CSE 431/531: Algorithm Analysis and Design (Spring 2021)
Dynamic Programming

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm
o Make a greedy choice
@ Prove that the greedy choice is safe
@ Reduce the problem to a sub-problem and solve it iteratively
°

Usually for optimization problems

Divide-and-conquer
@ Break a problem into many independent sub-problems
@ Solve each sub-problem separately

@ Combine solutions for sub-problems to form a solution for the
original one

@ Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming
@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems
@ Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

o FO = O, F1 =1
o Fn = Fn—l + Fn_g,‘v’n Z 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21,34,55,89,---

Fib(n)

1. Fl0]«+0

2: F[l] +—1

3: for i + 2 ton do

4 Fli] + F[i— 1]+ F[i — 2]
5: return F'[n]

@ Store each Fi] for future use.

Outline

@ Weighted Interval Scheduling

Recall: Interval Schduling
Input: n jobs, job ¢ with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: a maximum-size subset of mutually compatible jobs

T

| mm e
| m—
i‘SO‘ii‘m‘i:i

Optimum value = 220

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

@ Job with the earliest finish time? No, we are ignoring weights

o Job with the largest weight? No, we are ignoring times
weight?

@ Job with the largest !
length

No, when weights are equal, this is the shortest job

(@)
—
DO
w
=~
t
(@)
\]
-1 1 100

Designing a Dynamic Programming Algorithm

0 1 2 3 4 5 6 7 8 9 i | opt[i
- i 0 0
[2 100 [5 50] I 9 30
. L 1 80
[25] 50]
L — 5 100
B o | [[__so0 |
S ‘ 3] 100
|] [6__70 |
1 4| 105
51 150
@ Sort jobs according to non-decreasing order 6| 170
of finish times 7| 185
@ optli]: optimal value for instance only 18] 220
containing jobs {1,2,--- ,i} 9] 220

Designing a Dynamic Programming Algorithm

@ Focus on instance

S S s s s S S {1,2,3,--- i},

o B0] . .

A T R S @ optli]: optimal value for the

. (e .
i3 9:0 i7 — I Instance

o R s s P @ assume we have computed

B opt|0], opt[1],- - -, opt[i — 1]
Q: The value of optimal solution that does not contain 47 |
A: opt[i — 1] |
Q: The value of optimal solution that contains job 7 |

A: v, + opt[pi], p; = the largest j such that f; <'s; J

Designing a Dynamic Programming Algorithm

Q: The value of optimal solution that does not contain ¢7?]
A: opt[i — 1])
Q: The value of optimal solution that contains job 7 |
A: v; + opt[pi], p; = the largest j such that f; <'s;)

Recursion for opt|i]:
opt[i] = max {opt[i — 1], v; + opt[p;]} J

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i — 1], v; + opt[p;]}

= =
opt[0] =0 I
opt[1] = max{opt[0],80 + opt[0]} = 80
opt[2] = max{opt[1], 100 + opt[0]} = 100
opt[3] = max{opt[2], 90 + opt[0]} = 100
opt[4] = max{opt[3], 25 + opt[1]} = 105
opt[5] = max{opt[4], 50 + opt[3]|} = 150

Designing a Dynamic Programming Algorithm

Recursion for opt[i]:

opt[i] = max {opt[i — 1], v; + opt[p;]}

2 100 50 |
*1\ ; 390 [7
[80 | \16 70

= 0, opt[l]= 80, opt[2] =100

opt|0]

opt[3] =100, opt[4] = 105, opt[5] = 150
opt[6] = max{opt[5], 70 + opt[3]} = 170
opt[7] = max{opt[6],80 + opt[4]} = 185
opt[8] = max{opt[7], 50 + opt[6]} = 220
opt[9] = max{opt[8], 30 + opt[7]} = 220

Dynamic Programming

sort jobs by non-decreasing order of finishing times
ComPUte b1,P2, s Pn
opt[0] - 0

for i <~ 1 ton do
optli] < max{opt[i — 1], v; + opt[p:] }

R RPWE

@ Running time sorting: O(nlgn)
@ Running time for computing p: O(nlgn) via binary search
@ Running time for computing opt|n]: O(n)

How Can We Recover the Optimum Schedule?

._.
=

PRIAPPe PN

sort jobs by non-decreasing order of
finishing times
compute p1,pa, - -, Pn
opt[0] < 0
for i < 1 ton do
if opt[i — 1] > v; + opt[p;] then
optli] < opt[i — 1]
bli] < N
else
opt[i] < v; + opt[p;]
bli] + Y

1.9+ n,S«0
2: while 7 # 0 do

3 if bi] = N then
4: 11—1

5: else

6: S+ Su{i}
T 14— Pi

8: return S

Recovering Optimum Schedule: Example

S
—
SN
i

opt|i]
0

80
100
100
105
150
170
185
220
220

OO N[OOI B W N O =,

Z < <KL K| Z <<+

Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse

Outline

© Subset Sum Problem

Subset Sum Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
Output: a subset S of items that

maximizes Zwi s.t. Zwi <W.

i€S €S

@ Motivation: you have budget W, and want to buy a subset of
items, so as to spend as much money as possible.

Example:
e W=35n=5w=(14,9,17,10,13)
e Optimum: S ={1,2,4} and 14+ 9 + 10 = 33

Greedy Algorithms for Subset Sum

Candidate Algorithm:

@ Sort according to non-increasing order of weights

@ Select items in the order as long as the total weight remains

below W

Q:

Does candidate algorithm always produce optimal solutions?

No. W = 100,n = 3,w = (51,50, 50).

What if we change “non-increasing” to “non-decreasing”?

No. W = 100,n = 3,w = (1,50, 50)

Design a Dynamic Programming Algorithm

e Consider the instance: i, W', (wy,wy, -, w;);

e optli, W']: the optimum value of the instance

Q:

The value of the optimum solution that does not contain 77

A:

optli — 1, W'

The value of the optimum solution that contains 77

opt[i — L, W' — w;] + w;

Dynamic Programming

o Consider the instance: i, W’ (wy, wy, -+, w;);

@ optli, W']: the optimum value of the instance

0 1=20
optli — 1, W] i>0,w; > W
optli — 1, W'

opt[i, W' =
max ,
{ optli — 1, W' — w;] + w;

} i>0,w,~§W’

Dynamic Programming

- for W < 0 to W do
opt[0, W'] + 0
: for i < 1ton do
for W'« 0to W do
optli, W'] < opt[i — 1, W]
if w; <W’'and optfi — 1, W' —w;] + w; > optli, W']
then

PR RPE

opt[i, W'] < opt[i — 1, W' — w;] + w;
return opt[n, W]

co

Recover the Optimum Set

N2 R RE

*®

10:

for W/ < 0 to W do
opt[0, W'] <~ 0
for i <~ 1 ton do
for W/ < 0 to W do
optli, W'] < opt[i — 1, W]
bli, W'] < N
if w; <W’'and optfi — 1, W' —w;] + w; > optli, W']
then
optli, W' < opt[i — 1, W' —w;] + w;
bli, W'] <Y
return opt[n, W]

Recover the Optimum Set

LienW—WS+0
2: while 7 > 0 do

3: if b[i, W'] =Y then
4: W'« W' — w;
5: S« Su{i}

6: 1+1—1

7: return S

Running Time of Algorithm

1. for W' <0 to W do

2: opt[0, W'] + 0

3: for i < 1ton do

4: for W/ < 0 to W do

5 opt[i, W'] < opt][i — 1, W']

6: if w; <W’and optfi — 1, W' —w;] + w; > optli, W']
then

7 opt[i, W] < optli — 1, W' —w;] + w;

8: return opt[n, W]

@ Running time is O(nW)
@ Running time is pseudo-polynomial because it depends on value
of the input integers.

Avoiding Unncessary Computation and Memory
Using Memoized Algorithm and Hash Map

compute-opt(z, W')

1. if opt[i, W’] # L then return opt[i, W]

2. if1=0thenr <« 0

3: else

4: r <— compute-opt(i — 1, W)

5: if w; < W' then

6: r’ < compute-opt(i — 1, W' — w;) + w;
7: if v/ >r thenr <1’

8: optli, W'| < r

9: return r

@ Use hash map for opt

Outline

© Knapsack Problem

Knapsack Problem
Input: an integer bound W > 0
a set of n items, each with an integer weight w; > 0
a value v; > 0 for each item i
Output: a subset S of items that

maximizes Zv, s.t. Zwi < W.

€S €S

@ Motivation: you have budget W, and want to buy a subset of
items of maximum total value

DP for Knapsack Problem

@ optli, W']: the optimum value when budget is W’ and items are
{1,2,3,--- i},
o If i =0, opt[i, W] =0 for every W' =0,1,2,--- , W.

0 1=20
optli — 1, W] 1> 0,w; > W
optli — 1, W]

opt[i, W'] =
max ‘
{ opt[i — 1, W' — w;] + v,

} 2'>O,wi§W’

Exercise: ltems with 3 Parameters

Input: integer bounds W > 0, 7 > 0,
a set of n items, each with an integer weight w; > 0
a size z; > 0 for each item i
a value v; > 0 for each item ¢
Output: a subset S of items that

maximizes E V; s.t.

ZwiSWand ZZiSZ

€8 i€S

Outline

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

Subsequence

e A = bacdca
o (' =adca
e (' is a subsequence of A

Def. Given two sequences A[l .. n| and C[1 .. t] of letters, C'is
called a subsequence of A if there exists integers
1 <iy <ip <iz<...<i <nsuch that Afi;] = C[j] for every

i=1,2,3,--- ,t.

@ Exercise: how to check if sequence C' is a subsequence of A7

Longest Common Subsequence
Input: A[l .. n| and B[l .. m]

Output: the longest common subsequence of A and B

Example:
o A = ‘bacdcd
o B = ‘adbcdd’

e LCS(A, B) = ‘adcd

@ Applications: edit distance (diff), similarity of DNAs

Matching View of LCS

(1,/ i~ b c/ d
@ Goal of LCS: find a maximum-size non-crossing matching
between letters in A and letters in B.

Reduce to Subproblems

o A = ‘bacdc’
o B = ‘adbcd!
@ either the last letter of A is not matched:

° need to compute LCS(‘bacd’, ‘adbed’)

or the last letter of B is not matched:
° need to compute LCS(‘bacdc’, ‘adbc’)

Dynamic Programming for LCS

@ optli, j],0 <7< n,0<j<m: length of longest common
sub-sequence of A[l .. i and BJ1 .. j].

e if i =0 or j =0, then opt[i, j] = 0.
e ifi>0,7 >0, then

optli — 1,5 — 1]+ 1 if A[i] = BJ[j]

optli, j| = optli — 1, 7] AL .
max{ optli j — 1] if Ali] # Bl[j]

Dynamic Programming for LCS

: for j < 0 to m do
opt|0,j] <0
: for i< 1tondo
optli,0] <~ 0
for j < 1tom do
if Ali] = B[j] then
optli,j| < optli — 1,5 — 1] + 1, w[i, j] < "\
else if opt[i,j — 1] > opt[i — 1, j] then
optli, j] < opt[i, j — 1], m[i, 5] < "«"
else
optli, 5] « optli — 1, 4], 7li, j] « 1"

PRIAPPE2RPE

==
= O

Example

112|3(4]5

Alblalc|d]|c

B d|b d
0 1 2 3 4 5 6
ojoLjo0oLjoLjfoLrjoLjoL oL
110L [0+ [0« |1 |1+ |1« |1«
210 L [IN |1+ |1+ |1+ |1 |2
B310L] 17 |1+ |1+ 2N |2« |2«
410L] 11 2N |2+ |2+ |3N |3+«
510L] 11271 |2+ |3 |3« |3«
610 L 1R | 27T |2« |31 |3« |4

Example:

Find Common Subsequence

112|3(4]5

Alblalc|d]|c

B d{blc|d
0 1 2 3 4 5 6
ojoLjo0oLjoLjfoLrjoLjoL oL
110L][0+ [0« |1 |1+ |1« |1«
210 L IR |1+ |1+ |1+ |1« |2
310L | 11 |1+ |1« |2\ |2« |2«
410 L] 11 |22+ |2« |3 |3«
510L) 11| 27T [2+ |3 |3+« | 3«
610 L |1 | 27T |2+ |31 |3« |4~

Find Common Subsequence

L4 n,j«m,S<+"
2: while 7 > 0 and 5 > 0 do

3: if 7[,7] ="\" then

4 S Ali| x Syii—1,j+j—1
5: else if 7[i, j] ="1" then

6: 1+—1—1

7: else

8: jej—1

9: return S

Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions)
we need to change A to B?

Example:
e A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Obs. #OPs = length(A) + length(B) - 2 - length(LCS(A, B))

)

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A,

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:
e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’

@ Not related to LCS any more

Edit Distance (with Replacing)

@ optli, j],0 <7< n,0<j<m: edit distance between A[l .. i
and B[l .. j].

e if i = 0 then optl[i, j| = j; if j = 0 then opt|i, j] = 1.

e if i >0,7 >0, then

optli — 1,7 — 1] if Ali] = Bl[j]
opt]i,] = optli — 1,j] + 1
’ min optli,j — 1]+ 1 if Ali] # B[j]

optfi—1,7 — 1] +1

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or
forward. J

@ example: “racecar’, “wasitacaroracatisaw”, " putitup”

Longest Palindrome Subsequence
Input: a sequence A
Output: the longest subsequence C' of A that is a palindrome.

Example:
@ Input: acbcedeacab

@ OQutput: acedeca

Outline

@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space

Computing the Length of LCS

1: for j <~ 0 to m do

2 opt[0, j] < 0

3: for i < 1tondo

4 optli,0] < 0

5: for j < 1 tom do
6 if Afi] = BJ[j] then

7 optli, j] < optli — 1,5 — 1] + 1

8 else if opt[i,j — 1] > opt[i — 1, j] then
0: optli, j] < optli, j — 1]

10: else
11: optli, j] < optli — 1, j]

Obs. The i-th row of table only depends on (i — 1)-th row.

Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row. J

Q: How to use this observation to reduce space?]

A: We only keep two rows: the (i — 1)-th row and the i-th row. |

Linear Space Algorithm to Compute Length of LCS

: for j <~ 0tom do
opt|0,j] < 0
: for i <~ 1ton do
optli mod 2,0] < 0
for j < 1tom do
if Ali] = B[j] then
optli mod 2, j] < optli — 1 mod 2,5 — 1]+ 1
else if opt[i mod 2,j — 1] > opt[i — 1 mod 2, j] then
opt[i mod 2, j| < opt[i mod 2,5 — 1]
else
11: opt[i mod 2, j] + opt[i — 1 mod 2, j]

2P RN PRE

._.
e

12: return opt[n mod 2, m|

How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n|
@ Can recover the LCS using n rounds: time = O(n%m)
@ Using Divide and Conquer + Dynamic Programming:

e Space: O(m +n)
o Time: O(nm)

Outline

© Shortest Paths in Directed Acyclic Graphs

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without J

(directed) cycles.
@ (&)
o o W
e‘e

a DAG

not a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted. J

Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w: E — R.
Assume V = {1,2,3--- ,n} is topologically sorted: if
(i,7) € E, then i < j
Output: the shortest path from 1 to ¢, for every 1 € V'

1

—
O ORI OSSO
e

A
N >

Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

=1 =
minj:(j,i)eE {f(]) + w(ja Z>} L= 27 37 T

Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex ¢

Shortest Paths in DAG

1: f[l] +«—0

2: for i < 2 ton do

&

NN OTEES

Sli] = o0
for each incoming edge (j,4) of i do
if f[j] + w(j,i) < fi] then

fli] = fli] + w(5,9)
(i) < j

print-path(t)
1: if t =1 then
2 print(1)
3 return
4: print-path(m(t))
5: print()", t)

Example

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V' = {1,2,3--- ,n} is topologically sorted: if
(i,7) € E, then i < j
Output: the path with the largest weight (the heaviest path) from
1 to n.

@ f[i]: weight of the heaviest path from 1 to i

i =1{" =
T maxjgaes {f() +w(ii)} i=2.3- .n

Outline

@ Matrix Chain Multiplication

Matrix Chain Multiplication

Matrix Chain Multiplication
Input: n matrices Ay, Ay, -+, A, of sizes
71 X C1,T9 X Cay-++ Ty X Cpn, such that ¢; = ;4 for every
i=1,2,,n—1.
Output: the order of computing A1 As - - - A, with the minimum
number of multiplications

Fact Multiplying two matrices of size r x k and k x ¢ takes
r X k X ¢ multiplications.

Example:
e A;:10x 100, As:100 x5, Asz:5x50

[10x100] [100x5 | [5x50 | [10x100] [100x5 | [5x50 |

10-100-5 100 -5 - 50

100 x 50

10-5-50 10 - 100 - 50
= 2500 = 50000

cost = 5000 + 2500 = 7500 cost = 25000 + 50000 = 75000

o (A143)As: 10 x 100 x 5+ 10 x 5 x 50 = 7500
o Aj(AsA3): 100 x 5 x 50+ 10 x 100 x 50 = 75000

Matrix Chain Multiplication: Design DP

@ Assume the last Step is (AlAQ s Ai)(AiJrlAiJrQ s An)
@ Cost of last step: 71 X ¢; X ¢,

@ Optimality for sub-instances: we need to compute A; A, - -+ A;
and A;. 14,5 A, optimally
@ opt[i, j] : the minimum cost of computing A;A; ;- -+ A;

. i
optlt, 7] = _ . | =
[2, 7] {mlnk:i§k<j (opt[i, k] + opt[k + 1, 7] + ricke;) i< j

Matrix Chain Multiplication: Design DP

matrix-chain-multiplication(n, r[1..n], ¢[1..n])

1 let opt[i,i] < 0 foreveryi =1,2,--- .n
2: for { + 2 ton do
3: fori< 1ton—/¢+1do

4: j—i+£4-—1

5: optli, j] < oo

6: for k< itoj—1do

7: if opt[i, k] + optlk + 1, j] + ricke; < opt[i, j] then
8: opt[i, j] < optli, k] + opt[k + 1, j] + rickc;

9: W[i,j] — k

10: return opt[1,n|

Constructing Optimal Solution

Print-Optimal-Order(, j)
1. if i — j then

2 print(“A”;)

3: else

4: print(“(")

5: Print-Optimal-Order(i, 7[4, j])

6 Print-Optimal-Order(7[i, j] + 1, j)
7 print(*)")

Outline

@ Optimum Binary Search Tree

Optimum Binary Search Tree

@ nelementse; <ey <ez3<---<e,
@ ¢; has frequency f;

@ goal: build a binary search tree for {ey,es,--- ,e,} with the
minimum accessing cost:

Zfi X (depth of e; in the tree)
=1

Optimum Binary Search Tree

Example: fi =10, f, =5,f3=3

1I0x1+5x2+3x3=29
10x24+5x1+3x2=31
10x3+5x2+3x1=43

suppose we decided to let e; be the root
e1,6a, -+ ,e;,_1 are on left sub-tree
€it1,€it2," " , €, are on right sub-tree
d;: depth of ¢; in our tree

C,CL,Cg: cost of tree, left sub-tree and right sub-tree
respectively

C=) fidj=Y fi+> fi(di—1)
j=1 Jj=1 Jj=1

n 1—1 n
=D S+ fild =1+) fild;—1)
j=1 =1

j=i+1

=> fi+CL+Chr

Jj=1

C=> fi+CL+Chr

j=1

@ In order to minimize C, need to minimize Cr, and Cg
respectively

@ opt; j: the optimum cost for the instance (f;, fix1, -+, f;)

o foreveryie€ {1,2,--- ,n,n+1}: optfi,i —1] =0
o for every i,j such that 1 <i < j <n,

opt|i, 7] ka + mln (opt[k — 1] + opt[k + 1,j])

Outline

© Summary

Dynamic Programming
@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems
@ Use a table to store solutions for sub-problems for reuse

Comparison with greedy algorithms
@ Greedy algorithm: each step is making a small progress towards
constructing the solution
@ Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer
@ Divide and conquer: an instance is broken into many
independent sub-instances, which are solved separately.
@ Dynamic programming: the sub-instances we constructed are
overlapping.

Definition of Cells for Problems We Learnt

@ Weighted interval scheduling: opt[i] = value of instance defined
by jobs {1,2,--- ,i}

@ Subset sum, knapsack: opt[i, W'] = value of instance with items
{1,2,---,i} and budget W’

@ Longest common subsequence: optl[i, j| = value of instance
defined by A[1..i] and BJ1..j]

@ Shortest paths in DAG: f[v] = length of shortest path from s to
v

@ Matrix chain multiplication, optimum binary search tree:
opt[i, j] = value of instances defined by matrices i to j

	Weighted Interval Scheduling
	Subset Sum Problem
	Knapsack Problem
	Longest Common Subsequence
	Longest Common Subsequence in Linear Space

	Shortest Paths in Directed Acyclic Graphs
	Matrix Chain Multiplication
	Optimum Binary Search Tree
	Summary

