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Examples of Graphs

Figure: Road Networks

% 1 Figure: Internet
‘ T 'l f’/ st @ Whita's checkmate @Bmmns

black white
' moves move: Draw

Figure: Social Networks Figure: Transition Graphs



(Undirected) Graph G = (V, E)
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of size 2
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Directed Graph G = (V, E)

e V: set of vertices (nodes);
o V={1,2,3,4,5,6,7,8}
e F': pairwise relationships among V;
o directed graphs: relationship is asymmetric, E contains ordered
pairs
o £E=1{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8),
(4,5),(5,6),(6,5),(8,7)}



Abuse of Notations

@ For (undirected) graphs, we often use (7, j) to denote the set
{i.j}

@ We call (i,7) an unordered pair; in this case (i, j) = (j,1).

(1) (1)
A

@ ©)
©
o E={(1,2),(1,3),(2,3),(2,4),(2,5),(3,5), (3,7), (3,8),



@ Social Network : Undirected
@ Transition Graph : Directed
@ Road Network : Directed or Undirected

@ Internet : Directed or Undirected



Representation of Graphs
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@ Adjacency matrix
e n x n matrix, Afu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected



Representation of Graphs
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@ Adjacency matrix
e n x n matrix, Afu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected
o Linked lists
o For every vertex v, there is a linked list containing all neighbours of
v.



Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage

time to check (u,v) € E

time to list all neighbours of v
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Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(d,)

time to list all neighbours of v | O(n) O(dy)
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© Connectivity and Graph Traversal
@ Testing Bipartiteness



Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'

Output: whether there is a path connecting s to t in G
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Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s, t € V'
Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)



Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;
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Breadth-First Search (BFS)

e Build layers Ly, Ly, Lo, L3, - - -

o Ly={s}

@ Ly contains all nodes that are not in LoU L, U---UL; and
have an edge to a vertex in L;




Implementing BFS using a Queue

BFS(s)
Q head + 1,tail < 1, queue[l] < s
© mark s as “visited” and all other vertices as “unvisited”
@ while head > tail
Q v« queueltail], tail < tail + 1
for all neighbours u of v

if uis “unvisited” then

head <+ head + 1, queuelhead] = u

mark u as “visited”

o
o
o
o

@ Running time: O(n + m).



Example of BFS via Queue

|
a8 L
S



Example of BFS via Queue
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Example of BFS via Queue
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Example of BFS via Queue
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Depth-First Search (DFS)

@ Starting from s

@ Travel through the first edge leading out of the current vertex
@ When reach an already-visited vertex ( “dead-end"), go back
@ Travel through the next edge

o If tried all edges leading out of the current vertex, go back
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Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex ( “dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back




Implementing DFS using Recurrsion

DFS(s)
@ mark all vertices as “unvisited”
@ recursive-DFS(s)

recursive-DFS(v)

Q@ mark v as “visited"”

@ for all neighbours u of v

@  if wis unvisited then recursive-DFS(u)
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© Connectivity and Graph Traversal
@ Testing Bipartiteness



Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve L,ue R.




Testing Bipartiteness

e Taking an arbitrary vertex s € V
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Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G’ contains multiple connected components, repeat above
algorithm for each component
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Test Bipartiteness




Test Bipartiteness

bad edges!




Testing Bipartiteness using BFS

BFS(s)
Q head + 1,tail < 1, queue[l] < s
© mark s as “visited” and all other vertices as “unvisited”
@ while head > tail
Q@ v« queueltail], tail + tail + 1
for all neighbours u of v

if uis “unvisited” then

head <+ head + 1, queuelhead] = u

mark u as “visited”

o
o
o
o




Testing Bipartiteness using BFS

test-bipartiteness(s)

Q head + 1,tail + 1, queue[l] « s

© mark s as “visited” and all other vertices as “unvisited”

@ color(s] <0

© while head > tail

v < queue[tail, tail < tail + 1

for all neighbours u of v

if wis “unvisited” then

head < head + 1, queuelhead] = u
mark u as “visited"”
color[u] < 1 — color[v]

elseif color[u] = color|v] then

®©6600000

print( “G is not bipartite”) and exit




Testing Bipartiteness using BFS

@ mark all vertices as “unvisited”
@ for each vertex v € V

© if vis “unvisited” then

0 test-bipartiteness(v)

@ print("“G is bipartite”)




Testing Bipartiteness using BFS

@ mark all vertices as “unvisited”
@ for each vertex v € V

© if vis “unvisited” then

0 test-bipartiteness(v)

@ print("“G is bipartite”)

Obs. Running time of algorithm = O(n + m)
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Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- /n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%
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Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.
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Q: How to make the algorithm as efficient as possible?




Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d, of vertices

@ Maintain a queue (or stack) of vertices v with d, = 0




topological-sort(G)

Q letd, < OforeveryveV

Q foreveryv eV

@ for every u such that (v,u) € F
Q dy +—d,+1

Q@ S+ {v:d,=0},i+0

Q while S #£ 0

@ v < arbitrary vertex in S, S « S\ {v}
Q@ i+i+1 7(v)+1

@ for every u such that (v,u) € F
Q dy < d, —1

@ if d, =0 then add u to S

@ if i < n then output “not a DAG”

@ S can be represented using a queue or a stack
@ Running time = O(n + m)



S as a Queue or a Stack

DS Queue Stack
Initialization | head < 0, tail < 1 | top <+ 0
Non-Empty? | head > tail top >0

Add(v) head < head + 1 top < top + 1
Slhead] < v Sltop] < v
Retrieve v | v < S[tail] v < S|[top)

tail < tail +1

top < top — 1
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@ Bridges in a Graph



Type of edges with respect to a tree

Given a graph G = (V, E) and a rooted tree T in GG, edges in G can
be one of the three types:

tree edges

@ Tree edges: edges in T’
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Type of edges with respect to a tree

Given a graph G = (V, E) and a rooted tree T in GG, edges in G can
be one of the three types:

tree edges

@ Tree edges: edges in T’

o Cross edges (u,v): u
and v do not have an
ancestor-descendant
relation

o Vertical edges (u,v): u
is an ancestor of v, or
v is an ancestor of u

cross edges

\
vertical edges



Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,
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Properties of a BFS Tree

Given a tree BFS tree T of a
graph G,

Can there be vertical edges?
No.

Can there be cross edges
(u,v) with u and v 2 levels
apart?

No.

For any cross edge (u,v), u

and v are at most 1 level
apart.
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Properties of a DFS Tree

Given a tree DFS tree T of a
graph G,
@ Can there be cross edges?

@ No.

@ All non-tree edges are vertical
edges.



Bridges in a Graph

Def. Given a connected graph G = (V, E), an edge e € E is called
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Def. Given a connected graph G = (V, E), an edge e € E is called
a bridge if the graph G = (V, E \ {e}) is disconnected. }
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There are only tree
edges and vertical
edges

Vertical edges are not
bridges

A tree edge (v, u) is
not a bridge if some
vertical edge jumping
from below u to above
v

Other tree edges are
bridges

because of this vertical edge

not a bridge

- -----bridge






@ level(v): the level of
vertex v in DFS tree




@ level(v): the level of
vertex v in DFS tree

@ T),: the sub tree rooted 0
at v

@ h(v): the smallest level
that can be reached
using a vertical edge
from vertices in T,




level(v): the level of
vertex v in DFS tree

T,: the sub tree rooted
at v

h(v): the smallest level
that can be reached
using a vertical edge
from vertices in T,
(parent(u),u) is a
bridge if

h(u) > level(u).




recursive-DFS(v)

Q@ mark v as “visited”

Q h(v) + o0

© for all neighbours u of v

if u is unvisited then
level(u) < level(v) + 1
recursive-DFS(u)
if h(u) > level(u) then claim (v,u) is a bridge
if h(u) < h(v) then h(v) < h(u)

else if level(u) < level(v) — 1 then
if level(u) < h(v) then h(v) < level(u)

6000000




Finding_Bridges

© mark all vertices as “unvisited”
Q for every v € V do

© if v is unvisited then

o level(v) < 0

(5] recursive-DFS(v)
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