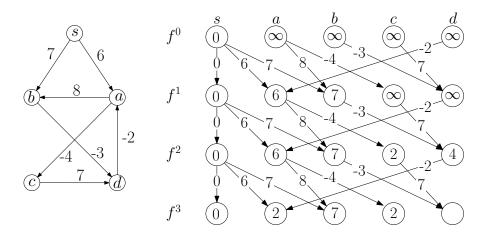


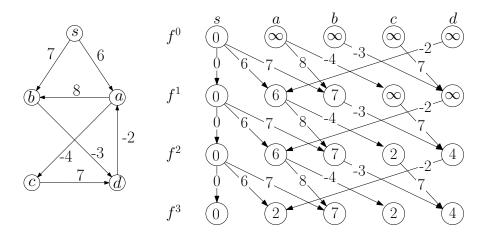


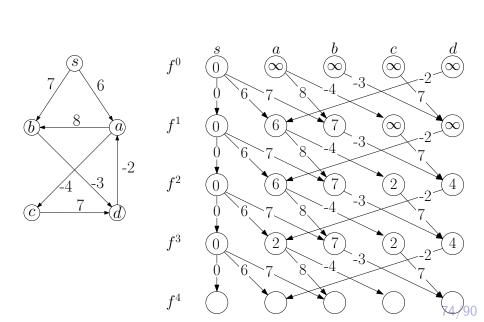


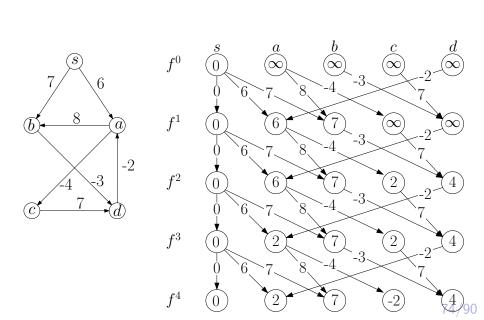












dynamic-programming (G, w, s)

- ② for $\ell \leftarrow 1$ to n-1 do
- $ledsymbol{0}$ copy $f^{\ell-1} o f^\ell$
- for each $(u, v) \in E$
- $\text{ if } f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$
- \circ return $(f^{n-1}[v])_{v \in V}$

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

dynamic-programming (G, w, s)

- ② for $\ell \leftarrow 1$ to n-1 do
- lacksquare copy $f^{\ell-1} o f^\ell$
- for each $(u, v) \in E$
- $\text{ if } f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$
- oreturn $(f^{n-1}[v])_{v \in V}$

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Q: What if there are negative cycles?

Dynamic Programming With Negative Cycle Detection

dynamic-programming (G, w, s)

- ② for $\ell \leftarrow 1$ to n-1 do
- $opy f^{\ell-1} \to f^{\ell}$
- for each $(u,v) \in E$
- $\qquad \qquad \text{if } f^{\ell-1}[u] + w(u,v) < f^\ell[v]$
- for each $(u, v) \in E$
- $if f^{n-1}[u] + w(u,v) < f^{n-1}[v]$
- report "negative cycle exists" and exit
- \bullet return $(f^{n-1}[v])_{v \in V}$

Dynamic Programming with Better Space Usage

```
{\sf dynamic\text{-}programming}(G,w,s)
```

- ② for $\ell \leftarrow 1$ to n-1 do
- for each $(u, v) \in E$
- if $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$
- o copy $f^{\text{new}} \to f^{\text{old}}$
- return fold
- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

- ② for $\ell \leftarrow 1$ to n-1 do
- for each $(u, v) \in E$
- $if f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$
- $\mathbf{0} \qquad \qquad f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u,v)$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

- ② for $\ell \leftarrow 1$ to n-1 do
- for each $(u, v) \in E$
- if f[u] + w(u, v) < f[v]
- $oldsymbol{o}$ copy f o f
- \odot return f
- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

- ② for $\ell \leftarrow 1$ to n-1 do
- if f[u] + w(u, v) < f[v]
- $f[v] \leftarrow f[u] + w(u, v)$
- \odot return f
- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

- $f[v] \leftarrow f[u] + w(u, v)$
- \odot return f
 - ullet only depends on $f^{\ell-1}$: only need 2 vectors
 - only need 1 vector!

- ② for $\ell \leftarrow 1$ to n-1 do

- \odot return f
 - Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration

- ② for $\ell \leftarrow 1$ to n-1 do

- - Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
 - This is OK: it can only "accelerate" the process!

- ② for $\ell \leftarrow 1$ to n-1 do
- if f[u] + w(u,v) < f[v]
- \odot return f
- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford(G, w, s)

- ② for $\ell \leftarrow 1$ to n-1 do
- $\qquad \text{if } f[u] + w(u,v) < f[v]$
- $f[v] \leftarrow f[u] + w(u, v)$
- \odot return f
- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- f[v] is always the length of some path from s to v

- ② for $\ell \leftarrow 1$ to n-1 do

- $f[v] \leftarrow f[u] + w(u, v)$
- \odot return f
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v

Bellman-Ford(G, w, s)

- \bullet for $\ell \leftarrow 1$ to n-1 do

- $f[v] \leftarrow f[u] + w(u, v)$
- \odot return f
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v
- Assuming there are no negative cycles, after iteration n-1, f[v]= length of shortest path from s to v

- \bullet for $\ell \leftarrow 1$ to n do
- $updated \leftarrow false$
- for each $(u,v) \in E$
- if f[u] + w(u, v) < f[v]
- o $updated \leftarrow true$
- \bullet if not updated, then return f
- output "negative cycle exists"

- \bullet for $\ell \leftarrow 1$ to n do
- $updated \leftarrow false$
- for each $(u, v) \in E$
- if f[u] + w(u, v) < f[v]
- $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- o $updated \leftarrow \mathsf{true}$
- \bullet if not updated, then return f
- output "negative cycle exists"
- $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford(G, w, s)

- \bullet for $\ell \leftarrow 1$ to n do
- $updated \leftarrow false$
- for each $(u, v) \in E$
- if f[u] + w(u, v) < f[v]
- $f[v] \leftarrow f[u] + w(u, v), \ \pi[v] \leftarrow u$
- o $updated \leftarrow true$
- \bullet if not updated, then return f
- output "negative cycle exists"
- $\pi[v]$: the parent of v in the shortest path tree
- Running time = O(nm)

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- $\textbf{ 0} \ \, \text{for every starting point } s \in V \ \, \text{do} \\$
- $oldsymbol{2}$ run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- $\textbf{ 0} \ \, \text{for every starting point } s \in V \ \, \text{do}$
- $oldsymbol{2}$ run Bellman-Ford(G, w, s)
 - Running time = $O(n^2m)$

• It is convenient to assume $V = \{1, 2, 3, \dots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

ullet First try: f[i,j] is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: f[i, j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s
- $f^k[i,j]$: length of shortest path from i to j that only uses vertices $\{1,2,3,\cdots,k\}$ as intermediate vertices

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases}$$

$$k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases} \qquad f^{k-1}[i,j] \qquad k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] & k = 1, 2, \dots, n \end{cases} \end{cases}$$

- ② for $k \leftarrow 1$ to n do
- for $i \leftarrow 1$ to n do
- for $j \leftarrow 1$ to n do
- $f^{k-1}[i,k] + f^{k-1}[k,j] < f^k[i,j]$ then
- $f^{k}[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]$

- ② for $k \leftarrow 1$ to n do
- lacksquare copy $f^{\mathsf{old}} o f^{\mathsf{new}}$
- of for $i \leftarrow 1$ to n do
- $\qquad \qquad \text{if } f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j] < f^{\mathsf{new}}[i,j] \text{ then }$
- $f^{\mathsf{new}}[i,j] \leftarrow f^{\mathsf{old}}[i,k] + f^{\mathsf{old}}[k,j]$

- ② for $k \leftarrow 1$ to n do
- for $i \leftarrow 1$ to n do
- $\qquad \qquad \text{if } f^{\mathrm{old}}[i,k] + f^{\mathrm{old}}[k,j] < f^{\mathrm{new}}[i,j] \text{ then }$
- $f^{\text{new}}[i,j] \leftarrow f^{\text{old}}[i,k] + f^{\text{old}}[k,j]$

- ② for $k \leftarrow 1$ to n do
- of for $i \leftarrow 1$ to n do
- $\qquad \qquad \text{if } f[i,k] + f[k,j] < f[i,j] \text{ then }$
- $f[i,j] \leftarrow f[i,k] + f[k,j]$

- ② for $k \leftarrow 1$ to n do
- \bullet for $i \leftarrow 1$ to n do
- of for $j \leftarrow 1$ to n do
- $\qquad \qquad \text{if } f[i,k] + f[k,j] < f[i,j] \text{ then }$
- $f[i,j] \leftarrow f[i,k] + f[k,j]$

Floyd-Warshall(G, w)

- ② for $k \leftarrow 1$ to n do
- \bullet for $i \leftarrow 1$ to n do
- of for $j \leftarrow 1$ to n do

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

Floyd-Warshall(G, w)

- ② for $k \leftarrow 1$ to n do
- \bullet for $i \leftarrow 1$ to n do
- of for $j \leftarrow 1$ to n do

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

Recovering Shortest Paths

Floyd-Warshall (G, w)

- \bullet $f \leftarrow w$, $\pi[i,j] \leftarrow \bot$ for every $i,j \in V$
- ② for $k \leftarrow 1$ to n do
- of for $j \leftarrow 1$ to n do
- $\qquad \qquad \text{if } f[i,k] + f[k,j] < f[i,j] \text{ then }$
- $f[i,j] \leftarrow f[i,k] + f[k,j], \ \pi[i,j] \leftarrow k$

Recovering Shortest Paths

Floyd-Warshall(G, w)

- \bullet $f \leftarrow w$, $\pi[i,j] \leftarrow \bot$ for every $i,j \in V$

- for $j \leftarrow 1$ to n do
 - if f[i,k] + f[k,j] < f[i,j] then

$\mathsf{print} ext{-}\mathsf{path}(i,j)$

- if $\pi[i,j] = \bot$ then
- else
- oprint-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

Floyd-Warshall (G, w)

- ② for $k \leftarrow 1$ to n do
- \bullet for $i \leftarrow 1$ to n do
- for $j \leftarrow 1$ to n do
- f[i,k] = f[i,j] = f[i,j] if f[i,k] = f[i,j]
- $f[i,j] \leftarrow f[i,k] + f[k,j], \ \pi[i,j] \leftarrow k$

Detecting Negative Cycles

Floyd-Warshall (G, w)

- \bullet $f \leftarrow w, \pi[i,j] \leftarrow \bot$ for every $i,j \in V$
- \bullet for $i \leftarrow 1$ to n do
- of for $j \leftarrow 1$ to n do
- f[i,k] = f[i,j] = f[i,j] if f[i,k] = f[i,j]
- \bullet for $k \leftarrow 1$ to n do
- § for $i \leftarrow 1$ to n do

- report "negative cycle exists" and exit

Summary of Shortest Path Algorithms

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs