CSE 431/531: Algorithm Analysis and Design (Spring 2021) Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
- Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(6) Solving Recurrences
(7) Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

merge-sort (A, n)

1: if $n=1$ then
2: return A
3: else
4: $\quad B \leftarrow$ merge-sort $(A[1 . .\lfloor n / 2\rfloor],\lfloor n / 2\rfloor)$
5: $\quad C \leftarrow$ merge-sort $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: return merge $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$

- Divide: trivial
- Conquer: 4,5
- Combine: 6

Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $=O(n \lg n)$
- Better than insertion sort

Running Time for Merge-Sort Using Recurrence

- $T(n)=$ running time for sorting n numbers, then

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) & \text { if } n \geq 2\end{cases}
$$

- With some tolerance of informality:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 2 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

- Even simpler: $T(n)=2 T(n / 2)+O(n)$. (Implicit assumption: $T(n)=O(1)$ if n is at most some constant.)
- Solving this recurrence, we have $T(n)=O(n \lg n)$ (we shall show how later)

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4 Polynomial Multiplication
(3) Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences
(7) Computing n-th Fibonacci Number

Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i<j$ and $A[i]>A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

- 4 inversions (for convenience, using numbers, not indices): $(10,8),(10,9),(15,9),(15,12)$

Naive Algorithm for Counting Inversions

count-inversions (A, n)

1: $c \leftarrow 0$
2: for every $i \leftarrow 1$ to $n-1$ do
3: \quad for every $j \leftarrow i+1$ to n do
4: \quad if $A[i]>A[j]$ then $c \leftarrow c+1$
5: return c

Divide-and-Conquer

$$
\begin{aligned}
& A: \quad C \\
& \text { - } p=\lfloor n / 2\rfloor, B=A[1 . . p], C=A[p+1 . . n] \\
& \# \operatorname{invs}(A)=\# \operatorname{invs}(B)+\# \operatorname{invs}(C)+m \\
& m=|\{(i, j): B[i]>C[j]\}|
\end{aligned}
$$

Q: How fast can we compute m, via trivial algorithm?

A: $O\left(n^{2}\right)$

- Can not improve the $O\left(n^{2}\right)$ time for counting inversions.

Divide-and-Conquer

- $p=\lfloor n / 2\rfloor, B=A[1 . . p], C=A[p+1 . . n]$
-

$$
\begin{aligned}
\# \operatorname{invs}(A) & =\# \operatorname{invs}(B)+\# \operatorname{invs}(C)+m \\
m & =|\{(i, j): B[i]>C[j]\}|
\end{aligned}
$$

Lemma If both B and C are sorted, then we can compute m in $O(n)$ time!

Counting Inversions between B and C

Count pairs i, j such that $B[i]>C[j]$:

$$
\begin{aligned}
& B: \begin{array}{|l|l|l|l|l|l|}
\hline 3 & 8 & 12 & 20 & 32 & 48 \\
\hline
\end{array} \quad \text { total }=18 \\
& C: \begin{array}{|l|l|l|l|l|}
\hline 5 & 7 & 9 & 25 & 29 \\
\hline
\end{array} \\
& +0 \quad+2 \quad+3+3 \quad+5+5 \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\hline
\end{array}
\end{aligned}
$$

Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count}(B,C,\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
    1: count }\leftarrow0
    2:}A\leftarrow[];i\leftarrow1;j\leftarrow
    3: while }i\leq\mp@subsup{n}{1}{}\mathrm{ or }j\leq\mp@subsup{n}{2}{}\mathrm{ do
    4: if }j>\mp@subsup{n}{2}{}\mathrm{ or (i S n
    5: append B[i] to }A;i\leftarrowi+
    6: }\quad\mathrm{ count }\leftarrow\mathrm{ count + (j-1)
    7: else
    8: }\quad\mathrm{ append }C[j]\mathrm{ to }A;j\leftarrowj+
    9: return (A, count)
```


Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A :
sort-and-count (A, n)
1: if $n=1$ then
2: return $(A, 0)$
3: else
4: $\quad\left(B, m_{1}\right) \leftarrow$ sort-and-count $(A[1 . .\lfloor n / 2\rfloor],\lfloor n / 2\rfloor)$
5: $\quad\left(C, m_{2}\right) \leftarrow$ sort-and-count $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: $\quad\left(A, m_{3}\right) \leftarrow$ merge-and-count $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$
7: \quad return $\left(A, m_{1}+m_{2}+m_{3}\right)$

sort-and-count (A, n)

1: if $n=1$ then
2: return $(A, 0)$
3: else
4: $\quad\left(B, m_{1}\right) \leftarrow$ sort-and-count $(A[1 . .\lfloor n / 2\rfloor\rfloor,\lfloor n / 2\rfloor)$
5: $\quad\left(C, m_{2}\right) \leftarrow$ sort-and-count $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: $\quad\left(A, m_{3}\right) \leftarrow$ merge-and-count $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$
7: \quad return $\left(A, m_{1}+m_{2}+m_{3}\right)$

- Recurrence for the running time: $T(n)=2 T(n / 2)+O(n)$
- Running time $=O(n \lg n)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(Solving Recurrences
(7) Computing n-th Fibonacci Number

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(3) Solving Recurrences
(7) Computing n-th Fibonacci Number

Quicksort vs Merge-Sort

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

Quicksort Example

Assumption We can choose median of an array of size n in $O(n)$ time.

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29 38 45 25 15 37 17 64 82 75 94 92 69 76 85														
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}, A_{L}\right.$.size $)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}, A_{R}\right.$.size $)$

D Divide

 Divide

Conquer

Conquer

7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_{L}, the array containing t copies of x, and B_{R}

- Recurrence $T(n) \leq 2 T(n / 2)+O(n)$
- Running time $=O(n \lg n)$

Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
(1) There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
(2) Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}, A_{L}\right.$.size $)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}, A_{R}\right.$.size $)$

 Divide

 Divide

Conquer

Conquer

7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_{L}, the array containing t copies of x, and B_{R}

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in $[0,1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ a random element of A (x is called a pivot)
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}, A_{L}\right.$.size $)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}, A_{R}\right.$.size $)$

 Divide

 Divide

Conquer

Conquer

7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_{L}, the array containing t copies of x, and B_{R}

Lemma The expected running time of the algorithm is $O(n \lg n)$.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.

partition (A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
4: \quad while $i<j$ and $A[i]<A[j]$ do $j \leftarrow j-1$
5: \quad if $i=j$ then break
6: \quad swap $A[i]$ and $A[j] ; i \leftarrow i+1$
7: \quad while $i<j$ and $A[i]<A[j]$ do $i \leftarrow i+1$
8: \quad if $i=j$ then break
9: $\quad \operatorname{swap} A[i]$ and $A[j] ; j \leftarrow j-1$
10: return i

In-Place Implementation of Quick-Sort

quicksort (A, ℓ, r)

1: if $\ell \geq r$ then return
2: $m \leftarrow \operatorname{patition}(A, \ell, r)$
3: quicksort $(A, \ell, m-1)$
4: quicksort $(A, m+1, r)$

- To sort an array A of size n, call quicksort $(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\hline
\end{array}
$$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4 Polynomial Multiplication
(3) Other Classic Algorithms using Divide-and-Conquer
(6) Solving Recurrences
(7) Computing n-th Fibonacci Number

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x ?

A: $\left\lceil\log _{2} N\right\rceil$.

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π.

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log _{2} n!=\Theta(n \lg n)$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log _{2} n!=\Theta(n \lg n)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(2) Solving Recurrences
(7) Computing n-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$
Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time

Recall: Quicksort with Median Finder

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than $x \quad \triangleright$ Divide
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}, A_{L}\right.$.size $)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}, A_{R}\right.$.size $)$
\triangleright Conquer
B_{R} quicksor A_{R}, A_{R} size $\quad \triangleright$ Conquer
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_{L}, the array containing t copies of x, and B_{R}

Selection Algorithm with Median Finder

selection (A, n, i)

1: if $n=1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide
: A_{R} elements in A that are greater than x
\triangleright Divide
5: if $i \leq A_{L}$.size then
6: \quad return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

- Recurrence for selection: $T(n)=T(n / 2)+O(n)$
- Solving recurrence: $T(n)=O(n)$

Randomized Selection Algorithm

selection (A, n, i)

1: if $n=1$ thenreturn A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide

5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

- expected running time $=O(n)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4. Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences
(7) Computing n-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree $n-1$
Output: product of two polynomials

Example:

$$
\begin{aligned}
& \left(3 x^{3}+2 x^{2}-5 x+4\right) \times\left(2 x^{3}-3 x^{2}+6 x-5\right) \\
= & 6 x^{6}-9 x^{5}+18 x^{4}-15 x^{3} \\
& +4 x^{5}-6 x^{4}+12 x^{3}-10 x^{2} \\
& -10 x^{4}+15 x^{3}-30 x^{2}+25 x \\
& +8 x^{3}-12 x^{2}+24 x-20 \\
= & 6 x^{6}-5 x^{5}+2 x^{4}+20 x^{3}-52 x^{2}+49 x-20
\end{aligned}
$$

- Input: $(4,-5,2,3),(-5,6,-3,2)$
- Output: $(-20,49,-52,20,2,-5,6)$

Naïve Algorithm

polynomial-multiplication (A, B, n)

1: let $C[k] \leftarrow 0$ for every $k=0,1,2, \cdots, 2 n-2$
2: for $i \leftarrow 0$ to $n-1$ do
3: \quad for $j \leftarrow 0$ to $n-1$ do
4: $\quad C[i+j] \leftarrow C[i+j]+A[i] \times B[j]$
5: return C

Running time: $O\left(n^{2}\right)$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
& p(x)=3 x^{3}+2 x^{2}-5 x+4=(3 x+2) x^{2}+(-5 x+4) \\
& q(x)=2 x^{3}-3 x^{2}+6 x-5=(2 x-3) x^{2}+(6 x-5)
\end{aligned}
$$

- $p(x)$: degree of $n-1$ (assume n is even)
- $p(x)=p_{H}(x) x^{n / 2}+p_{L}(x)$,
- $p_{H}(x), p_{L}(x)$: polynomials of degree $n / 2-1$.

$$
\begin{aligned}
p q & =\left(p_{H} x^{n / 2}+p_{L}\right)\left(q_{H} x^{n / 2}+q_{L}\right) \\
& =p_{H} q_{H} x^{n}+\left(p_{H} q_{L}+p_{L} q_{H}\right) x^{n / 2}+p_{L} q_{L}
\end{aligned}
$$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
p q & =\left(p_{H} x^{n / 2}+p_{L}\right)\left(q_{H} x^{n / 2}+q_{L}\right) \\
& =p_{H} q_{H} x^{n}+\left(p_{H} q_{L}+p_{L} q_{H}\right) x^{n / 2}+p_{L} q_{L}
\end{aligned}
$$

$\operatorname{multiply}(p, q)=\operatorname{multiply}\left(p_{H}, q_{H}\right) \times x^{n}$

$$
\begin{aligned}
& +\left(\operatorname{multiply}\left(p_{H}, q_{L}\right)+\operatorname{multiply}\left(p_{L}, q_{H}\right)\right) \times x^{n / 2} \\
& +\operatorname{multiply}\left(p_{L}, q_{L}\right)
\end{aligned}
$$

- Recurrence: $T(n)=4 T(n / 2)+O(n)$
- $T(n)=O\left(n^{2}\right)$

Reduce Number from 4 to 3

$$
\begin{aligned}
p q & =\left(p_{H} x^{n / 2}+p_{L}\right)\left(q_{H} x^{n / 2}+q_{L}\right) \\
& =p_{H} q_{H} x^{n}+\left(p_{H} q_{L}+p_{L} q_{H}\right) x^{n / 2}+p_{L} q_{L}
\end{aligned}
$$

- $p_{H} q_{L}+p_{L} q_{H}=\left(p_{H}+p_{L}\right)\left(q_{H}+q_{L}\right)-p_{H} q_{H}-p_{L} q_{L}$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
r_{H} & =\text { multiply }\left(p_{H}, q_{H}\right) \\
r_{L} & =\operatorname{multiply}\left(p_{L}, q_{L}\right)
\end{aligned}
$$

$\operatorname{multiply}(p, q)=r_{H} \times x^{n}$

$$
\begin{aligned}
& +\left(\text { multiply }\left(p_{H}+p_{L}, q_{H}+q_{L}\right)-r_{H}-r_{L}\right) \times x^{n / 2} \\
& +r_{L}
\end{aligned}
$$

- Solving Recurrence: $T(n)=3 T(n / 2)+O(n)$
- $T(n)=O\left(n^{\lg _{2} 3}\right)=O\left(n^{1.585}\right)$

Assumption n is a power of 2 . Arrays are 0 -indexed.

multiply (A, B, n)

1: if $n=1$ then return $(A[0] B[0])$
2: $A_{L} \leftarrow A[0 . . n / 2-1], A_{H} \leftarrow A[n / 2 . . n-1]$
3: $B_{L} \leftarrow B[0 . . n / 2-1], B_{H} \leftarrow B[n / 2 . . n-1]$
4: $C_{L} \leftarrow \operatorname{multiply}\left(A_{L}, B_{L}, n / 2\right)$
5: $C_{H} \leftarrow$ multiply $\left(A_{H}, B_{H}, n / 2\right)$
6: $C_{M} \leftarrow \operatorname{multiply}\left(A_{L}+A_{H}, B_{L}+B_{H}, n / 2\right)$
7: $C \leftarrow$ array of $(2 n-1) 0$'s
8: for $i \leftarrow 0$ to $n-2$ do
9: $\quad C[i] \leftarrow C[i]+C_{L}[i]$
10: $\quad C[i+n] \leftarrow C[i+n]+C_{H}[i]$
11: $\quad C[i+n / 2] \leftarrow C[i+n / 2]+C_{M}[i]-C_{L}[i]-C_{H}[i]$
12: return C

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(6) Solving Recurrences
(7) Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT(Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

Divide-and-Conquer Algorithm for Closest Pair

- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- Combine: Check if there is a closer pair between left-half and right-half

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $=O(n)$ (many technicalities omitted)
- Recurrence: $T(n)=2 T(n / 2)+O(n)$
- Running time: $O(n \lg n)$

$O(n \lg n)$-Time Algorithm for Convex Hull

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C=A B$

Naive Algorithm: matrix-multiplication (A, B, n)

1: for $i \leftarrow 1$ to n do
2: \quad for $j \leftarrow 1$ to n do
3: $\quad C[i, j] \leftarrow 0$
4: \quad for $k \leftarrow 1$ to n do
5:

$$
C[i, j] \leftarrow C[i, j]+A[i, k] \times B[k, j]
$$

6: return C

- running time $=O\left(n^{3}\right)$

Try to Use Divide-and-Conquer

- $C=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$
- matrix_multiplication (A, B) recursively calls matrix_multiplication $\left(A_{11}, B_{11}\right)$, matrix_multiplication $\left(A_{12}, B_{21}\right)$,
- Recurrence for running time: $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- $T(n)=O\left(n^{3}\right)$

Strassen's Algorithm

- $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7 !
- New recurrence: $T(n)=7 T(n / 2)+O\left(n^{2}\right)$
- Solving Recurrence $T(n)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.808}\right)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences
(7) Computing n-th Fibonacci Number

Methods for Solving Recurrences

- The recursion-tree method
- The master theorem

Recursion-Tree Method

- $T(n)=2 T(n / 2)+O(n)$

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $=O(n \lg n)$

Recursion-Tree Method

- $T(n)=3 T(n / 2)+O(n)$

- Total running time at level i ? $\frac{n}{2^{i}} \times 3^{i}=\left(\frac{3}{2}\right)^{i} n$
- Index of last level? $\lg _{2} n$
- Total running time?

$$
\sum_{i=0}^{\lg _{2} n}\left(\frac{3}{2}\right)^{i} n=O\left(n\left(\frac{3}{2}\right)^{\lg _{2} n}\right)=O\left(3^{\lg _{2} n}\right)=O\left(n^{\lg _{2} 3}\right)
$$

Recursion-Tree Method

- $T(n)=3 T(n / 2)+O\left(n^{2}\right)$

- Total running time at level i ? $\left(\frac{n}{2^{i}}\right)^{2} \times 3^{i}=\left(\frac{3}{4}\right)^{i} n^{2}$
- Index of last level? $\lg _{2} n$
- Total running time?

$$
\sum_{i=0}^{\lg _{2} n}\left(\frac{3}{4}\right)^{i} n^{2}=O\left(n^{2}\right)
$$

Master Theorem

Recurrences	a	b	c	time
$T(n)=2 T(n / 2)+O(n)$	2	2	1	$O(n \lg n)$
$T(n)=3 T(n / 2)+O(n)$	3	2	1	$O\left(n^{\lg _{2} 3}\right)$
$T(n)=3 T(n / 2)+O\left(n^{2}\right)$	3	2	2	$O\left(n^{2}\right)$

Theorem $T(n)=a T(n / b)+O\left(n^{c}\right)$, where $a \geq 1, b>1, c \geq 0$ are constants. Then,

$$
T(n)= \begin{cases}O\left(n^{\lg _{b} a}\right) & \text { if } c<\lg _{b} a \\ O\left(n^{c} \lg n\right) & \text { if } c=\lg _{b} a \\ O\left(n^{c}\right) & \text { if } c>\lg _{b} a\end{cases}
$$

Theorem $T(n)=a T(n / b)+O\left(n^{c}\right)$, where $a \geq 1, b>1, c \geq 0$ are constants. Then,

$$
T(n)= \begin{cases}O\left(n^{\lg _{b} a}\right) & \text { if } c<\lg _{b} a \\ O\left(n^{c} \lg n\right) & \text { if } c=\lg _{b} a \\ O\left(n^{c}\right) & \text { if } c>\lg _{b} a\end{cases}
$$

- Ex: $T(n)=4 T(n / 2)+O\left(n^{2}\right)$. Case 2. $T(n)=O\left(n^{2} \lg n\right)$
- Ex: $T(n)=3 T(n / 2)+O(n)$. Case 1. $T(n)=O\left(n^{\lg _{2} 3}\right)$
- Ex: $T(n)=T(n / 2)+O(1)$. Case 2. $T(n)=O(\lg n)$
- Ex: $T(n)=2 T(n / 2)+O\left(n^{2}\right)$. Case 3. $T(n)=O\left(n^{2}\right)$

Proof of Master Theorem Using Recursion Tree

$$
T(n)=a T(n / b)+O\left(n^{c}\right)
$$

- $c<\lg _{b} a$: bottom-level dominates: $\left(\frac{a}{b^{c}}\right)^{\lg _{b} n} n^{c}=n^{\lg _{b} a}$
- $c=\lg _{b} a$: all levels have same time: $n^{c} \lg _{b} n=O\left(n^{c} \lg n\right)$
- $c>\lg _{b} a$: top-level dominates: $O\left(n^{c}\right)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
(3) Solving Recurrences
(7) Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89, \cdots$

n-th Fibonacci Number
 Input: integer $n>0$
 Output: F_{n}

Computing F_{n} : Stupid Divide-and-Conquer Algorithm

Fib (n)

1: if $n=0$ return 0
2: if $n=1$ return 1
3: return $\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Q: Is the running time of the algorithm polynomial or exponential in n ?

A: Exponential

- Running time is at least $\Omega\left(F_{n}\right)$
- F_{n} is exponential in n

Computing F_{n} : Reasonable Algorithm

$\operatorname{Fib}(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Dynamic Programming
- Running time $=O(n)$

Computing F_{n} : Even Better Algorithm

$$
\begin{aligned}
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{n-1}}{F_{n-2}} \\
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{2}\binom{F_{n-2}}{F_{n-3}} \\
& \ldots \\
\binom{F_{n}}{F_{n-1}} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-1}\binom{F_{1}}{F_{0}}
\end{aligned}
$$

$\operatorname{power}(n)$
1: if $n=0$ then return $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2: $R \leftarrow \operatorname{power}(\lfloor n / 2\rfloor)$
3: $R \leftarrow R \times R$
4: if n is odd then $R \leftarrow R \times\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
5: return R

Fib (n)

1: if $n=0$ then return 0
2: $M \leftarrow \operatorname{power}(n-1)$
3: return $M[1][1]$

- Recurrence for running time? $T(n)=T(n / 2)+O(1)$
- $T(n)=O(\lg n)$

Running time $=O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_{n}, we need $O(\lg n)$ basic arithmetic operations on integers

Summary: Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots :

$$
T(n)=2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \lg n)
$$

- Integer Multiplication:

$$
T(n)=3 T(n / 2)+O(n) \Rightarrow T(n)=O\left(n^{\lg _{2} 3}\right)
$$

- Matrix Multiplication:

$$
T(n)=7 T(n / 2)+O\left(n^{2}\right) \Rightarrow T(n)=O\left(n^{\lg _{2} 7}\right)
$$

- Usually, designing better algorithm for "combine" step is key to improve running time

