CSE 431/531: Algorithm Analysis and Design (Spring 2020)
Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

© Graphs

Examples of Graphs

Figure: Road Networks

% 1 Figure: Internet
‘ T 'l f’/ st @ Whita's checkmate @Bmmns

black white
' moves move: Draw

Figure: Social Networks Figure: Transition Graphs

(Undirected) Graph G = (V, E)

e V: set of vertices (nodes);

e F: pairwise relationships among V;
o (undirected) graphs: relationship is symmetric, E' contains subsets
of size 2

(Undirected) Graph G = (V, E)

e V: set of vertices (nodes);
o V={1,2,3,4,5,6,7,8}
e F': pairwise relationships among V;
o (undirected) graphs: relationship is symmetric, E' contains subsets
of size 2
o E = {{1,2},{1,3},{2,3},{2.4},{2,5},{3,5}, {3, 7}, {3,8},
{4,5},{5,6},{7,8}}

Directed Graph G = (V, E)

e V: set of vertices (nodes);
o V={1,2,3,4,5,6,7,8}
e F': pairwise relationships among V;
o directed graphs: relationship is asymmetric, E contains ordered

pairs

Directed Graph G = (V, E)

e V: set of vertices (nodes);
o V={1,2,3,4,5,6,7,8}
e F': pairwise relationships among V;
o directed graphs: relationship is asymmetric, E contains ordered
pairs
o £E=1{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8),
(4,5),(5,6),(6,5),(8,7)}

Abuse of Notations

@ For (undirected) graphs, we often use (7, j) to denote the set
{i.j}

@ We call (i,7) an unordered pair; in this case (i, j) = (j,1).

(1) (1)
A

@ ©)
©
o E={(1,2),(1,3),(2,3),(2,4),(2,5),(3,5), (3,7), (3,8),

@ Social Network : Undirected
@ Transition Graph : Directed
@ Road Network : Directed or Undirected

@ Internet : Directed or Undirected

Representation of Graphs

©O 0O 0 0 O = = O |~
O O O R K = O = |
— - O = O O = o= |w
O O O~ O O~ O |n»
O O R O K = = O W
© o o~ o o o oo
- O © © © = o o |
o - oo o~ o o |x

0 1 O Ol = W N =

@ Adjacency matrix
e n x n matrix, Afu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected

Representation of Graphs

G a 1 29—+3] 6: 5]
@Ae‘ 2 [13—+31+43+5] 7. B8]
‘v 3t [—+23>53>{71>]

e e 9 4: [2++5] 8: [33—+7]

© 5: >33 ~T 0]

@ Adjacency matrix
e n x n matrix, Afu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected
o Linked lists
o For every vertex v, there is a linked list containing all neighbours of
v.

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?)

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1)

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(d,)

time to list all neighbours of v

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(d,)

time to list all neighbours of v | O(n)

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(d,)

time to list all neighbours of v | O(n) O(dy)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'

Output: whether there is a path connecting s to t in G

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'
Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)

Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;

Implementing BFS using a Queue

BFS(s)
Q head + 1,tail < 1, queue[l] < s
© mark s as “visited” and all other vertices as “unvisited”
@ while head > tail
Q v« queueltail], tail < tail + 1
for all neighbours u of v

if uis “unvisited” then

head <+ head + 1, queuelhead] = u

mark u as “visited”

o
o
o
o

@ Running time: O(n + m).

Example of BFS via Queue

|
a8 L
S

Example of BFS via Queue

head

|
= 2 L
AL

tail

Example of BFS via Queue

v l
(1) (7)
N 1
(2} (3)
A

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Example of BFS via Queue

head

tail

Depth-First Search (DFS)

@ Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex (“dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)
@ mark all vertices as “unvisited”
@ recursive-DFS(s)

recursive-DFS(v)

Q@ mark v as “visited"”

@ for all neighbours u of v

@ if wis unvisited then recursive-DFS(u)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve L,ue R.

Testing Bipartiteness

e Taking an arbitrary vertex s € V

Testing Bipartiteness

e Taking an arbitrary vertex s € V
@ Assuming s € L w.l.o.g

Testing Bipartiteness

e Taking an arbitrary vertex s € V
@ Assuming s € L w.l.o.g
@ Neighbors of s must be in R

Testing Bipartiteness

e Taking an arbitrary vertex s € V
@ Assuming s € L w.l.o.g
@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G’ contains multiple connected components, repeat above
algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

bad edges!

Testing Bipartiteness using BFS

BFS(s)
Q head + 1,tail < 1, queue[l] < s
© mark s as “visited” and all other vertices as “unvisited”
@ while head > tail
Q@ v« queueltail], tail + tail + 1
for all neighbours u of v

if uis “unvisited” then

head <+ head + 1, queuelhead] = u

mark u as “visited”

o
o
o
o

Testing Bipartiteness using BFS

test-bipartiteness(s)

Q head + 1,tail + 1, queue[l] « s

© mark s as “visited” and all other vertices as “unvisited”

@ color(s] <0

© while head > tail

v < queue[tail, tail < tail + 1

for all neighbours u of v

if wis “unvisited” then

head < head + 1, queuelhead] = u
mark u as “visited"”
color[u] < 1 — color[v]

elseif color[u] = color|v] then

®©6600000

print(“G is not bipartite”) and exit

Testing Bipartiteness using BFS

@ mark all vertices as “unvisited”
@ for each vertex v € V

© if vis “unvisited” then

0 test-bipartiteness(v)

@ print("“G is bipartite”)

Testing Bipartiteness using BFS

@ mark all vertices as “unvisited”
@ for each vertex v € V

© if vis “unvisited” then

0 test-bipartiteness(v)

@ print("“G is bipartite”)

Obs. Running time of algorithm = O(n + m)

Outline

© Topological Ordering

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- /n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- /n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

NI,

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

NI,

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

J

L

N

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

J

L

N

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

NN,

%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d, of vertices

@ Maintain a queue (or stack) of vertices v with d, = 0

topological-sort(G)

Q letd, < OforeveryveV

Q foreveryv eV

@ for every u such that (v,u) € F
Q dy +—d,+1

Q@ S+ {v:d,=0},i+0

Q while S #£ 0

@ v < arbitrary vertex in S, S « S\ {v}
Q@ i+i+1 7(v)+1

@ for every u such that (v,u) € F
Q dy < d, —1

@ if d, =0 then add u to S

@ if i < n then output “not a DAG”

@ S can be represented using a queue or a stack
@ Running time = O(n + m)

S as a Queue or a Stack

DS Queue Stack
Initialization | head < 0, tail < 1 | top <+ 0
Non-Empty? | head > tail top >0

Add(v) head < head + 1 top < top + 1
Slhead] < v Sltop] < v
Retrieve v | v < S[tail] v < S|[top)

tail < tail +1

top < top — 1

Outline

@ Bridges in a Graph

Type of edges with respect to a tree

Given a graph G = (V, E) and a rooted tree T in GG, edges in G can
be one of the three types:

tree edges

@ Tree edges: edges in T’

Type of edges with respect to a tree

Given a graph G = (V, E) and a rooted tree T in GG, edges in G can
be one of the three types:

tree edges

@ Tree edges: edges in T’

o Cross edges (u,v): u
and v do not have an
ancestor-descendant
relation

cross edges

Type of edges with respect to a tree

Given a graph G = (V, E) and a rooted tree T in GG, edges in G can
be one of the three types:

tree edges

@ Tree edges: edges in T’

o Cross edges (u,v): u
and v do not have an
ancestor-descendant
relation

o Vertical edges (u,v): u
is an ancestor of v, or
v is an ancestor of u

cross edges

\
vertical edges

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?

@ No.

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?

@ No.

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?
e No.

@ Can there be cross edges
(u,v) with u and v 2 levels
apart?

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?
e No.

@ Can there be cross edges
(u,v) with u and v 2 levels
apart?

o No.

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
@ Can there be vertical edges?
e No.

@ Can there be cross edges
(u,v) with u and v 2 levels
apart?

o No.

Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,

Can there be vertical edges?
No.

Can there be cross edges
(u,v) with u and v 2 levels
apart?

No.

For any cross edge (u,v), u

and v are at most 1 level
apart.

Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,

Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,
@ Can there be cross edges?

Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,
@ Can there be cross edges?

@ No.

Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,
@ Can there be cross edges?

@ No.

Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,
@ Can there be cross edges?

@ No.

@ All non-tree edges are vertical
edges.

Bridges in a Graph

Def. Given a connected graph G = (V, E), an edge e € E is called
a bridge if the graph G = (V, E \ {e}) is disconnected. }

Bridges in a Graph

Def. Given a connected graph G = (V, E), an edge e € E is called
a bridge if the graph G = (V, E \ {e}) is disconnected. }

@ There are only tree
edges and vertical
edges

@ There are only tree
edges and vertical
edges

@ Vertical edges are not
bridges

@ There are only tree
edges and vertical not a bridge
ed ges because of this \’;crtical edge el

@ Vertical edges are not
bridges

@ A tree edge (v,u) is
not a bridge if some
vertical edge jumping
from below u to above
)

There are only tree
edges and vertical
edges

Vertical edges are not
bridges

A tree edge (v, u) is
not a bridge if some
vertical edge jumping
from below u to above
v

Other tree edges are
bridges

because of this vertical edge

not a bridge

- -----bridge

@ level(v): the level of
vertex v in DFS tree

@ level(v): the level of
vertex v in DFS tree

@ T),: the sub tree rooted 0
at v

@ h(v): the smallest level
that can be reached
using a vertical edge
from vertices in T,

level(v): the level of
vertex v in DFS tree

T,: the sub tree rooted
at v

h(v): the smallest level
that can be reached
using a vertical edge
from vertices in T,
(parent(u),u) is a
bridge if

h(u) > level(u).

recursive-DFS(v)

Q@ mark v as “visited”

Q h(v) + o0

© for all neighbours u of v

if u is unvisited then
level(u) < level(v) + 1
recursive-DFS(u)
if h(u) > level(u) then claim (v,u) is a bridge
if h(u) < h(v) then h(v) < h(u)

else if level(u) < level(v) — 1 then
if level(u) < h(v) then h(v) < level(u)

6000000

Finding_Bridges

© mark all vertices as “unvisited”
Q for every v € V do

© if v is unvisited then

o level(v) < 0

(5] recursive-DFS(v)

	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering
	Bridges in a Graph

