CSE 431/531: Algorithm Analysis and Design (Spring 2020)
NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results?

@ A given problem X cannot be solved in polynomial time.

@ Without knowing it, you will have to keep trying to find
polynomial time algorithm for solving X. All our efforts are
doomed!

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*5logn), O(n'®)
@ Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
@ For natural problems, if there is an O(n"‘)—time algorithm, then &
is small, say 4

@ A good cut separating problems: for most natural problems,
either we have a polynomial time algorithm, or the best
algorithm runs in time Q(2") for some ¢

@ Do not need to worry about the computational model

Outline

© Some Hard Problems

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

@ The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(len)
Better algorithm: 20(%)
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V such
that no two vertices in I are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V, E)

Output: the size of the maximum independent set of G

@ Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \V, A, - operators.

Output: whether the boolean formula is satisfiable

e Example: —((—z1 A 2za) V (mz1 A =) Vg V (g A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check
if each assignment satisfies the formula

@ Formula Satisfiablity is NP-hard

Outline

© P, NP and Co-NP

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

@ When we define the P and NP, we only consider decision
problems.

Fact For each optimization problem X, there is a decision version
X' of the problem. If we have a polynomial time algorithm for the
decision version X', we can solve the original problem X in
polynomial time.

Optimization to Decision

Shortest Path
Input: graph G = (V, E), weight w, s,t and a bound L
Output: whether there is a path from s to ¢ of length at most L

4

Maximum Independent Set
Input: a graph GG and a bound &

Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem
e Input: (3, 6, 100, 9, 60)
e Binary: (11, 110, 1100100, 1001, 111100)

@ String: 111101111100011111000011000001
110000110111111111000001

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem
0 1 2 3 4 5 6 7 8 9

e (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)
@ Encode the sequence into a binary string as before

14/75

Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|. J

Q: Does it matter how we encode the input instances?)

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not

Define Problem as a Set

Def. A decision problem X is the set of strings on which the
output is yes. i.e, s € X if and only if the correct output for the
input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s) = 1 if and only if
se X.

v

Def. A has a polynomial running time if there is a polynomial
function p(-) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time. J

@ The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

@ Alice has a supercomputer, fast enough to run the 20 time
algorithm for HC

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of GG

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

@ Alice has a supercomputer, fast enough to run the 29" time
algorithm for Ind-Set

@ Bob has a slow computer, which can only run an O(n?)-time
algorithm

Q: Given graph G = (V, E) and integer k, such that there is an
independent set of size k£ in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

@ Certificate: a set of size k

o Certifier: check if the given set is really an independent set

Graph Isomorphism

Graph Isomorphism
Input: two graphs GG and Go,

Output: whether two graphs are isomorphic to each other

O—0) oo
—3 ,'. -
a\e e’ {

@ What is the certificate?
@ What is the certifier?

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t
@ there is a polynomial function p such that, s € X if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.
The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

Hamiltonian Cycle € NP

Input: Graph G
Certificate: a sequence S of edges in G

lencoding(.5)| < p(|encoding(G)|) for some polynomial function
p
Certifier B: B(G,S) =1 if and only if S is an HC in G

Clearly, B runs in polynomial time

(4]

e G e HC — 35, B(G,S) =1

Graph Isomorphism € NP

Input: two graphs G; = (V, Ey) and Gy = (V, E3) on V
Certificate: a 1-1 function f: V —V

lencoding(f)| < p(|encoding(G1, G2)|) for some polynomial
function p

Certifier B: B((G1,G3), f) = 1 if and only if for every u,v € V,
we have (u,v) € Ey & (f(u), f(v)) € Es.

Clearly, B runs in polynomial time

o (G1,Gy) € Gl — 3f, B((G1,G), f) =1

Maximum Independent Set € NP

Input: graph G = (V, E) and integer k
Certificate: a set S C V of size k

lencoding(S)| < p(lencoding(G, k)|) for some polynomial
function p

Certifier B: B((G, k), S) =1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

e (G, k) e MIS = 35, B((G,k),S) =1

Circuit Satisfiablity (Circuit-Sat) Problem
Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 17

@ Is Circuit-Sat € NP?

HC
Input: graph G = (V, E)

Output: whether GG does not contain a Hamiltonian cycle

e Is HC € NP?

@ Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

@ Unlikely

@ Alice can only convince Bob that G is a no-instance
e HC € Co-NP

The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
s € X if and only if s ¢ X.

Def. Co-NP is the set of decision problems X such that X € NP. J

Def. A tautology is a boolean formula that always evaluates to 1. |

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

@ eg. (mxy Amwg)V (mxy A —x3) Vg V (—xy A x3) is a tautology
@ Bob can certify that a formula is not a tautology
@ Thus Tautology € Co-NP

@ Indeed, Tautology = Formula-Unsat

Prime

Prime
Input: an integer ¢ > 2
Output: whether ¢ is a prime

@ It is easy to certify that ¢ is not a prime
@ Prime € Co-NP

@ [Pratt 1970] Prime € NP

@ P C NP N Co-NP (see soon)

°

If a natural problem X is in NP N Co-NP, then it is likely that
XeP

e [AKS 2002] Prime € P

PC NP

o let XePandse X

Q: How can Alice convince Bob that s is a yes instance? J

A: Since X € P, Bob can check whether s € X by himself, without
Alice's help. J

@ The certificate is an empty string
@ Thus, X € NP and P C NP

e Similarly, P C Co-NP, thus P € NP N Co-NP

ls P = NP?

e A famous, big, and fundamental open problem in computer
science

o Little progress has been made

o General belief is P £ NP

@ It would be too amazing if P = NP: if one can check a solution
efficiently, then one can find a solution efficiently

@ Complexity assumption: P # NP

@ We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:
e if P # NP, then HC ¢ P
e HC ¢ P, unless P = NP

Is NP = Co-NP?

@ Again, a big open problem
@ General belief: NP # Co-NP.

4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P € NP N Co-NP

NP = Co-NP

P = NP = Co-NP

@ General belief: we are in the 4th scenario

Outline

© Polynomial Time Reductions and NP-Completeness

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time. l

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time. J

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,F)and s,t €V
Output: whether there is a Hamiltonian path from s to t in G

Lemma HP <p HC. |
(:) ()
¢ ¢
(+) ()

Obs. G has a HP from s to t if and only if graph on right side has J
a HC.

NP-Completeness

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X for every Y € NP.

Theorem If X is NP-complete and X € P, then P = NP.

@ NP-complete problems are the hardest problems in NP

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

@ To prove P = NP (if you believe it), you only need to give an
efficient algorithm for any NP-complete problem

o If you believe P # NP, and proved that a problem X is
NP-complete (or NP-hard), stop trying to design efficient
algorithms for X

Outline

@ NP-Complete Problems

Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X forevery Y € NP.

@ How can we find a problem X & NP such that every problem
Y € NP is polynomial time reducible to X? Are we asking for
too much?

@ No! There is indeed a large family of natural NP-complete
problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

Tqe
Toe

—p
>)

Y Y

Circuit-Sat is NP-Complete

program data

o key fact: algorithms can be
converted to circuits

Time 1 ‘ ‘ ‘

. . A R RRRNNN
Fact Any algorithm that takes n bits as | 7>
input and outputs 0/1 with running time S et %
A R RN

T'(n) can be converted into a circuit of _—
size p(T'(n)) for some polynomial
function p(-).

Time T ‘

@ Then, we can show that any problem Y € NP can be reduced to
Circuit-Sat.
@ We prove HC <p Circuit-Sat as an example.

HC <p Circuit-Sat

check-HC(G, 5) —* c C

[TTTTTTT TTTTTITTTT \
S

CTTTTTT TTTTTTTTT
G 01001100 g

Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C’ to obtain the circuit C'
G is a yes-instance if and only if C' is satisfiable (3

Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

e Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable]

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:
@ Boolean variables: xq, 25, -+, 2,
e Literals: z; or —z;
e Clause: disjunction (“or") of at most 3 literals: x5 V =4,
1V agV —xg, X9V x5V xy
@ 3-CNF formula: conjunction (“and”) of clauses:
(1 V 2z Vx3) A (o Vg Vay) A -z V oz Vozy)

3-Sat

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses
o To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment x1 = 1,29 = 1,23 = 0, x4 = 0 satisfies

(1 V 2z Vxs) A (22 Vg Vay) A(-xy Voxs Vozy)

Circuit-Sat <p 3-Sat

T Zs
i))
xs
> :136
Tg Z10

)
T3 DQL* Dx7 r‘—/

@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:
(x4 = x3) A (5 = 21 V x2) N\ (16 = T1T4)
A(I’7:$1AJI2/\JZ4)A(ZE8:ZL'5\/I6)

/\($9:.1’6\/379)/\(1'10:.CCg/\l’g/\x7)/\l'10

Circuit-Sat <p 3-Sat

(ZL‘4 = _|£E'3) A (IL‘5 =T V 1'2) A\ (176 = ﬁ.1‘4)

A(z7 =21 Nza Axg) A (8 = 25 V T6)

/\(xg=;1:6\/339)/\(x10::1:8/\3:9/\3:7)/\3310

Convert each clause to a 3-CNF

Ts =21 VIy <&

(x1 Vo V-xs) A
(171 V) V ZE5) VAN
(_th Vxo V $5) VAN
(

- V xg V oxs)

r1 To Ty | Ts > a1 VX
0 0 O 1
0 O 1 0
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

e Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

L

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack

Recall: Independent Set Problem

Def. An independent set of G = (V, F) is a subset I C V such
that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem
Input: G = (V,E),k
Output: whether there is an independent set of size k in G

3-Sat <p Ind-Set

@ (x1VxaV—x3) A(xaVaz V) A(—xy V—oxs Vay)

@ A clause = a group of 3
vertices, one for each literal

@ An edge between every pair of
vertices in same group

@ An edge between every pair of
contradicting literals

@ Problem: whether there is an
IS of size kK = #clauses

3-Sat instance is yes-instance <> clique instance is yes-instance:
o satisfying assignment = independent set of size k

@ independent set of size k = satisfying assignment

Satisfying Assignment = IS of Size k

o (1‘1 vV) vV _|£L'3) VAN (I‘Q V T3 V ZL’4) VAN (ﬁZL‘l V T3 vV .’L’4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

IS of Size k£ = Satisfying Assignment

o (1‘1 vV) vV _|£L'3) VAN (I‘Q V T3 V ZL’4) VAN (ﬁZL‘l V T3 vV .’L’4)

@ For every group, exactly one
literal is selected in IS

@ No contradictions among the
selected literals

o If x; is selected in IS, set
Tz, =1
o If —x; is selected in IS, set

@ Otherwise, set x; arbitrarily

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack

Def. A clique in an undirected graph G = (V, E) is a subset S C V/
such that Yu,v € S we have (u,v) € E J

Clique Problem
Input: G = (V, E) and integer k£ > 0,
Output: whether there exists a clique of size k in G

@ What is the relationship between Clique and Ind-Set?

Clique =p Ind-Set

Def. Given a graph G = (V, E), define G = (V, E) be the graph
such that (u,v) € £ if and only if (u,v) ¢ E.

Obs. S is an independent set in G if and only if S is a clique in G. J

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset
S C V such that for every (u,v) € Ethenu € Sorve S . J

Vertex-Cover Problem
Input: G = (V, E) and integer k

Output: whether there is a vertex cover of GG of size at most k

Vertex-Cover =p Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if V'\ S'is an
independent set of G.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.
@ However, for most reductions, we call algorithm for X only once

@ That is, for a given instance sy for Y, we only construct one
instance sx for X

A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct in
polynomial time an instance sx of problem such that:
e sy is a yes-instance of Y = sx is a yes-instance of X
@ sx is a yes-instance of X = sy is a yes-instance of Y

Outline

© Dealing with NP-Hard Problems

Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.
@ For 3-Sat problem:

e Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c"™) for some constant ¢ > 1

e Best lower bound is Q(n)
@ Essentially we have no techniques for proving lower bound for

running time

Dealing with NP-Hard Problems

o Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
o 2" — 1.844"™ — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs,
but easy on

@ trees
@ bounded tree-width graphs
@ interval graphs

Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small &
(number of nodes is 1, number of
edges is O(n).)

e Brute-force algorithm: O(knk+1)

@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of £

@ Vertex-Cover is fixed-parameter
tractable.

Approximation Algorithms

e For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the

solution output by the algorithm and the quality of the optimal
solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

@ There is an 1.5-approximation for travelling salesman problem:
we can efficiently find a tour whose length is at most 1.5 times
the length of the optimal tour

@ 2-approximation for vertex-cover

e O(lgn)-approximation for set-cover

Outline

© Summary

Summary

@ We consider decision problems
@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if
@ B is a polynomial-time algorithm that takes two input strings s
and t
@ there is a polynomial function p such that, s € X if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.
The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q@ Y <p X for every Y € NP.

o If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time

Summary

Circuit-Sat

3-Sat

L N

Clique

Ind-Set

HC

3D-Matching

3-Coloring

Vertex-Cover

TSP

Subset-Sum

Set-Cover

Knapsack

Summary

Proof of NP-Completeness for Circuit-Sat

@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit
Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier
Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions

	Some Hard Problems
	P, NP and Co-NP
	Polynomial Time Reductions and NP-Completeness
	NP-Complete Problems
	Dealing with NP-Hard Problems
	Summary

