CSE 431/531: Algorithm Analysis and Design (Spring 2020) NP-Completeness

Lecturer: Shi Li

Department of Computer Science and Engineering University at Buffalo

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

- ullet A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient = Polynomial Time

- Polynomial time: $O(n^k)$ for any constant k > 0
- Example: $O(n), O(n^2), O(n^{2.5} \log n), O(n^{100})$
- Not polynomial time: $O(2^n), O(n^{\log n})$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time

- \bullet For natural problems, if there is an $O(n^k)\text{-time}$ algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega(2^{n^c})$ for some c
- Do not need to worry about the computational model

Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

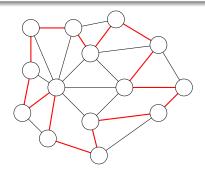
Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

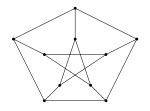
Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle



Example: Hamiltonian Cycle Problem



• The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

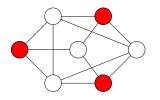
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Maximum Independent Set Problem

Def. An independent set of G=(V,E) is a subset $I\subseteq V$ such that no two vertices in I are adjacent in G.



Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

• Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula
- Formula Satisfiablity is NP-hard

Outline

- Some Hard Problems
- P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

 When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be encoded as a binary string.

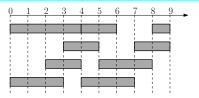
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11110111111000111111000011000001
 - 1100001101111111111000001

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem



- $\bullet (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$
- Encode the sequence into a binary string as before

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Set

Def. A decision problem X is the set of strings on which the output is yes. i.e, $s \in X$ if and only if the correct output for the input s is 1 (yes).

Def. An algorithm A solves a problem X if, A(s)=1 if and only if $s\in X$.

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most p(|s|) steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

Certifier for Hamiltonian Cycle (HC)

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- \bullet Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G=(V,E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

 $\ensuremath{\mathbf{A}}\xspace$: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an ${\cal O}(n^3)\text{-time}$ algorithm

Q: Given graph G=(V,E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

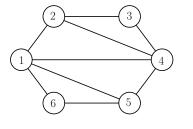
- ullet Certificate: a set of size k
- Certifier: check if the given set is really an independent set

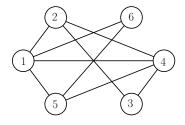
Graph Isomorphism

Graph Isomorphism

Input: two graphs G_1 and G_2 ,

Output: whether two graphs are isomorphic to each other





- What is the certificate?
- What is the certifier?

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- \bullet B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t)=1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Hamiltonian Cycle \in NP

- ullet Input: Graph G
- ullet Certificate: a sequence S of edges in G
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G, S) = 1 if and only if S is an HC in G
- ullet Clearly, B runs in polynomial time

•
$$G \in \mathsf{HC}$$
 \iff $\exists S, \ B(G,S) = 1$

Graph Isomorphism $\in NP$

- Input: two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on V
- Certificate: a 1-1 function $f: V \to V$
- $|\operatorname{encoding}(f)| \le p(|\operatorname{encoding}(G_1, G_2)|)$ for some polynomial function p
- Certifier $B: B((G_1, G_2), f) = 1$ if and only if for every $u, v \in V$, we have $(u, v) \in E_1 \Leftrightarrow (f(u), f(v)) \in E_2$.
- Clearly, B runs in polynomial time

•
$$(G_1, G_2) \in \mathsf{GI}$$
 \iff $\exists f, B((G_1, G_2), f) = 1$

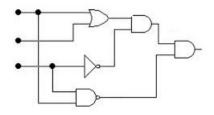
Maximum Independent Set $\in NP$

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B \colon B((G,k),S) = 1$ if and only if S is an independent set in G
- ullet Clearly, B runs in polynomial time
- $(G,k) \in MIS$ \iff $\exists S, B((G,k),S) = 1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?



• Is Circuit-Sat ∈ NP?

HC

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\mathsf{HC}} \in \mathsf{Co}\text{-}\mathsf{NP}$

The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $s \in \overline{X}$ if and only if $s \notin X$.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology ∈ Co-NP
- Indeed, Tautology = Formula-Unsat

Prime

Prime

Input: an integer $q \ge 2$

Output: whether q is a prime

- It is easy to certify that q is not a prime
- Prime \in Co-NP
- [Pratt 1970] $Prime \in NP$
- $P \subseteq NP \cap Co-NP$ (see soon)
- If a natural problem X is in NP \cap Co-NP, then it is likely that $X \in P$
- [AKS 2002] Prime ∈ P

$$P \subseteq NP$$

• Let $X \in \mathsf{P}$ and $s \in X$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether $s \in X$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$

Is P = NP?

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- General belief is $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- Complexity assumption: $P \neq NP$
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
 - HC \notin P, unless P = NP

Is NP = Co-NP?

- Again, a big open problem
- General belief: NP \neq Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathsf{NP} \Longleftrightarrow \overline{X} \in \mathsf{Co}\text{-}\mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co}\text{-}\mathsf{NP}$

• General belief: we are in the 4th scenario

Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

Polynomial-Time Reducations

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

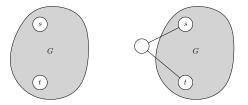
Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.



Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem *X* is called NP-complete if

- \bullet $X \in \mathsf{NP}$, and
- $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)
- To prove P = NP (if you believe it), you only need to give an efficient algorithm for any NP-complete problem
- If you believe P \neq NP, and proved that a problem X is NP-complete (or NP-hard), stop trying to design efficient algorithms for X

Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

Def. A problem *X* is called NP-complete if

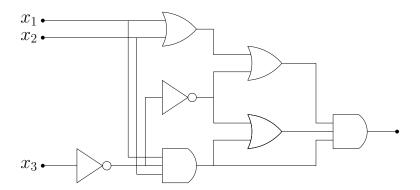
- \bullet $X \in \mathsf{NP}$, and
- $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - How can we find a problem $X \in \mathsf{NP}$ such that every problem $Y \in \mathsf{NP}$ is polynomial time reducible to X? Are we asking for too much?
 - No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit

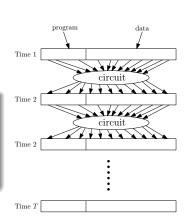
Output: whether the circuit is satisfiable



Circuit-Sat is NP-Complete

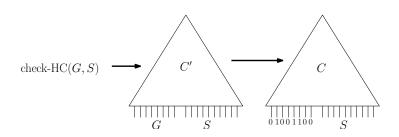
 key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.



- Then, we can show that any problem $Y \in \mathsf{NP}$ can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit$ -Sat as an example.

$HC \leq_P Circuit-Sat$



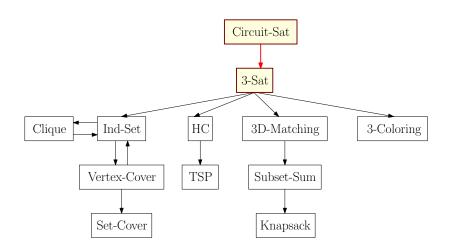
- Let check-HC(G,S) be the certifier for the Hamiltonian cycle problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- \bullet G is a yes-instance if and only if there is an S such that check-HC $\!(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- ullet hard-wire the instance G to the circuit C^\prime to obtain the circuit C
- ullet G is a yes-instance if and only if C is satisfiable

$Y \leq_P \mathsf{Circuit}\text{-}\mathsf{Sat}$, For Every $Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check-Y(s,t) returns 1
- ullet Construct a circuit C' for the algorithm check-Y
- ullet hard-wire the instance s to the circuit C' to obtain the circuit C
- ullet s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems



3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

3-Sat

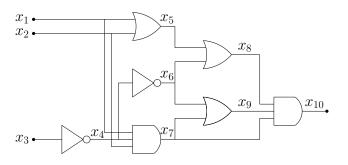
3-Sat

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1=1, x_2=1, x_3=0, x_4=0$ satisfies $(x_1\vee \neg x_2\vee \neg x_3)\wedge (x_2\vee x_3\vee x_4)\wedge (\neg x_1\vee \neg x_3\vee \neg x_4)$

Circuit-Sat \leq_P 3-Sat



- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Circuit-Sat \leq_P 3-Sat

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4)$$

$$\land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6)$$

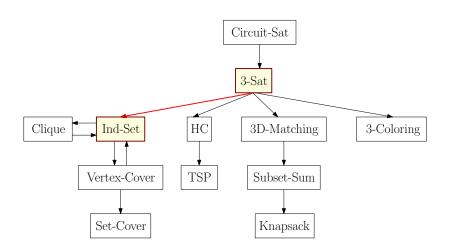
$$\land (x_9 = x_6 \lor x_9) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow $	0	0	1	0
·	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \vee \neg x_2 \vee x_5) \wedge$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
- /	1	1	0	0
$(\neg x_1 \lor \neg x_2 \lor x_5)$	1	1	1	1

Circuit-Sat \leq_P 3-Sat

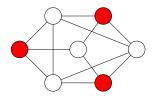
- Circuit ←⇒ Formula ←⇒ 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems



Recall: Independent Set Problem

Def. An independent set of G=(V,E) is a subset $I\subseteq V$ such that no two vertices in I are adjacent in G.



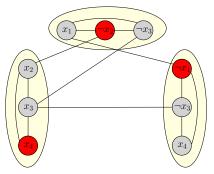
Independent Set (Ind-Set) Problem

Input: G = (V, E), k

Output: whether there is an independent set of size k in G

3-Sat \leq_P Ind-Set

- $\bullet \ (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$
- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

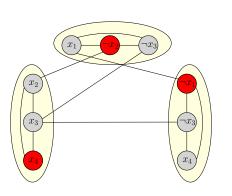


- 3-Sat instance is yes-instance \Leftrightarrow clique instance is yes-instance:
 - ullet satisfying assignment \Rightarrow independent set of size k
 - independent set of size $k \Rightarrow$ satisfying assignment

Satisfying Assignment \Rightarrow IS of Size k

$$\bullet \ (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$$

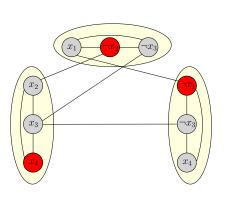
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- ullet An IS of size k



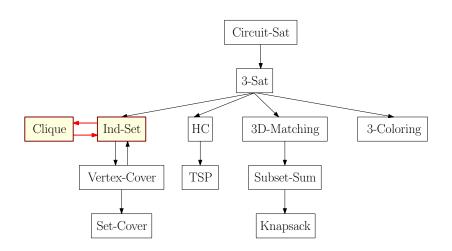
IS of Size $k \Rightarrow$ Satisfying Assignment

$$\bullet \ (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$$

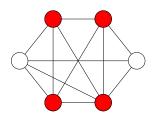
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily



Reductions of NP-Complete Problems



Def. A clique in an undirected graph G=(V,E) is a subset $S\subseteq V$ such that $\forall u,v\in S$ we have $(u,v)\in E$



Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

• What is the relationship between Clique and Ind-Set?

Clique $=_P$ Ind-Set

Def. Given a graph G=(V,E), define $\overline{G}=(V,\overline{E})$ be the graph such that $(u,v)\in \overline{E}$ if and only if $(u,v)\notin E$.

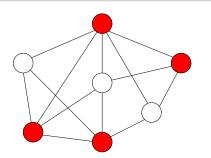
Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems



Vertex-Cover

Def. Given a graph G=(V,E), a vertex cover of G is a subset $S\subseteq V$ such that for every $(u,v)\in E$ then $u\in S$ or $v\in S$.



Vertex-Cover Problem

Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

Vertex-Cover $=_P$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G=(V,E) if and only if $V\setminus S$ is an independent set of G.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- ullet In general, algorithm for Y can call the algorithm for X many times.
- \bullet However, for most reductions, we call algorithm for X only once
- ullet That is, for a given instance s_Y for Y, we only construct one instance s_X for X

A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y

Outline

- Some Hard Problems
- P, NP and Co-NP
- Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- Summary

Q: How far away are we from proving or disproving P = NP?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time $O(c^n)$ for some constant c>1
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O(2^n \cdot \mathsf{poly}(n))$
- $2^n \to 1.844^n \to 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot \mathsf{poly}(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

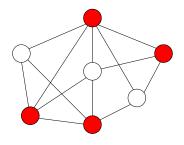
Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- • •

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.



Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 1.5-approximation for travelling salesman problem: we can efficiently find a tour whose length is at most 1.5 times the length of the optimal tour
- 2-approximation for vertex-cover
- $O(\lg n)$ -approximation for set-cover

Outline

- Some Hard Problems
- P, NP and Co-NP
- Opening Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

- We consider decision problems
- ullet Inputs are encoded as $\{0,1\}$ -strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Def. B is an efficient certifier for a problem X if

- \bullet B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $s \in X$ if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

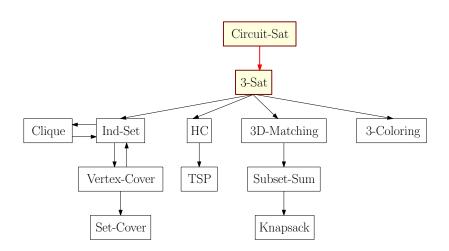
The string t such that B(s,t)=1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

- \bullet $X \in \mathsf{NP}$, and
- $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - If any NP-complete problem can be solved in polynomial time, then P=NP
 - ullet Unless P=NP, a NP-complete problem can not be solved in polynomial time



Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \mathsf{NP}$, let B(s,t) be the certifier
- Convert B(s,t) to a circuit and hard-wire s to the input gates
- ullet s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions