CSE 431/531: Algorithm Analysis and Design (Spring 2021) Dynamic Programming

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer

- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- $\bullet \ \ \mathsf{Fibonacci} \ \ \mathsf{sequence:} \ \ 0,1,1,2,3,5,8,13,21,34,55,89,\cdots$

Fib(n)

- 1: $F[0] \leftarrow 0$
- 2: $F[1] \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- 4: $F[i] \leftarrow F[i-1] + F[i-2]$
- 5: return F[n]
- Store each F[i] for future use.

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Recall: Interval Schduling

Input: n jobs, job i with start time s_i and finish time f_i each job has a weight (or value) $v_i > 0$

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: a maximum-size subset of mutually compatible jobs

Optimum value = 220

Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

- Job with the earliest finish time? No, we are ignoring weights
- Job with the largest weight? No, we are ignoring times
- Job with the largest $\frac{\text{weight}}{\text{length}}$?

No, when weights are equal, this is the shortest job

•	Sort jobs according to non-	decreasing order
	of finish times	

• opt[i]: optimal value for instance only containing jobs $\{1, 2, \cdots, i\}$

i	opt[i]	
0	0	
1	80	
2	100	
3	100	
4	105	
5	150	
6	170	
7	185	
8	220	
9	220	

- Focus on instance $\{1, 2, 3, \cdots, i\}$,
- opt[i]: optimal value for the instance
- assume we have computed $opt[0], opt[1], \cdots, opt[i-1]$

Q: The value of optimal solution that does not contain *i*?

A: opt[i-1]

Q: The value of optimal solution that contains job i?

A: $v_i + opt[p_i]$, $p_i = \text{the largest } j \text{ such that } f_j \leq s_i$

Q: The value of optimal solution that does not contain *i*?

A: opt[i-1]

Q: The value of optimal solution that contains job *i*?

A: $v_i + opt[p_i]$, $p_i = \text{the largest } j \text{ such that } f_j \leq s_i$

Recursion for
$$opt[i]$$
:

 $opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$

Recursion for opt[i]:

$$opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$$

- opt[0] = 0
- $opt[1] = max{opt[0], 80 + opt[0]} = 80$
- $opt[2] = max{opt[1], 100 + opt[0]} = 100$
- $opt[3] = max{opt[2], 90 + opt[0]} = 100$
- $opt[4] = max{opt[3], 25 + opt[1]} = 105$
- $opt[5] = max{opt[4], 50 + opt[3]} = 150$

Recursion for opt[i]:

$$opt[i] = \max \{ opt[i-1], v_i + opt[p_i] \}$$

- opt[3] = 100, opt[4] = 105, opt[5] = 150
- $opt[6] = max{opt[5], 70 + opt[3]} = 170$
- $opt[7] = max{opt[6], 80 + opt[4]} = 185$
- $opt[8] = max{opt[7], 50 + opt[6]} = 220$
- $opt[9] = max{opt[8], 30 + opt[7]} = 220$

Dynamic Programming

- 1: sort jobs by non-decreasing order of finishing times
- 2: compute p_1, p_2, \cdots, p_n
- 3: $opt[0] \leftarrow 0$
- 4: for $i \leftarrow 1$ to n do
- 5: $opt[i] \leftarrow \max\{opt[i-1], v_i + opt[p_i]\}$
- Running time sorting: $O(n \lg n)$
- Running time for computing p: $O(n \lg n)$ via binary search
- Running time for computing opt[n]: O(n)

How Can We Recover the Optimum Schedule?

```
1: sort jobs by non-decreasing order of
     finishing times
 2: compute p_1, p_2, \cdots, p_n
 3: opt[0] \leftarrow 0
 4: for i \leftarrow 1 to n do
         if opt[i-1] \ge v_i + opt[p_i] then
 5:
              opt[i] \leftarrow opt[i-1]
 6:
              b[i] \leftarrow \mathsf{N}
 7:
         else
 8:
              opt[i] \leftarrow v_i + opt[p_i]
 9:
              b[i] \leftarrow Y
10:
```

```
1: i \leftarrow n, S \leftarrow \emptyset

2: while i \neq 0 do

3: if b[i] = \mathbb{N} then

4: i \leftarrow i - 1

5: else

6: S \leftarrow S \cup \{i\}

7: i \leftarrow p_i

8: return S
```

Recovering Optimum Schedule: Example

i	opt[i]	b[i]
0	0	上
1	80	Υ
2	100	Υ
3	100	N
4	105	Υ
5	150	Υ
6	170	Υ
7	185	Υ
8	220	Υ
9	220	N

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Subset Sum Problem

Input: an integer bound W > 0

a set of ${\color{red} n}$ items, each with an integer weight ${\color{red} w_i}>0$

Output: a subset S of items that

$$\text{maximizes } \sum_{i \in S} w_i \qquad \text{s.t.} \sum_{i \in S} w_i \leq W.$$

ullet Motivation: you have budget W, and want to buy a subset of items, so as to spend as much money as possible.

Example:

- W = 35, n = 5, w = (14, 9, 17, 10, 13)
- Optimum: $S = \{1, 2, 4\}$ and 14 + 9 + 10 = 33

Greedy Algorithms for Subset Sum

Candidate Algorithm:

- Sort according to non-increasing order of weights
- \bullet Select items in the order as long as the total weight remains below W

Q: Does candidate algorithm always produce optimal solutions?

A: No. W = 100, n = 3, w = (51, 50, 50).

Q: What if we change "non-increasing" to "non-decreasing"?

A: No. W = 100, n = 3, w = (1, 50, 50)

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- ullet opt[i,W']: the optimum value of the instance

Q: The value of the optimum solution that does not contain *i*?

A: opt[i-1, W']

Q: The value of the optimum solution that contains *i*?

A: $opt[i-1, W'-w_i] + w_i$

Dynamic Programming

- Consider the instance: $i, W', (w_1, w_2, \cdots, w_i)$;
- opt[i, W']: the optimum value of the instance

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i-1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{c} opt[i-1, W'] \\ opt[i-1, W' - w_i] + w_i \end{array} \right\} & i > 0, w_i \leq W' \end{cases}$$

Dynamic Programming

```
1: for W' \leftarrow 0 to W do
2: opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
  for W' \leftarrow 0 to W do
           opt[i, W'] \leftarrow opt[i-1, W']
5:
           if w_i < W' and opt[i-1, W'-w_i] + w_i > opt[i, W']
6:
   then
               opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
7:
8: return opt[n, W]
```

Recover the Optimum Set

```
1: for W' \leftarrow 0 to W do
 2: opt[0, W'] \leftarrow 0
 3: for i \leftarrow 1 to n do
        for W' \leftarrow 0 to W do
 4:
             opt[i, W'] \leftarrow opt[i-1, W']
 5:
             b[i, W'] \leftarrow \mathsf{N}
 6:
             if w_i < W' and opt[i-1, W'-w_i] + w_i > opt[i, W']
 7:
    then
                 opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
 8:
                 b[i, W'] \leftarrow Y
 9:
10: return opt[n, W]
```

Recover the Optimum Set

```
1: i \leftarrow n, W' \leftarrow W, S \leftarrow \emptyset

2: while i > 0 do

3: if b[i, W'] = Y then

4: W' \leftarrow W' - w_i

5: S \leftarrow S \cup \{i\}

6: i \leftarrow i - 1

7: return S
```

Running Time of Algorithm

```
1: for W' \leftarrow 0 to W do
  opt[0, W'] \leftarrow 0
3: for i \leftarrow 1 to n do
   for W' \leftarrow 0 to W do
4:
           opt[i, W'] \leftarrow opt[i-1, W']
5:
           if w_i < W' and opt[i-1, W'-w_i] + w_i > opt[i, W']
6:
   then
               opt[i, W'] \leftarrow opt[i-1, W'-w_i] + w_i
7:
8: return opt[n, W]
```

- Running time is O(nW)
- Running time is pseudo-polynomial because it depends on value of the input integers.

Avoiding Unncessary Computation and Memory Using Memoized Algorithm and Hash Map

```
compute-opt(i, W')
 1: if opt[i, W'] \neq \bot then return opt[i, W']
 2: if i=0 then r \leftarrow 0
 3: else
 4: r \leftarrow \text{compute-opt}(i-1, W')
 5: if w_i < W' then
            r' \leftarrow \text{compute-opt}(i-1, W'-w_i) + w_i
 6:
            if r' > r then r \leftarrow r'
 8: opt[i, W'] \leftarrow r
 9: return r
```

Use hash map for opt

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Mapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Knapsack Problem

Input: an integer bound W>0 a set of n items, each with an integer weight $w_i>0$ a value $v_i>0$ for each item i

Output: a subset S of items that

• Motivation: you have budget W, and want to buy a subset of items of maximum total value

DP for Knapsack Problem

- opt[i,W']: the optimum value when budget is W' and items are $\{1,2,3,\cdots,i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, 2, \dots, W$.

$$opt[i, W'] = \begin{cases} 0 & i = 0 \\ opt[i-1, W'] & i > 0, w_i > W' \\ \max \left\{ \begin{array}{c} opt[i-1, W'] \\ opt[i-1, W' - w_i] + \mathbf{v}_i \end{array} \right\} & i > 0, w_i \le W' \end{cases}$$

Exercise: Items with 3 Parameters

```
Input: integer bounds W>0, Z>0, a set of n items, each with an integer weight w_i>0 a size z_i>0 for each item i a value v_i>0 for each item i
Output: a subset S of items that
```

maximizes
$$\sum_{i \in S} v_i$$
 s.t.
$$\sum_{i \in S} w_i \leq W \text{ and } \sum_{i \in S} z_i \leq Z$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Subsequence

- \bullet A = bacdca
- \bullet C = adca
- ullet C is a subsequence of A

Def. Given two sequences $A[1 \dots n]$ and $C[1 \dots t]$ of letters, C is called a subsequence of A if there exists integers $1 \le i_1 < i_2 < i_3 < \dots < i_t \le n$ such that $A[i_j] = C[j]$ for every $j = 1, 2, 3, \dots, t$.

• Exercise: how to check if sequence C is a subsequence of A?

Longest Common Subsequence

Input: $A[1 \dots n]$ and $B[1 \dots m]$

Output: the longest common subsequence of A and B

Example:

- A = `bacdca'
- \bullet B = 'adbcda'
- LCS(A, B) = 'adca'
- Applications: edit distance (diff), similarity of DNAs

Matching View of LCS

• Goal of LCS: find a maximum-size non-crossing matching between letters in A and letters in B.

Reduce to Subproblems

- A = 'bacdca'
- B = `adbcda'
- either the last letter of A is not matched:
- need to compute LCS('bacd', 'adbcd')
- or the last letter of B is not matched:
- need to compute LCS('bacdc', 'adbc')

Dynamic Programming for LCS

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: length of longest common sub-sequence of A[1 ... i] and B[1 ... j].
- if i = 0 or j = 0, then opt[i, j] = 0.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] + 1 & \text{if } A[i] = B[j] \\ \max \begin{cases} opt[i-1,j] & \text{if } A[i] \neq B[j] \end{cases} \end{cases}$$

Dynamic Programming for LCS

```
1: for i \leftarrow 0 to m do
 2: opt[0, j] \leftarrow 0
 3: for i \leftarrow 1 to n do
        opt[i,0] \leftarrow 0
 4:
    for i \leftarrow 1 to m do
 5:
              if A[i] = B[j] then
 6:
                   opt[i,j] \leftarrow opt[i-1,j-1] + 1, \pi[i,j] \leftarrow "\\"
 7:
              else if opt[i, j-1] > opt[i-1, j] then
 8:
                   opt[i, j] \leftarrow opt[i, j-1], \pi[i, j] \leftarrow "\leftarrow"
 9:
              else
10:
                   opt[i, j] \leftarrow opt[i-1, j], \pi[i, j] \leftarrow "\uparrow"
11:
```

Example

	1	2	3	4	5	6
A	b	а	С	d	С	a
В	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 <	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	$1 \leftarrow$	$1 \leftarrow$	$1 \leftarrow$	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	$1 \leftarrow$	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2	2 ←	2 ←	3	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3	3 ←	3 ←
6	0 ⊥	1 🔨	2 ↑	2 ←	3 ↑	3 ←	4 🔨

Example: Find Common Subsequence

	1	2	3	4	5	6
	b					
B	a	d	b	С	d	a

	0	1	2	3	4	5	6
						0 ⊥	
1	0 ⊥	0 ←	0 ←	1 <	1 ←	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 Т	1 ↑	1 ←	1 ←	2	2 ←	2 ←
4	0 ⊥	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 Т	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	2 ↑	2 ←	3 ↑	3 ←	4 🔨

Find Common Subsequence

```
1: i \leftarrow n, j \leftarrow m, S \leftarrow ""
2: while i > 0 and j > 0 do
3: if \pi[i,j] = "\tag{"} " then
4: S \leftarrow A[i] \bowtie S, i \leftarrow i-1, j \leftarrow j-1
5: else if \pi[i,j] = "\tag{"} " then
6: i \leftarrow i-1
7: else
8: j \leftarrow j-1
9: return S
```

Variants of Problem

Edit Distance with Insertions and Deletions

Input: a string A

each time we can delete a letter from ${\cal A}$ or insert a letter to ${\cal A}$

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A = ocurrance, B = occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Obs. $\#\mathsf{OPs} = \mathsf{length}(A) + \mathsf{length}(B) - 2 \cdot \mathsf{length}(\mathsf{LCS}(A, B))$

Variants of Problem

Edit Distance with Insertions, Deletions and Replacing

Input: a string A,

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A = ocurrance, B = occurrence.
- 2 operations: insert 'c', change 'a' to 'e'
- Not related to LCS any more

Edit Distance (with Replacing)

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] & \text{if } A[i] = B[j] \\ opt[i-1,j] + 1 & \\ opt[i,j-1] + 1 & \text{if } A[i] \neq B[j] \\ opt[i-1,j-1] + 1 & \end{cases}$$

Exercise: Longest Palindrome

Def. A palindrome is a string which reads the same backward or forward.

• example: "racecar", "wasitacaroracatisaw", "putitup"

Longest Palindrome Subsequence

Input: a sequence A

Output: the longest subsequence C of A that is a palindrome.

Example:

• Input: acbcedeacab

• Output: acedeca

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Computing the Length of LCS

```
1: for j \leftarrow 0 to m do
2: opt[0, j] \leftarrow 0
 3: for i \leftarrow 1 to n do
   opt[i,0] \leftarrow 0
 5: for j \leftarrow 1 to m do
             if A[i] = B[j] then
 6:
                 opt[i, j] \leftarrow opt[i-1, j-1] + 1
 7:
             else if opt[i, j-1] > opt[i-1, j] then
 8:
                 opt[i, j] \leftarrow opt[i, j-1]
 9:
             else
10:
                 opt[i, j] \leftarrow opt[i-1, j]
11:
```

Obs. The *i*-th row of table only depends on (i-1)-th row.

Reducing Space to O(n+m)

Obs. The i-th row of table only depends on (i-1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i-1)-th row and the i-th row.

Linear Space Algorithm to Compute Length of LCS

```
1: for i \leftarrow 0 to m do
   opt[0,j] \leftarrow 0
 3: for i \leftarrow 1 to n do
        opt[i \bmod 2, 0] \leftarrow 0
 4:
     for i \leftarrow 1 to m do
 5:
            if A[i] = B[j] then
 6:
                 opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j-1] + 1
 7:
            else if opt[i \mod 2, j-1] > opt[i-1 \mod 2, j] then
 8:
                 opt[i \mod 2, j] \leftarrow opt[i \mod 2, j-1]
 9:
            else
10:
                 opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j]
11:
12: return opt[n \mod 2, m]
```

How to Recover LCS Using Linear Space?

- \bullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)
 - Time: O(nm)

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without (directed) cycles.

Lemma A directed graph is a DAG if and only its vertices can be topologically sorted.

Shortest Paths in DAG

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$.

Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the shortest path from 1 to i, for every $i \in V$

Shortest Paths in DAG

• f[i]: length of the shortest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \min_{j:(j,i) \in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

Shortest Paths in DAG

ullet Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

```
\begin{array}{lll} \text{1:} & f[1] \leftarrow 0 \\ \text{2:} & \textbf{for } i \leftarrow 2 \text{ to } n \text{ do} \\ \text{3:} & f[i] \leftarrow \infty \\ \text{4:} & \textbf{for } \text{ each incoming edge } (j,i) \text{ of } i \text{ do} \\ \text{5:} & \textbf{if } f[j] + w(j,i) < f[i] \text{ then} \\ \text{6:} & f[i] \leftarrow f[j] + w(j,i) \\ \text{7:} & \pi(i) \leftarrow j \end{array}
```

print-path(t)

```
1: if t = 1 then
2: print(1)
3: return
4: print-path(\pi(t))
5: print(",", t)
```

Example

Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and $w : E \to \mathbb{R}$. Assume $V = \{1, 2, 3 \cdots, n\}$ is topologically sorted: if $(i, j) \in E$, then i < j

Output: the path with the largest weight (the heaviest path) from 1 to n.

• f[i]: weight of the heaviest path from 1 to i

$$f[i] = \begin{cases} 0 & i = 1\\ \max_{j:(j,i)\in E} \{f(j) + w(j,i)\} & i = 2, 3, \dots, n \end{cases}$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices A_1, A_2, \cdots, A_n of sizes

 $r_1 \times c_1, r_2 \times c_2, \cdots, r_n \times c_n$, such that $c_i = r_{i+1}$ for every $i=1,2,\cdots,n-1$.

Output: the order of computing $A_1A_2\cdots A_n$ with the minimum number of multiplications

Fact Multiplying two matrices of size $r \times k$ and $k \times c$ takes $r \times k \times c$ multiplications.

Example:

• $A_1: 10 \times 100$, $A_2: 100 \times 5$, $A_3: 5 \times 50$

- $(A_1A_2)A_3$: $10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$
- $A_1(A_2A_3)$: $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$

Matrix Chain Multiplication: Design DP

- Assume the last step is $(A_1A_2\cdots A_i)(A_{i+1}A_{i+2}\cdots A_n)$
- Cost of last step: $r_1 \times c_i \times c_n$
- Optimality for sub-instances: we need to compute $A_1A_2\cdots A_i$ and $A_{i+1}A_{i+2}\cdots A_n$ optimally
- ullet opt[i,j] : the minimum cost of computing $A_iA_{i+1}\cdots A_j$

$$opt[i,j] = \begin{cases} 0 & i = j \\ \min_{k:i \le k < j} \left(opt[i,k] + opt[k+1,j] + r_i c_k c_j \right) & i < j \end{cases}$$

Matrix Chain Multiplication: Design DP

```
matrix-chain-multiplication(n, r[1..n], c[1..n])
 1: let opt[i, i] \leftarrow 0 for every i = 1, 2, \dots, n
 2: for \ell \leftarrow 2 to n do
         for i \leftarrow 1 to n - \ell + 1 do
 3:
              i \leftarrow i + \ell - 1
 4:
              opt[i, j] \leftarrow \infty
 5:
              for k \leftarrow i to j-1 do
 6:
                  if opt[i,k] + opt[k+1,j] + r_ic_kc_j < opt[i,j] then
 7:
                       opt[i, j] \leftarrow opt[i, k] + opt[k + 1, j] + r_i c_k c_i
 8:
                       \pi[i, i] \leftarrow k
 9:
10: return opt|1, n|
```

Constructing Optimal Solution

```
Print-Optimal-Order(i, j)

1: if i = j then

2: print("A"_i)

3: else

4: print("(")

5: Print-Optimal-Order(i, \pi[i, j])

6: Print-Optimal-Order(\pi[i, j] + 1, j)

7: print(")")
```

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- 4 Longest Common SubsequenceLongest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Optimum Binary Search Tree

- n elements $e_1 < e_2 < e_3 < \cdots < e_n$
- e_i has frequency f_i
- goal: build a binary search tree for $\{e_1, e_2, \cdots, e_n\}$ with the minimum accessing cost:

$$\sum_{i=1}^{n} f_i \times (\text{depth of } e_i \text{ in the tree})$$

Optimum Binary Search Tree

• Example: $f_1 = 10, f_2 = 5, f_3 = 3$

- $10 \times 1 + 5 \times 2 + 3 \times 3 = 29$
- $10 \times 2 + 5 \times 1 + 3 \times 2 = 31$
- $10 \times 3 + 5 \times 2 + 3 \times 1 = 43$

- ullet suppose we decided to let e_i be the root
- $e_1, e_2, \cdots, e_{i-1}$ are on left sub-tree
- $e_{i+1}, e_{i+2}, \cdots, e_n$ are on right sub-tree
- d_i : depth of e_i in our tree
- ullet C, C_L, C_R : cost of tree, left sub-tree and right sub-tree respectively

$$C = \sum_{j=1}^{n} f_j d_j = \sum_{j=1}^{n} f_j + \sum_{j=1}^{n} f_j (d_j - 1)$$

$$= \sum_{j=1}^{n} f_j + \sum_{j=1}^{i-1} f_j (d_j - 1) + \sum_{j=i+1}^{n} f_j (d_j - 1)$$

$$= \sum_{j=1}^{n} f_j + C_L + C_R$$

$$C = \sum_{j=1}^{n} f_j + C_L + C_R$$

- In order to minimize C, need to minimize C_L and C_R respectively
- ullet $opt_{i,j}$: the optimum cost for the instance (f_i,f_{i+1},\cdots,f_j)
- for every $i \in \{1, 2, \dots, n, n+1\}$: opt[i, i-1] = 0
- for every i, j such that $1 \le i \le j \le n$,

$$opt[i, j] = \sum_{k:i \le k \le j}^{J} f_k + \min_{k:i \le k \le j} (opt[i, k-1] + opt[k+1, j])$$

Outline

- Weighted Interval Scheduling
- Subset Sum Problem
- Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- Matrix Chain Multiplication
- Optimum Binary Search Tree
- Summary

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Comparison with greedy algorithms

- Greedy algorithm: each step is making a small progress towards constructing the solution
- Dynamic programming: the whole solution is constructed in the last step

Comparison with divide and conquer

- Divide and conquer: an instance is broken into many independent sub-instances, which are solved separately.
- Dynamic programming: the sub-instances we constructed are overlapping.

Definition of Cells for Problems We Learnt

- Weighted interval scheduling: opt[i] = value of instance defined by jobs $\{1, 2, \cdots, i\}$
- \bullet Subset sum, knapsack: opt[i,W']= value of instance with items $\{1,2,\cdots,i\}$ and budget W'
- Longest common subsequence: opt[i,j] = value of instance defined by A[1..i] and B[1..j]
- \bullet Shortest paths in DAG: $f[v] = \mbox{length of shortest path from } s$ to v
- Matrix chain multiplication, optimum binary search tree: opt[i,j] = value of instances defined by matrices i to j