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Paradigms for Designing Algorithms

Greedy algorithm
o Make a greedy choice
@ Prove that the greedy choice is safe
@ Reduce the problem to a sub-problem and solve it iteratively
°

Usually for optimization problems

Divide-and-conquer
@ Break a problem into many independent sub-problems
@ Solve each sub-problem separately

@ Combine solutions for sub-problems to form a solution for the
original one

@ Usually used to design more efficient algorithms




Paradigms for Designing Algorithms

Dynamic Programming
@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems
@ Use a table to store solutions for sub-problems for reuse




Recall: Computing the n-th Fibonacci Number

o FO = O, F1 =1
o Fn = Fn—l + Fn_g,‘v’n Z 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,---

Fib(n)

1. Fl0]«+0

2: F[l] +—1

3: for i + 2 ton do

4 Fli] + F[i— 1]+ F[i — 2]
5: return F'[n]

@ Store each Fi] for future use.



Outline

@ Weighted Interval Scheduling



Recall: Interval Schduling
Input: n jobs, job ¢ with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: a maximum-size subset of mutually compatible jobs
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Optimum value = 220



Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

@ Job with the earliest finish time? No, we are ignoring weights

o Job with the largest weight? No, we are ignoring times
weight?

@ Job with the largest !
length

No, when weights are equal, this is the shortest job
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Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9 i | opt[i
- i 0 0
[2 100 [5 50 ] I 9 30
. L 1 80
[ 25 ] 50 ]
L — 5 100
B o | [[__so0 |
S ‘ 3] 100
| ] [6__70 |
1 4| 105
51 150
@ Sort jobs according to non-decreasing order 6| 170
of finish times 7| 185
@ optli]: optimal value for instance only 18] 220
containing jobs {1,2,--- ,i} 9] 220




Designing a Dynamic Programming Algorithm

@ Focus on instance

S S s s s S S {1,2,3,--- i},

o B0 ] . .

A T R S @ optli]: optimal value for the

. (e .
i3 9:0 i7 — I Instance

o R s s P @ assume we have computed

B opt|0], opt[1],- - -, opt[i — 1]
Q: The value of optimal solution that does not contain 47 |
A: opt[i — 1] |
Q: The value of optimal solution that contains job 7 |

A: v, + opt[pi], p; = the largest j such that f; <'s; J




Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain ¢7? ]
A: opt[i — 1] )
Q: The value of optimal solution that contains job 7 |
A: v; + opt[pi], p; = the largest j such that f; <'s; )

Recursion for opt|i]:
opt[i] = max {opt[i — 1], v; + opt[p;]} J




Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i — 1], v; + opt[p;]}

= =
opt[0] =0 I
opt[1] = max{opt[0],80 + opt[0]} = 80
opt[2] = max{opt[1], 100 + opt[0]} = 100
opt[3] = max{opt[2], 90 + opt[0]} = 100
opt[4] = max{opt[3], 25 + opt[1]} = 105
opt[5] = max{opt[4], 50 + opt[3]|} = 150



Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i — 1], v; + opt[p;]}

2 100 50 |
*1\ ; 390 [7
[ 80 | \16 70

= 0, opt[l]= 80, opt[2] =100

opt|0]

opt[3] =100, opt[4] = 105, opt[5] = 150
opt[6] = max{opt[5], 70 + opt[3]} = 170
opt[7] = max{opt[6],80 + opt[4]} = 185
opt[8] = max{opt[7], 50 + opt[6]} = 220
opt[9] = max{opt[8], 30 + opt[7]} = 220



Dynamic Programming

sort jobs by non-decreasing order of finishing times
ComPUte b1,P2, s Pn
opt[0] - 0

for i <~ 1 ton do
optli] < max{opt[i — 1], v; + opt[p:] }

R RPWE

@ Running time sorting: O(nlgn)
@ Running time for computing p: O(nlgn) via binary search
@ Running time for computing opt|n]: O(n)



How Can We Recover the Optimum Schedule?
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sort jobs by non-decreasing order of
finishing times
compute p1,pa, - -, Pn
opt[0] < 0
for i < 1 ton do
if opt[i — 1] > v; + opt[p;] then
optli] < opt[i — 1]
bli] < N
else
opt[i] < v; + opt[p;]
bli] + Y

1.9+ n,S«0
2: while 7 # 0 do

3 if bi] = N then
4: 11—1

5: else

6: S+ Su{i}
T 14— Pi

8: return S




Recovering Optimum Schedule: Example
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Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse



Outline

© Subset Sum Problem



Subset Sum Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
Output: a subset S of items that

maximizes Zwi s.t. Zwi <W.

i€S €S

@ Motivation: you have budget W, and want to buy a subset of
items, so as to spend as much money as possible.

Example:
e W=35n=5w=(14,9,17,10,13)
e Optimum: S ={1,2,4} and 14+ 9 + 10 = 33




Greedy Algorithms for Subset Sum

Candidate Algorithm:

@ Sort according to non-increasing order of weights

@ Select items in the order as long as the total weight remains

below W

Q:

Does candidate algorithm always produce optimal solutions?

No. W = 100,n = 3,w = (51,50, 50).

What if we change “non-increasing” to “non-decreasing”?

No. W = 100,n = 3,w = (1,50, 50)




Design a Dynamic Programming Algorithm

e Consider the instance: i, W', (wy,wy, -, w;);

e optli, W']: the optimum value of the instance

Q:

The value of the optimum solution that does not contain 77

A:

optli — 1, W'

The value of the optimum solution that contains 77

opt[i — L, W' — w;] + w;




Dynamic Programming

o Consider the instance: i, W’ (wy, wy, -+, w;);

@ optli, W']: the optimum value of the instance

0 1=20
optli — 1, W] i>0,w; > W
optli — 1, W'

opt[i, W' =
max ,
{ optli — 1, W' — w;] + w;

} i>0,w,~§W’



Dynamic Programming

- for W < 0 to W do
opt[0, W'] + 0
: for i < 1ton do
for W'« 0to W do
optli, W'] < opt[i — 1, W]
if w; <W’'and optfi — 1, W' —w;] + w; > optli, W']
then

PR RPE

opt[i, W'] < opt[i — 1, W' — w;] + w;
return opt[n, W]

co




Recover the Optimum Set

N2 R RE

*®

10:

for W/ < 0 to W do
opt[0, W'] <~ 0
for i <~ 1 ton do
for W/ < 0 to W do
optli, W'] < opt[i — 1, W]
bli, W'] < N
if w; <W’'and optfi — 1, W' —w;] + w; > optli, W']
then
optli, W' < opt[i — 1, W' —w;] + w;
bli, W'] <Y
return opt[n, W]




Recover the Optimum Set

LienW—WS+0
2: while 7 > 0 do

3: if b[i, W'] =Y then
4: W'« W' — w;
5: S« Su{i}

6: 1+1—1

7: return S




Running Time of Algorithm

1. for W' <0 to W do

2: opt[0, W'] + 0

3: for i < 1ton do

4: for W/ < 0 to W do

5 opt[i, W'] < opt][i — 1, W']

6: if w; <W’and optfi — 1, W' —w;] + w; > optli, W']
then

7 opt[i, W] < optli — 1, W' —w;] + w;

8: return opt[n, W]

@ Running time is O(nW)
@ Running time is pseudo-polynomial because it depends on value
of the input integers.



Avoiding Unncessary Computation and Memory
Using Memoized Algorithm and Hash Map

compute-opt(z, W')

1. if opt[i, W’] # L then return opt[i, W]

2. if1=0thenr <« 0

3: else

4: r <— compute-opt(i — 1, W)

5: if w; < W' then

6: r’ < compute-opt(i — 1, W' — w;) + w;
7: if v/ >r thenr <1’

8: optli, W'| < r

9: return r

@ Use hash map for opt
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© Knapsack Problem



Knapsack Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
a value v; > 0 for each item i
Output: a subset S of items that

maximizes Zv, s.t. Zwi < W.

€S €S

@ Motivation: you have budget W, and want to buy a subset of
items of maximum total value



DP for Knapsack Problem

@ optli, W']: the optimum value when budget is W’ and items are
{1,2,3,--- i},
o If i =0, opt[i, W] =0 for every W' =0,1,2,--- , W.

0 1=20
optli — 1, W] 1> 0,w; > W
optli — 1, W]

opt[i, W'] =
max ‘
{ opt[i — 1, W' — w;] + v,

} 2'>O,wi§W’



Exercise: ltems with 3 Parameters

Input: integer bounds W > 0, 7 > 0,
a set of n items, each with an integer weight w; > 0
a size z; > 0 for each item i
a value v; > 0 for each item ¢
Output: a subset S of items that

maximizes E V; s.t.

ZwiSWand ZZiSZ

€8 i€S
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@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space



Subsequence

e A = bacdca
o (' =adca
e (' is a subsequence of A

Def. Given two sequences A[l .. n| and C[1 .. t] of letters, C'is
called a subsequence of A if there exists integers
1 <iy <ip <iz<...<i <nsuch that Afi;] = C[j] for every

i=1,2,3,--- ,t.

@ Exercise: how to check if sequence C' is a subsequence of A7



Longest Common Subsequence
Input: A[l .. n| and B[l .. m]

Output: the longest common subsequence of A and B

Example:
o A = ‘bacdcd
o B = ‘adbcdd’

e LCS(A, B) = ‘adcd

@ Applications: edit distance (diff), similarity of DNAs



Matching View of LCS

(1,/ i~ b c/ d
@ Goal of LCS: find a maximum-size non-crossing matching
between letters in A and letters in B.



Reduce to Subproblems

o A = ‘bacdc’
o B = ‘adbcd!
@ either the last letter of A is not matched:

° need to compute LCS(‘bacd’, ‘adbed’)

or the last letter of B is not matched:
° need to compute LCS(‘bacdc’, ‘adbc’)



Dynamic Programming for LCS

@ optli, j],0 <7< n,0<j<m: length of longest common
sub-sequence of A[l .. i and BJ1 .. j].

e if i =0 or j =0, then opt[i, j] = 0.
e ifi>0,7 >0, then

optli — 1,5 — 1]+ 1 if A[i] = BJ[j]

optli, j| = optli — 1, 7] AL .
max{ optli j — 1] if Ali] # Bl[j]



Dynamic Programming for LCS

: for j < 0 to m do
opt|0,j] <0
: for i< 1tondo
optli,0] <~ 0
for j < 1tom do
if Ali] = B[j] then
optli,j| < optli — 1,5 — 1] + 1, w[i, j] < "\
else if opt[i,j — 1] > opt[i — 1, j] then
optli, j] < opt[i, j — 1], m[i, 5] < "«"
else
optli, 5] « optli — 1, 4], 7li, j] « 1"

PRIAPPE2RPE
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Example

112|3(4]5

Alblalc|d]|c

B d|b d
0 1 2 3 4 5 6
ojoLjo0oLjoLjfoLrjoLjoL oL
110L [0+ [0« |1 |1+ |1« |1«
210 L [IN |1+ |1+ |1+ |1 |2
B310L ] 17 |1+ |1+ 2N |2« |2«
410L ] 11 2N |2+ |2+ |3N |3+«
510L ] 11271 |2+ |3 |3« |3«
610 L 1R | 27T |2« |31 |3« |4




Example:

Find Common Subsequence

112|3(4]5

Alblalc|d]|c

B d{blc|d
0 1 2 3 4 5 6
ojoLjo0oLjoLjfoLrjoLjoL oL
110L ][0+ [0« |1 |1+ |1« |1«
210 L IR |1+ |1+ |1+ |1« |2
310L | 11 |1+ |1« |2\ |2« |2«
410 L] 11 |22+ |2« |3 |3«
510L ) 11| 27T [2+ |3 |3+« | 3«
610 L |1 | 27T |2+ |31 |3« |4~




Find Common Subsequence

L4 n,j«m,S<+"
2: while 7 > 0 and 5 > 0 do

3: if 7[,7] ="\" then

4 S Ali| x Syii—1,j+j—1
5: else if 7[i, j] ="1" then

6: 1+—1—1

7: else

8: jej—1

9: return S




Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions)
we need to change A to B?

Example:
e A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Obs. #OPs = length(A) + length(B) - 2 - length(LCS(A, B))

)




Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’

@ Not related to LCS any more



Edit Distance (with Replacing)

@ optli, j],0 <7< n,0<j<m: edit distance between A[l .. i
and B[l .. j].

e if i = 0 then optl[i, j| = j; if j = 0 then opt|i, j] = 1.

e if i >0,7 >0, then

optli — 1,7 — 1] if Ali] = Bl[j]
opt]i, ] = optli — 1,j] + 1
’ min optli,j — 1]+ 1 if Ali] # B[j]

optfi—1,7 — 1] +1



Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward. J

@ example: “racecar’, “wasitacaroracatisaw”, " putitup”

Longest Palindrome Subsequence
Input: a sequence A
Output: the longest subsequence C' of A that is a palindrome.

Example:
@ Input: acbcedeacab

@ OQutput: acedeca




Outline

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space



Computing the Length of LCS

1: for j <~ 0 to m do

2 opt[0, j] < 0

3: for i < 1tondo

4 optli,0] < 0

5: for j < 1 tom do
6 if Afi] = BJ[j] then

7 optli, j] < optli — 1,5 — 1] + 1

8 else if opt[i,j — 1] > opt[i — 1, j] then
0: optli, j] < optli, j — 1]

10: else
11: optli, j] < optli — 1, j]

Obs. The i-th row of table only depends on (i — 1)-th row.




Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row. J

Q: How to use this observation to reduce space? ]

A: We only keep two rows: the (i — 1)-th row and the i-th row. |




Linear Space Algorithm to Compute Length of LCS

: for j <~ 0tom do
opt|0,j] < 0
: for i <~ 1ton do
optli mod 2,0] < 0
for j < 1tom do
if Ali] = B[j] then
optli mod 2, j] < optli — 1 mod 2,5 — 1]+ 1
else if opt[i mod 2,j — 1] > opt[i — 1 mod 2, j] then
opt[i mod 2, j| < opt[i mod 2,5 — 1]
else
11: opt[i mod 2, j] + opt[i — 1 mod 2, j]

2P RN PRE
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12: return opt[n mod 2, m|




How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n|
@ Can recover the LCS using n rounds: time = O(n%m)
@ Using Divide and Conquer + Dynamic Programming:

e Space: O(m +n)
o Time: O(nm)
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© Shortest Paths in Directed Acyclic Graphs



Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without J

(directed) cycles.
@ (&)
o o W
e‘e

a DAG

not a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted. J




Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w: E — R.
Assume V = {1,2,3--- ,n} is topologically sorted: if
(i,7) € E, then i < j
Output: the shortest path from 1 to ¢, for every 1 € V'

1

—
O ORI OSSO
e

A
N >



Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

=1 =
minj:(j,i)eE {f(]) + w(ja Z>} L= 27 37 T



Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex ¢

Shortest Paths in DAG

1: f[l] +«—0

2: for i < 2 ton do

&

NN OTEES

Sli] = o0
for each incoming edge (j,4) of i do
if f[j] + w(j,i) < fi] then

fli] = fli] + w(5,9)
(i) < j

print-path(t)
1: if t =1 then
2 print(1)
3 return
4: print-path(m(t))
5: print( )", t)




Example




Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V' = {1,2,3--- ,n} is topologically sorted: if
(i,7) € E, then i < j
Output: the path with the largest weight (the heaviest path) from
1 to n.

@ f[i]: weight of the heaviest path from 1 to i

i =1{" =
T maxjgaes {f() +w(ii)} i=2.3- .n
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@ Matrix Chain Multiplication



Matrix Chain Multiplication

Matrix Chain Multiplication
Input: n matrices Ay, Ay, -+, A, of sizes
71 X C1,T9 X Cay-++ Ty X Cpn, such that ¢; = ;4 for every
i=1,2,,n—1.
Output: the order of computing A1 As - - - A, with the minimum
number of multiplications

Fact Multiplying two matrices of size r x k and k x ¢ takes
r X k X ¢ multiplications.




Example:
e A;:10x 100, As:100 x5, Asz:5x50

[10x100] [100x5 | [ 5x50 | [10x100] [100x5 | [ 5x50 |

10-100-5 100 -5 - 50

100 x 50

10-5-50 10 - 100 - 50
= 2500 = 50000

cost = 5000 + 2500 = 7500 cost = 25000 + 50000 = 75000

o (A143)As: 10 x 100 x 5+ 10 x 5 x 50 = 7500
o Aj(AsA3): 100 x 5 x 50+ 10 x 100 x 50 = 75000




Matrix Chain Multiplication: Design DP

@ Assume the last Step is (AlAQ s Ai)(AiJrlAiJrQ s An)
@ Cost of last step: 71 X ¢; X ¢,

@ Optimality for sub-instances: we need to compute A; A, - -+ A;
and A;. 14,5 A, optimally
@ opt[i, j] : the minimum cost of computing A;A; ;- -+ A;

. i
optlt, 7] = _ . | =
[2, 7] {mlnk:i§k<j (opt[i, k] + opt[k + 1, 7] + ricke;) i< j



Matrix Chain Multiplication: Design DP

matrix-chain-multiplication(n, r[1..n], ¢[1..n])

1 let opt[i,i] < 0 foreveryi =1,2,--- .n
2: for { + 2 ton do
3: fori< 1ton—/¢+1do

4: j—i+£4-—1

5: optli, j] < oo

6: for k< itoj—1do

7: if opt[i, k] + optlk + 1, j] + ricke; < opt[i, j] then
8: opt[i, j] < optli, k] + opt[k + 1, j] + rickc;

9: W[i,j] — k

10: return opt[1,n|




Constructing Optimal Solution

Print-Optimal-Order(, j)
1. if i — j then

2 print( “A”;)

3: else

4: print(“(")

5: Print-Optimal-Order(i, 7[4, j])

6 Print-Optimal-Order(7[i, j] + 1, j)
7 print(*)")
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@ Optimum Binary Search Tree



Optimum Binary Search Tree

@ nelementse; <ey <ez3<---<e,
@ ¢; has frequency f;

@ goal: build a binary search tree for {ey,es,--- ,e,} with the
minimum accessing cost:

Zfi X (depth of e; in the tree)
=1



Optimum Binary Search Tree

Example: fi =10, f, =5,f3=3

1I0x1+5x2+3x3=29
10x24+5x1+3x2=31
10x3+5x2+3x1=43



suppose we decided to let e; be the root
e1,6a, -+ ,e;,_1 are on left sub-tree
€it1,€it2," " , €, are on right sub-tree
d;: depth of ¢; in our tree

C,CL,Cg: cost of tree, left sub-tree and right sub-tree
respectively

C=) fidj=Y fi+> fi(di—1)
j=1 Jj=1 Jj=1

n 1—1 n
=D S+ fild =1+ ) fild;—1)
j=1 =1

j=i+1

=> fi+CL+Chr

Jj=1



C=> fi+CL+Chr

j=1

@ In order to minimize C, need to minimize Cr, and Cg
respectively

@ opt; j: the optimum cost for the instance (f;, fix1, -+, f;)

o foreveryie€ {1,2,--- ,n,n+1}: optfi,i —1] =0
o for every i,j such that 1 <i < j <n,

opt|i, 7] ka + mln (opt[ k — 1] + opt[k + 1,j])
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© Summary



Dynamic Programming
@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems
@ Use a table to store solutions for sub-problems for reuse




Comparison with greedy algorithms
@ Greedy algorithm: each step is making a small progress towards
constructing the solution
@ Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer
@ Divide and conquer: an instance is broken into many
independent sub-instances, which are solved separately.
@ Dynamic programming: the sub-instances we constructed are
overlapping.




Definition of Cells for Problems We Learnt

@ Weighted interval scheduling: opt[i] = value of instance defined
by jobs {1,2,--- ,i}

@ Subset sum, knapsack: opt[i, W'] = value of instance with items
{1,2,---,i} and budget W’

@ Longest common subsequence: optl[i, j| = value of instance
defined by A[1..i] and BJ1..j]

@ Shortest paths in DAG: f[v] = length of shortest path from s to
v

@ Matrix chain multiplication, optimum binary search tree:
opt[i, j] = value of instances defined by matrices i to j
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