CSE 431/531: Algorithm Analysis and Design (Spring 2020) Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness
- Topological Ordering
- 4 Bridges in a Graph

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

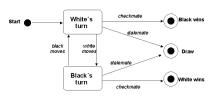
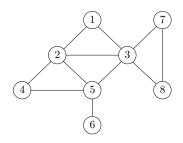


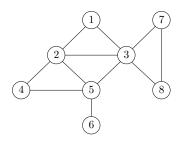
Figure: Transition Graphs

(Undirected) Graph G = (V, E)



- *V*: set of vertices (nodes);
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph G = (V, E)

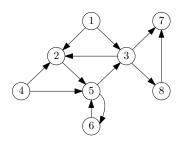


- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

4/36

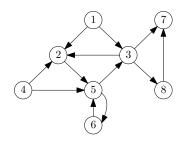
• $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph G = (V, E)



- *V*: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs

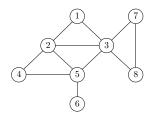
Directed Graph G = (V, E)



- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

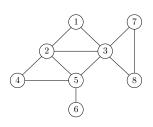
- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

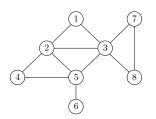
Representation of Graphs



	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0 1 1 0 0 0 0	0	1	0	0	0	1	0

- Adjacency matrix
 - $\bullet \ n \times n$ matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - ullet A is symmetric if graph is undirected

Representation of Graphs



1: 2 3 6: 5
2: 1 3 4 5 7: 3 8
3: 1 2 5 7 8
4: 2 5 8: 3 7

- Adjacency matrix
 - ullet n imes n matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - ullet A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbours of v.

7/36

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness
- Topological Ordering
- 4 Bridges in a Graph

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)

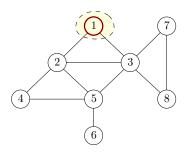
Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

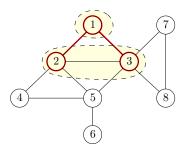
- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

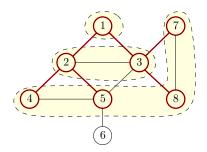
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



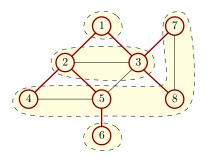
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



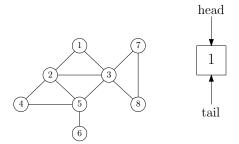
- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

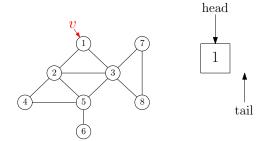


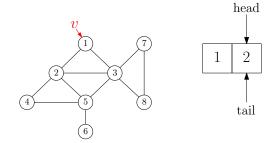
Implementing BFS using a Queue

$\mathsf{BFS}(s)$

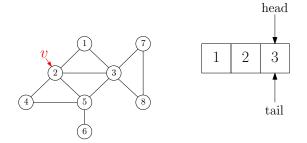
- $oldsymbol{2}$ mark s as "visited" and all other vertices as "unvisited"
- while head > tail
- $v \leftarrow queue[tail], tail \leftarrow tail + 1$
- for all neighbours u of v
- \bullet if u is "unvisited" then
- \bullet head \leftarrow head +1, queue[head] = u
- \bullet mark u as "visited"
- Running time: O(n+m).

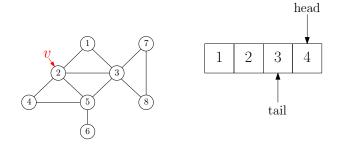


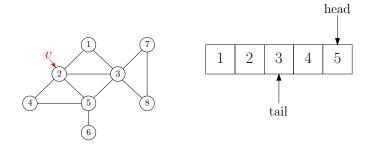


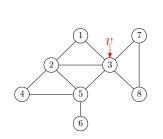


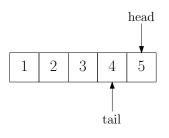


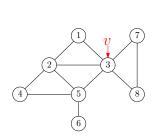


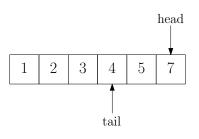


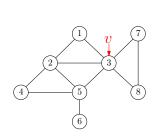


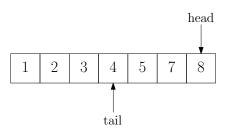


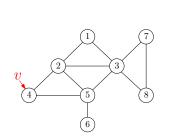


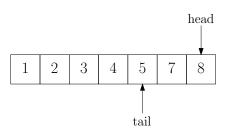


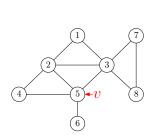


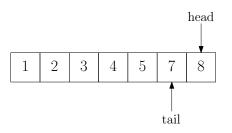


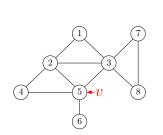


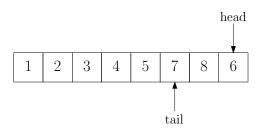


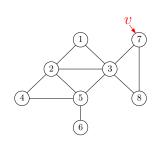


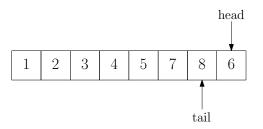


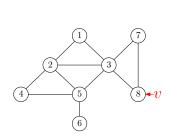


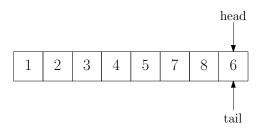


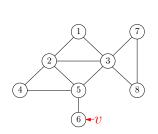


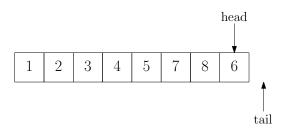






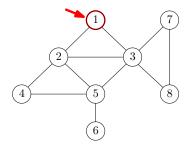




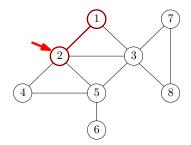


- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

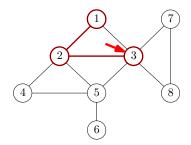
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



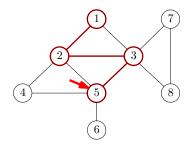
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



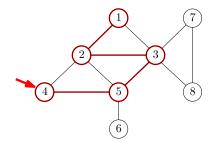
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



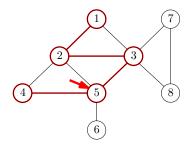
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



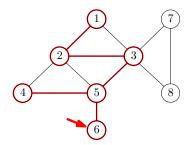
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



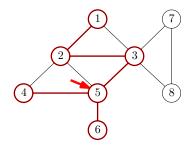
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



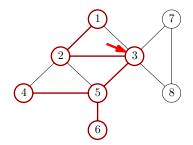
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



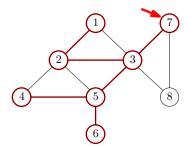
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



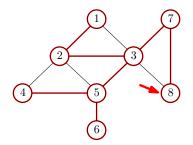
- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- mark all vertices as "unvisited"
- recursive-DFS(s)

recursive-DFS(v)

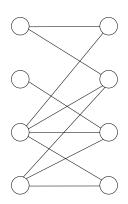
- \bullet mark v as "visited"
- **if** u is unvisited **then** recursive-DFS(u)

Outline

- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness
- Topological Ordering
- 4 Bridges in a Graph

Testing Bipartiteness: Applications of BFS

Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.



• Taking an arbitrary vertex $s \in V$

- ullet Taking an arbitrary vertex $s \in V$
- $\bullet \ \ \mathsf{Assuming} \ s \in L \ \mathsf{w.l.o.g}$

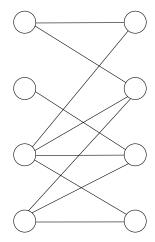
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R

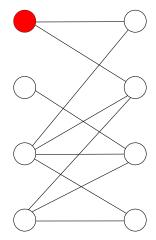
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L

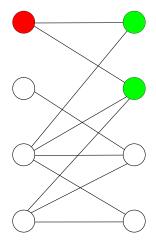
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- · ·

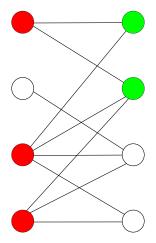
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- · · ·
- Report "not a bipartite graph" if contradiction was found

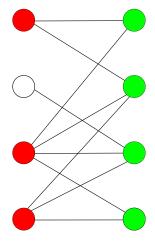
- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- · · ·
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

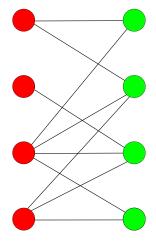


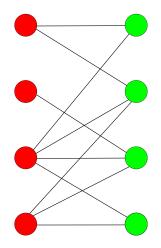


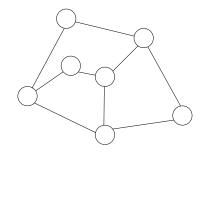


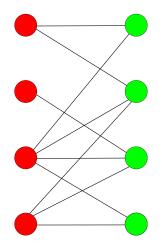


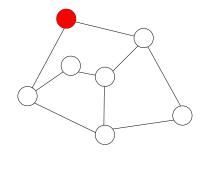


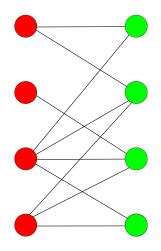


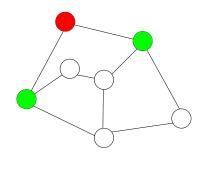


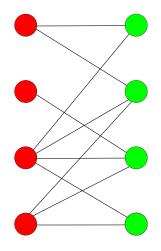


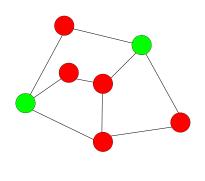


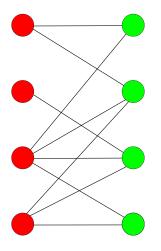


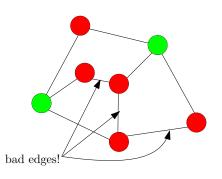












$\mathsf{BFS}(s)$

- $\bullet \ head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- $oldsymbol{0}$ mark s as "visited" and all other vertices as "unvisited"
- while head > tail
- $v \leftarrow queue[tail], tail \leftarrow tail + 1$
- \bullet for all neighbours u of v
- \bullet if u is "unvisited" then
- $head \leftarrow head + 1, queue[head] = u$
- \bullet mark u as "visited"

```
test-bipartiteness(s)
\bullet head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
 mark s as "visited" and all other vertices as "unvisited"
while head > tail
       v \leftarrow queue[tail], tail \leftarrow tail + 1
 6
       for all neighbours u of v
          if u is "unvisited" then
 7
            head \leftarrow head + 1, queue[head] = u
 8
 9
            mark u as "visited"
            color[u] \leftarrow 1 - color[v]
 10
          elseif color[u] = color[v] then
 ◍
            print("G is not bipartite") and exit
 12
```

- mark all vertices as "unvisited"
- 2 for each vertex $v \in V$
- if v is "unvisited" then
- test-bipartiteness(v)
- print("G is bipartite")

- mark all vertices as "unvisited"
- ② for each vertex $v \in V$
- if v is "unvisited" then
- test-bipartiteness(v)
- print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Outline

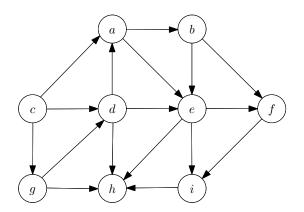
- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness
- Topological Ordering
- 4 Bridges in a Graph

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

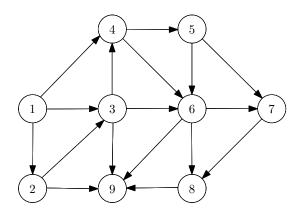


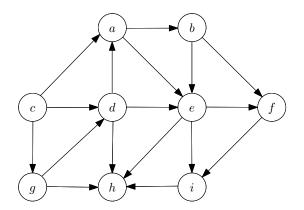
Topological Ordering Problem

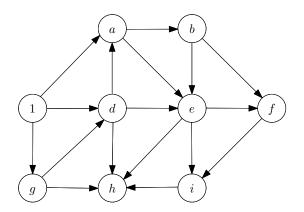
Input: a directed acyclic graph (DAG) G = (V, E)

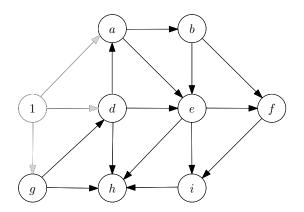
Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

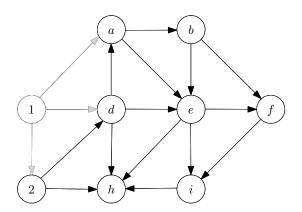
• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

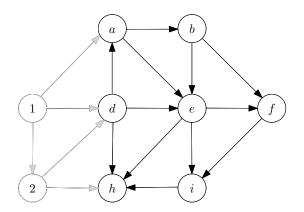


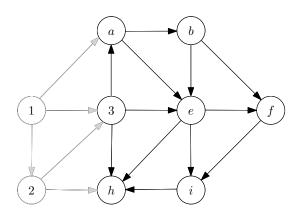


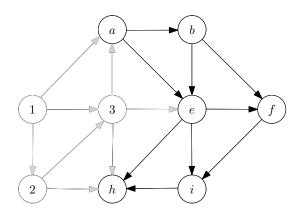


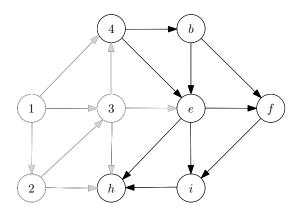


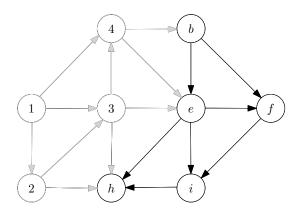


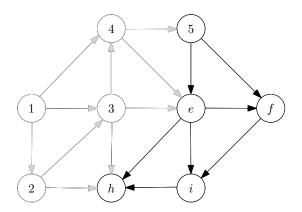


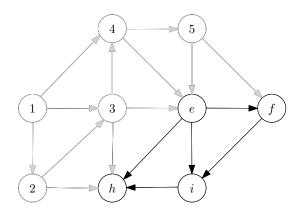


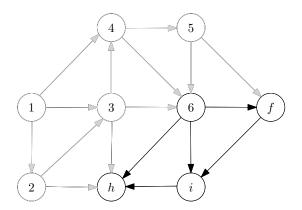


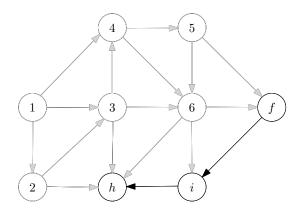


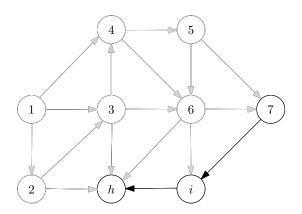


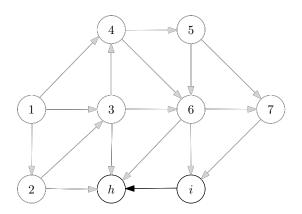


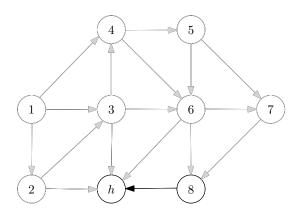


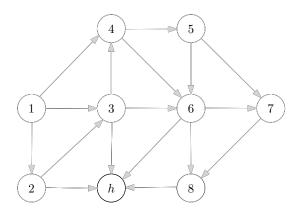


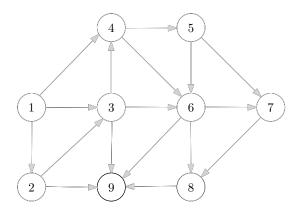


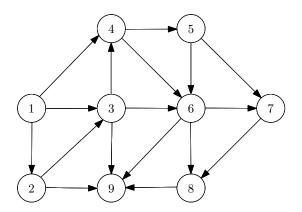












• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- ullet Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

topological-sort(G)

- let $d_v \leftarrow 0$ for every $v \in V$
- $oldsymbol{0}$ for every $v \in V$
- for every u such that $(v, u) \in E$
- $d_u \leftarrow d_u + 1$

while $S \neq \emptyset$

- **⑤** $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- $i \leftarrow i + 1, \ \pi(v) \leftarrow i$ 8
- 9 for every u such that $(v, u) \in E$
- $d_{u} \leftarrow d_{u} 1$ 10

•

- if $d_u = 0$ then add u to S \bullet if i < n then output "not a DAG"
 - S can be represented using a queue or a stack
 - Running time = O(n+m)

${\cal S}$ as a Queue or a ${\sf Stack}$

DS	Queue	Stack
Initialization	$head \leftarrow 0, tail \leftarrow 1$	$top \leftarrow 0$
Non-Empty?	$head \ge tail$	top > 0
Add(v)		$top \leftarrow top + 1 \\ S[top] \leftarrow v$
Retrieve v	$v \leftarrow S[tail] \\ tail \leftarrow tail + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$

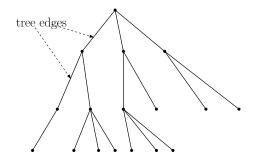
Outline

- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness
- Topological Ordering
- Bridges in a Graph

Type of edges with respect to a tree

Given a graph G=(V,E) and a rooted tree T in G, edges in G can be one of the three types:

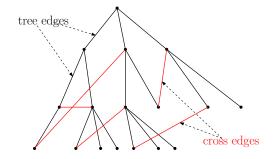
ullet Tree edges: edges in T



Type of edges with respect to a tree

Given a graph G=(V,E) and a rooted tree T in G, edges in G can be one of the three types:

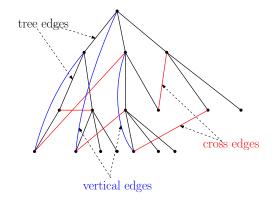
- ullet Tree edges: edges in T
- Cross edges (u, v): u and v do not have an ancestor-descendant relation

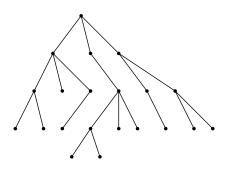


Type of edges with respect to a tree

Given a graph G=(V,E) and a rooted tree T in G, edges in G can be one of the three types:

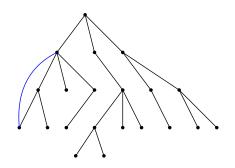
- ullet Tree edges: edges in T
- Cross edges (u, v): u and v do not have an ancestor-descendant relation
- Vertical edges (u, v): u
 is an ancestor of v, or
 v is an ancestor of u



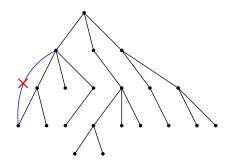


Given a tree BFS tree T of a graph G,

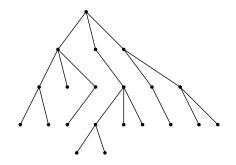
• Can there be vertical edges?



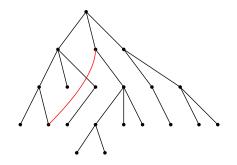
- Can there be vertical edges?
- No.



- Can there be vertical edges?
- No.



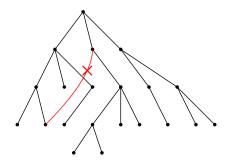
- Can there be vertical edges?
- No.
- Can there be cross edges (u, v) with u and v 2 levels apart?



- Can there be vertical edges?
- No.
- Can there be cross edges

 (u, v) with u and v 2 levels

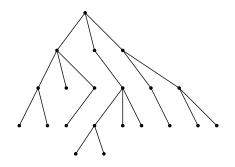
 apart?
- No.



- Can there be vertical edges?
- No.
- Can there be cross edges

 (u, v) with u and v 2 levels

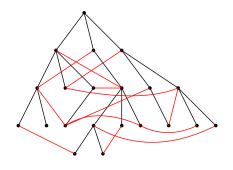
 apart?
- No.

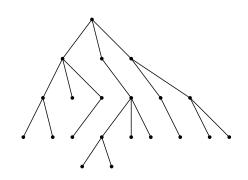


- Can there be vertical edges?
- No.
- Can there be cross edges

 (u, v) with u and v 2 levels

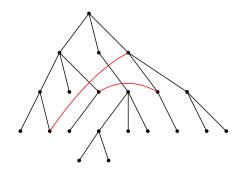
 apart?
- No.
- For any cross edge (u, v), u and v are at most 1 level apart.



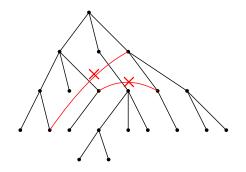


Given a tree DFS tree T of a graph G,

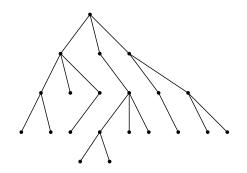
• Can there be cross edges?



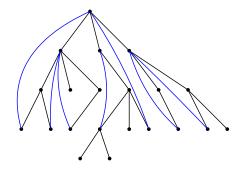
- Can there be cross edges?
- No.



- Can there be cross edges?
- No.

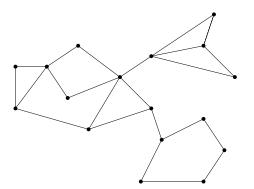


- Can there be cross edges?
- No.
- All non-tree edges are vertical edges.



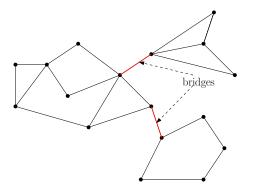
Bridges in a Graph

Def. Given a connected graph G=(V,E), an edge $e\in E$ is called a bridge if the graph $G=(V,E\setminus\{e\})$ is disconnected.

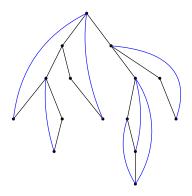


Bridges in a Graph

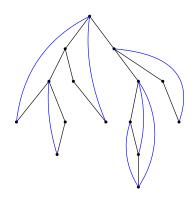
Def. Given a connected graph G=(V,E), an edge $e\in E$ is called a bridge if the graph $G=(V,E\setminus\{e\})$ is disconnected.



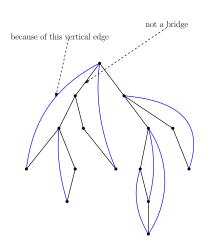
 There are only tree edges and vertical edges



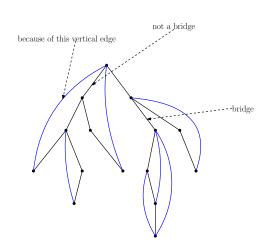
- There are only tree edges and vertical edges
- Vertical edges are not bridges

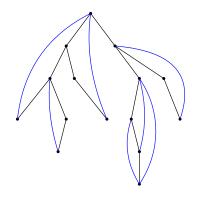


- There are only tree edges and vertical edges
- Vertical edges are not bridges
- A tree edge (v, u) is not a bridge if some vertical edge jumping from below u to above v

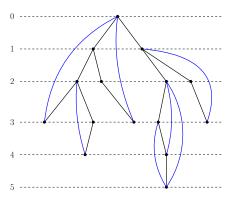


- There are only tree edges and vertical edges
- Vertical edges are not bridges
- A tree edge (v, u) is not a bridge if some vertical edge jumping from below u to above v
- Other tree edges are bridges

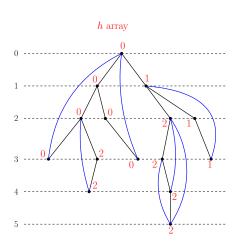




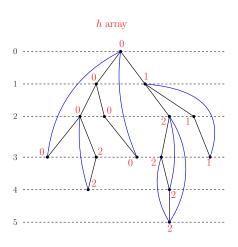
• level(v): the level of vertex v in DFS tree



- level(v): the level of vertex v in DFS tree
- T_v : the sub tree rooted at v
- h(v): the smallest level that can be reached using a vertical edge from vertices in T_v



- level(v): the level of vertex v in DFS tree
- T_v : the sub tree rooted at v
- h(v): the smallest level that can be reached using a vertical edge from vertices in T_v
- (parent(u), u) is a bridge if $h(u) \ge level(u)$.



recursive-DFS(v)

- mark v as "visited"
- $h(v) \leftarrow \infty$
- ullet for all neighbours u of v
- \bullet if u is unvisited then
- \bullet recursive-DFS(u)
- if $h(u) \ge level(u)$ then claim (v, u) is a bridge
- if h(u) < h(v) then $h(v) \leftarrow h(u)$
- else if level(u) < level(v) 1 then
- if level(u) < h(v) then $h(v) \leftarrow level(u)$

$Finding_Bridges$

- mark all vertices as "unvisited"
- ② for every $v \in V$ do
- $level(v) \leftarrow 0$
- \circ recursive-DFS(v)