CSE 431/531: Algorithm Analysis and Design (Spring 2020) Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- 3 Asymptotic Notations
- Common Running times

CSE 431/531: Algorithm Analysis and Design

 Course Webpage (contains schedule, policies, homeworks and slides):

```
http://www.cse.buffalo.edu/~shil/courses/CSE531/
```

Please sign up course on Piazza via link on course webpage
 announcements, polls, asking/answering questions

CSE 431/531: Algorithm Analysis and Design

- Time and location:
 - MoWeFr, 9:00-9:50am
 - Knox 110.
- Instructor:
 - Shi Li, shil@buffalo.edu, Davis 328
 - Office hours: TBD via poll

You should already have/know:

- Mathematical Background
 - Reasoning, inductions, probabilities
- Basic data Structures
 - Stacks, queues, linked lists
- Some Programming Experience
 - C, C++, Java or Python

You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement (occasionally)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - . . .
- NP-completeness

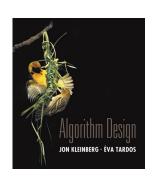
Tentative Schedule (42 Lectures)

See the course webpage.

Textbook

Textbook (Highly Recommended):

 Algorithm Design, 1st Edition, by Jon Kleinberg and Eva Tardos



Other Reference Books

 Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

Reading Before Classes

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
 - Sections for each lecture can be found on the course webpage.
- Slides and example problems for recitations will be posted on the course webpage before class

Grading

- 40% for homeworks
 - 6 points × 5 theory homeworks
 - 10 points for programming homework
- \bullet 60% for mid-term + final exams, score for two exams is

$$\max\{M \times 20\% + F \times 40\%, M \times 30\% + F \times 30\%\}$$
 $M, F \in [0, 100]$

For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with

For Homeworks, You Are Not Allowed to

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm course webpages
- Copy solutions from other students

For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs

Late Policy

- You have 1 "late credit", using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted

- Mid-Term and Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - "F" for the course
 - lose financial support as TA/RA
 - case will be reported to the department and university

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Examples

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

• Output: 30

- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270,210) \rightarrow (210,60) \rightarrow (60,30) \rightarrow (30,0)$

Examples

Sorting

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation (a_1',a_2',\cdots,a_n') of the input sequence such that $a_1' \leq a_2' \leq \cdots \leq a_n'$

Example:

• Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

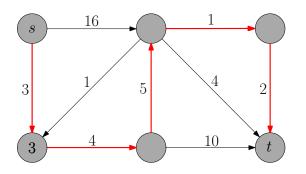
• Algorithms: insertion sort, merge sort, quicksort, ...

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G



Algorithm: Dijkstra's algorithm

Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

- while b > 0
- $(a,b) \leftarrow (b,a \bmod b)$
- 3 return a

C++ program:

- int Euclidean(int a, int b){
- int c;
- while (b > 0){
- c = b;
- b = a % b;
- \bullet a = c;
- •
- return a;
- }

Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
 - fundamental
 - it is fun!

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

 $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$

• Output: 12, 15, 21, 35, 53, 59

Insertion-Sort

ullet At the end of j-th iteration, the first j numbers are sorted.

```
iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
```

Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- for $j \leftarrow 2$ to n
- $extit{eq} key \leftarrow A[j]$
- $i \leftarrow j-1$
- while i > 0 and A[i] > key
- $A[i+1] \leftarrow A[i]$
- $i \leftarrow i 1$
- $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 15 21 35

53

59

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Analysis of Insertion Sort

- Correctness
- Running time

Correctness of Insertion Sort

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

```
after j=1:53,12,35,21,59,15

after j=2:12,53,35,21,59,15

after j=3:12,35,53,21,59,15

after j=4:12,21,35,53,59,15

after j=5:12,21,35,53,59,15

after j=6:12,15,21,35,53,59
```

Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - \bullet Running time for size n= worst running time over all possible arrays of length n

Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

 Focus on growth of running-time as a function, not any particular value.

Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n^2 + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

•
$$n^2/100 - 3n^2 + 10 = O(n^2)$$

Asymptotic Analysis: *O*-notation

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - ullet program 1 requires 10 instructions, or 10^{-8} seconds
 - ullet program 2 requires 2 instructions, or 10^{-9} seconds
 - \bullet they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation

Asymptotic Analysis: *O*-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- \bullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- ullet For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

- \bullet for $j \leftarrow 2$ to n
- $key \leftarrow A[j]$
- $i \leftarrow i 1$
- while i > 0 and A[i] > key
- $A[i+1] \leftarrow A[i]$
- $i \leftarrow i-1$
- \bullet $A[i+1] \leftarrow key$
 - \bullet Worst-case running time for iteration j of the outer loop? Answer: O(j)
 - \bullet Total running time $=\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ $= O(\frac{n(n+1)}{2}-1) = O(n^2)$

Computation Model

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

• Remember to sign up for Piazza.

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Asymptotically Positive Functions

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

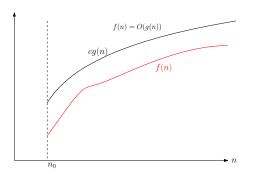
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?
- We only consider asymptotically positive functions.
- Why not (everywhere-)positive functions? Answer: for the sake of convenience.

O-Notation: Asymptotic Upper Bound

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.



O-Notation: Asymptotic Upper Bound

O-Notation For a function
$$g(n)$$
,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

Proof.

Let c=4 and $n_0=50$, for every $n>n_0=50$, we have,

$$3n^{2} + 2n - c(n^{2} - 10n) = 3n^{2} + 2n - 4(n^{2} - 10n)$$
$$= -n^{2} + 40n \le 0.$$
$$3n^{2} + 2n < c(n^{2} - 10n)$$

$$O\text{-Notation}$$
 For a function $g(n)$,
$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that }$$

$$f(n) \le cg(n), \forall n \ge n_0$$
.

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

Conventions

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

"=" is asymmetric! Following equalities are wrong:

- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

Ω -Notation: Asymptotic Lower Bound

$$O\text{-Notation For a function }g(n),$$

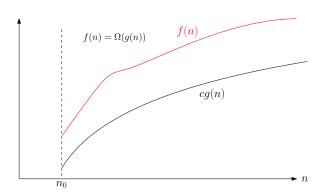
$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

$$\Omega$$
-Notation For a function $g(n)$,
$$\Omega(g(n)) = \{ \text{function } f: \exists c>0, n_0>0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\Omega$$
-Notation For a function $g(n)$,
$$\Omega(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \right\}.$$



Ω -Notation: Asymptotic Lower Bound

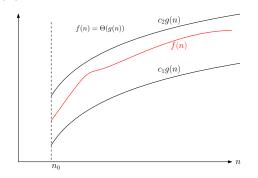
- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Theorem
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

⊖-Notation: Asymptotic Tight Bound

$\Theta ext{-Notation}$ For a function g(n), $\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".



⊖-Notation: Asymptotic Tight Bound

$$\Theta$$
-Notation For a function $g(n)$, $\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

•
$$2^{n/3+100} = \Theta(2^{n/3})$$

 $c_1q(n) < f(n) < c_2q(n), \forall n > n_0$.

Theorem
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Trivial Facts on Comparison Relations

- $f \le g \Leftrightarrow g \ge f$
- $f = g \Leftrightarrow f \leq g \text{ and } f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Incorrect Analogy

• f(n) = O(g(n)) or g(n) = O(f(n))

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $g(n) = O(f(n))$

$$f(n) = n^2$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

Recall: Informal way to define *O*-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2-10n-5=O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we talk about running times.

Exercise

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

Asymptotic Notations	O	Ω	Θ	0	ω
Comparison Relations	\leq	/		\	>

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- 3 Asymptotic Notations
- Common Running times

O(n) (Linear) Running Time

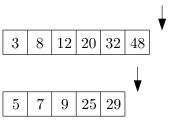
Computing the sum of n numbers

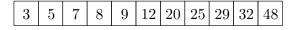
sum(A, n)

- $S \leftarrow S + A[i]$
- lacktriangledown return S

O(n) (Linear) Running Time

Merge two sorted arrays





O(n) (Linear) Running Time

```
merge(B, C, n_1, n_2) \\\\ B and C are sorted, with length n_1 and
n_2
② while i < n_1 and j < n_2
     if (B[i] < C[j]) then
        append B[i] to A; i \leftarrow i+1
     else
        append C[j] to A; j \leftarrow j+1
of if i < n_1 then append B[i..n_1] to A
\bullet if j \leq n_2 then append C[j..n_2] to A
 oldsymbol{0} return A
```

Running time = O(n) where $n = n_1 + n_2$.

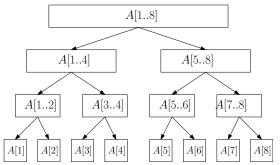
$O(n \log n)$ Running Time

```
merge-sort(A, n)
```

- \bullet if n=1 then
- \circ return A
- else
- $\qquad \qquad C \leftarrow \mathsf{merge\text{-}sort}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], n \lfloor n/2 \rfloor\Big)$
- return merge $(B, C, \lfloor n/2 \rfloor, n \lfloor n/2 \rfloor)$

$O(n \log n)$ Running Time

Merge-Sort



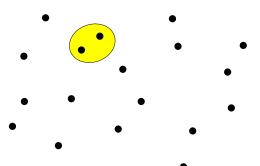
- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest



$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ **Output:** the pair of points that are closest

closest-pair(x, y, n)

- \bullet bestd $\leftarrow \infty$

 - of for $i \leftarrow i+1$ to n
 - $d \leftarrow \sqrt{(x[i] x[j])^2 + (y[i] y[j])^2}$
 - \bullet if d < best d then
 - best $i \leftarrow i, best j \leftarrow j, best d \leftarrow d$
 - return (besti, bestj)

$O(n^3)$ (Cubic) Running Time

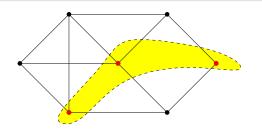
Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

- **1** $C \leftarrow \text{matrix of size } n \times n, \text{ with all entries being } 0$
- \bullet for $i \leftarrow 1$ to n
- of for $j \leftarrow 1$ to n
- of for $k \leftarrow 1$ to n
- $C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$
- $loodsymbol{0}$ return C

$O(n^k)$ Running Time for Integer $k \ge 4$

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.



Independent set of size k

Input: graph G = (V, E)

Output: whether there is an independent set of size k

$O(n^k)$ Running Time for Integer $k \geq 4$

Independent Set of Size *k*

Input: graph G = (V, E)

Output: whether there is an independent set of size k

$\mathsf{independent}\mathsf{-set}(G=(V,E))$

- $\bullet \ \, \text{for every set} \,\, S \subseteq V \,\, \text{of size} \,\, k$
- $b \leftarrow \mathsf{true}$
- \bullet if $(u,v) \in E$ then $b \leftarrow$ false
- \bullet if b return true
- return false

Running time $=O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)

Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

$\mathsf{max}\text{-}\mathsf{independent}\text{-}\mathsf{set}\big(G=(V,E)\big)$

- $\bullet b \leftarrow \mathsf{true}$
- for every $u, v \in S$
- if $(u, v) \in E$ then $b \leftarrow$ false
- $oldsymbol{o}$ return R

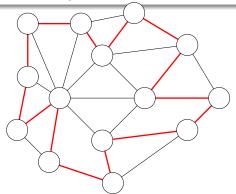
Beyond Polynomial Time: n!

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



Beyond Polynomial Time: n!

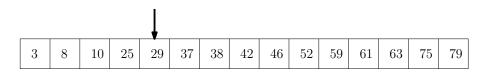
$\mathsf{Hamiltonian}(G = (V, E))$

- for every permutation (p_1, p_2, \cdots, p_n) of V
- $b \leftarrow \mathsf{true}$
- \bullet for $i \leftarrow 1$ to n-1
- if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow$ false
- \bullet if $(p_n, p_1) \notin E$ then $b \leftarrow$ false
- if b then return (p_1, p_2, \cdots, p_n)
- oreturn "No Hamiltonian Cycle"

Running time = $O(n! \times n)$

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- ullet Output: whether t appears in A.

binary-search(A, n, t)

- $0 i \leftarrow 1, j \leftarrow n$
- $k \leftarrow \lfloor (i+j)/2 \rfloor$
- if A[k] = t return true
- if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- o return false

Running time = $O(\log n)$

Comparing the Orders

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n^2)n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)n^2 = O(2^n)$
- $2^n = O(n!)2^n = O(e^n)$
- \bullet $e^n = O(n!)$
- $\bullet \ n! = O(n^n)$

Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.