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Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .
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Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n− 1 edges;

T is acyclic and has n− 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.
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Minimum Spanning Tree (MST) Problem

Input: Graph G = (V,E) and edge weights w : E → R
Output: the spanning tree T of G with the minimum total weight
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Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done
by “exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e∗ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T ′

w(e∗) ≤ w(e) =⇒ w(T ′) ≤ w(T ): T ′ is also a MST

lightest edge e∗

u
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Is the Residual Problem Still a MST Problem?
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Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph
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Contraction of an Edge (u, v)
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Remove u and v from the graph, and add a new vertex u∗

Remove all edges (u, v) from E

For every edge (u,w) ∈ E,w 6= v, change it to (u∗, w)

For every edge (v, w) ∈ E,w 6= u, change it to (u∗, w)

May create parallel edges! E.g. : two edges (i, g∗)
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Greedy Algorithm

Repeat the following step until G contains only one vertex:

1 Choose the lightest edge e∗, add e∗ to the spanning tree

2 Contract e∗ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u
and v formed by edges we selected
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Greedy Algorithm

MST-Greedy(G,w)

1: F ← ∅
2: sort edges in E in non-decreasing order of weights w
3: for each edge (u, v) in the order do
4: if u and v are not connected by a path of edges in F then
5: F ← F ∪ {(u, v)}
6: return (V, F )
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Kruskal’s Algorithm: Example
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Sets: {a, b, c, i, f, g, h, d, e}
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Kruskal’s Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su 6= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10: return (V, F )
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Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su 6= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10: return (V, F )

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .



17/90

Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:

Check if u and v are in the same set of the partition
Merge two sets in partition
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V = {1, 2, 3, · · · , 16}
Partition: {2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}
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par[i]: parent of i, (par[i] = ⊥ if i is a root).
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Union-Find Data Structure
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Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r′: par[r]← r′.
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Union-Find Data Structure

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: return root(par[v])

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: par[v] ← root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.
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Union-Find Data Structure

root(v)

1: if par[v] = ⊥ then
2: return v
3: else
4: par[v]← root(par[v])
5: return par[v]
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MST-Kruskal(G, w)

1: F ← ∅
2: S ← {{v} : v ∈ V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: Su ← the set in S containing u
6: Sv ← the set in S containing v
7: if Su 6= Sv then
8: F ← F ∪ {(u, v)}
9: S ← S \ {Su} \ {Sv} ∪ {Su ∪ Sv}
10: return (V, F )
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MST-Kruskal(G, w)

1: F ← ∅
2: for every v ∈ V do: par[v]← ⊥
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) ∈ E in the order do
5: u′ ← root(u)
6: v′ ← root(v)
7: if u′ 6= v′ then
8: F ← F ∪ {(u, v)}
9: par[u′]← v′

10: return (V, F )

2 , 5 , 6 , 7 , 9 takes time O(mα(n))

α(n) is very slow-growing: α(n) ≤ 4 for n ≤ 1080.

Running time = time for 3 = O(m lg n).
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Assumption Assume all edge weights are different.

Lemma An edge e ∈ E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.
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(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists
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Two Methods to Build a MST
1 Start from F ← ∅, and add edges to F one by one until we

obtain a spanning tree

2 Start from F ← E, and remove edges from F one by one until
we obtain a spanning tree
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Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.



27/90

Lemma It is safe to exclude the heaviest non-bridge edge: there is
a MST that does not contain the heaviest non-bridge edge.



28/90

Reverse Kruskal’s Algorithm

MST-Greedy(G,w)

1: F ← E
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V, F \ {e}) is connected then
5: F ← F \ {e}
6: return (V, F )
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Reverse Kruskal’s Algorithm: Example
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Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.
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Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.
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Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e∗ incident to a

C

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e∗ be the lightest edge incident to a and e∗ connects a to
component C

Let e be the edge in T connecting a to C

T ′ = T \ {e} ∪ {e∗} is a spanning tree with w(T ′) ≤ w(T )
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Prim’s Algorithm: Example
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Greedy Algorithm

MST-Greedy1(G,w)

1: S ← {s}, where s is arbitrary vertex in V
2: F ← ∅
3: while S 6= V do
4: (u, v)← lightest edge between S and V \ S,

where u ∈ S and v ∈ V \ S
5: S ← S ∪ {v}
6: F ← F ∪ {(u, v)}
7: return (V, F )

Running time of naive implementation: O(nm)
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain
d(v) = minu∈S:(u,v)∈E w(u, v):

the weight of the lightest edge between v and S
π(v) = arg minu∈S:(u,v)∈E w(u, v):

(π(v), v) is the lightest edge between v and S
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Prim’s Algorithm: Efficient Implementation of

Greedy Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value

Add (π(u), u) to F

Add u to S, update d and π values.
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Prim’s Algorithm

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3: while S 6= V do
4: u← vertex in V \ S with the minimum d(u)
5: S ← S ∪ {u}
6: for each v ∈ V \ S such that (u, v) ∈ E do
7: if w(u, v) < d(v) then
8: d(v)← w(u, v)
9: π(v)← u

10: return
{

(u, π(u))|u ∈ V \ {s}
}
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Example
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Prim’s Algorithm

For every v ∈ V \ S maintain

d(v) = minu∈S:(u,v)∈E w(u, v):
the weight of the lightest edge between v and S

π(v) = arg minu∈S:(u,v)∈E w(u, v):
(π(v), v) is the lightest edge between v and S

In every iteration

Pick u ∈ V \ S with the smallest d(u) value extract min

Add (π(u), u) to F

Add u to S, update d and π values. decrease key

Use a priority queue to support the operations
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Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:

insert(v, key value): insert an element v, whose associated key
value is key value.

decrease key(v, new key value): decrease the key value of an
element v in queue to new key value

extract min(): return and remove the element in queue with the
smallest key value

· · ·
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Prim’s Algorithm

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3:

4: while S 6= V do
5: u← vertex in V \ S with the minimum d(u)
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d(v) then
9: d(v)← w(u, v)
10: π(v)← u

11: return
{

(u, π(u))|u ∈ V \ {s}
}
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Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d(v))
4: while S 6= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d(v) then
9: d(v)← w(u, v), Q.decrease key(v, d(v))
10: π(v)← u

11: return
{

(u, π(u))|u ∈ V \ {s}
}
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Running Time of Prim’s Algorithm Using Priority

Queue

O(n)× (time for extract min) + O(m)× (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)



44/90

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .
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(c, f) is in MST because of cut
(
{a, b, c, i}, V \ {a, b, c, i}

)
(i, g) is not in MST because no such cut exists
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“Evidence” for e ∈ MST or e /∈ MST

Assumption Assume all edge weights are different.

e ∈ MST ↔ there is a cut in which e is the lightest edge

e /∈ MST ↔ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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s-t Shortest Paths
Input: (directed or undirected) graph G = (V,E), s, t ∈ V

w : E → R≥0
Output: shortest path from s to t
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Reason for Considering Single Source Shortest Paths
Problem

We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight



49/90

Shortest path from s to v may contain Ω(n) edges

There are Ω(n) different vertices v

Thus, printing out all shortest paths may take time Ω(n2)

Not acceptable if graph is sparse
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Shortest Path Tree
O(n)-size data structure to represent all shortest paths

For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)
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Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: π(v), v ∈ V \ s: the parent of v

d(v), v ∈ V \ s: the length of shortest path from s to v
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Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s

1

2 3

4 5

7

8

6



53/90

Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

4 1 1 1 1u v u v

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length w(u, v) with a path of w(u, v)
unit-weight edges, for every (u, v) ∈ E

2: run BFS virtually
3: π(v)← vertex from which v is visited
4: d(v)← index of the level containing v

Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS Virtually

1: S ← {s}, d(s)← 0
2: while |S| ≤ n do
3: find a v /∈ S that minimizes min

u∈S:(u,v)∈E
{d(u) + w(u, v)}

4: S ← S ∪ {v}
5: d(v)← minu∈S:(u,v)∈E{d(u) + w(u, v)}
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Virtual BFS: Example
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Dijkstra’s Algorithm

Dijkstra(G,w, s)

1: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
2: while S 6= V do
3: u← vertex in V \ S with the minimum d(u)
4: add u to S
5: for each v ∈ V \ S such that (u, v) ∈ E do
6: if d(u) + w(u, v) < d(v) then
7: d(v)← d(u) + w(u, v)
8: π(v)← u

9: return (d, π)

Running time = O(n2)
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Improved Running Time using Priority Queue

Dijkstra(G,w, s)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d(v))
4: while S 6= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if d(u) + w(u, v) < d(v) then
9: d(v)← d(u) + w(u, v), Q.decrease key(v, d(v))
10: π(v)← u

11: return (π, d)
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Recall: Prim’s Algorithm for MST

MST-Prim(G,w)

1: s← arbitrary vertex in G
2: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
3: Q← empty queue, for each v ∈ V : Q.insert(v, d(v))
4: while S 6= V do
5: u← Q.extract min()
6: S ← S ∪ {u}
7: for each v ∈ V \ S such that (u, v) ∈ E do
8: if w(u, v) < d(v) then
9: d(v)← w(u, v), Q.decrease key(v, d(v))
10: π(v)← u

11: return
{

(u, π(u))|u ∈ V \ {s}
}
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Improved Running Time

Running time:
O(n)× (time for extract min) +O(m)× (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)



62/90

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights
Bellman-Ford Algorithm

4 All-Pair Shortest Paths and Floyd-Warshall



63/90

Recall: Single Source Shortest Path Problem

Single Source Shortest Paths

Input: directed graph G = (V,E), s ∈ V
w : E → R≥0

Output: shortest paths from s to all other vertices v ∈ V

Algorithm for the problem: Dijkstra’s algorithm
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Dijkstra’s Algorithm Using Priorty Queue

Dijkstra(G,w, s)

1: S ← ∅, d(s)← 0 and d(v)←∞ for every v ∈ V \ {s}
2: Q← empty queue, for each v ∈ V : Q.insert(v, d(v))
3: while S 6= V do
4: u← Q.extract min()
5: S ← S ∪ {u}
6: for each v ∈ V \ S such that (u, v) ∈ E do
7: if d(u) + w(u, v) < d(v) then
8: d(v)← d(u) + w(u, v), Q.decrease key(v, d(v))
9: π(v)← u

10: return (π, d)

Running time = O(m+ n lg n).
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Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V
assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

In transition graphs, negative weights make sense

If we sell a item: ‘having the item’ → ‘not having the item’,
weight is negative (we gain money)

Dijkstra’s algorithm does not work any more!
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Dijkstra’s Algorithm Fails if We Have Negative

Weights

s

a

b

c

2

3
-4

1

5
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s a

b

c

d

2
-5

3
1 4

Q: What is the length of the shortest path from s to d?

A: −∞

Def. A negative cycle is a cycle in which the total weight of edges
is negative.

Dealing with Negative Cycles
assume the input graph does not contain negative cycles, or

allow algorithm to report “negative cycle exists”
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s a

b

c

d

2
-5

3
1 4

Q: What is the length of the shortest simple path from s to d?

A: 1

Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights
Bellman-Ford Algorithm

4 All-Pair Shortest Paths and Floyd-Warshall
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Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V,E), s ∈ V
assume all vertices are reachable from s

w : E → R
Output: shortest paths from s to all other vertices v ∈ V

first try: f [v]: length of shortest path from s to v

issue: do not know in which order we compute f [v]’s

f `[v], ` ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V : length of shortest path
from s to v that uses at most ` edges
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67

8

-2
-3-4

7

s

ab

c d

f `[v], ` ∈ {0, 1, 2, 3 · · · , n− 1}, v ∈ V :
length of shortest path from s to v that
uses at most ` edges

f 2[a] = 6

f 3[a] = 2

f `[v] =


0 ` = 0, v = s

∞ ` = 0, v 6= s

min

{
f `−1[v]

minu:(u,v)∈E
(
f `−1[u] + w(u, v)

) ` > 0



73/90

dynamic-programming(G,w, s)

1: f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n− 1 do
3: copy f `−1 → f `

4: for each (u, v) ∈ E do
5: if f `−1[u] + w(u, v) < f `[v] then
6: f `[v]← f `−1[u] + w(u, v)

7: return (fn−1[v])v∈V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n− 1 edges
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Dynamic Programming: Example

67

8

-2
-3-4

7

s

ab

c d

s a db c
0 ∞ ∞ ∞ ∞

0 2 7 -2 4

0

0

0

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

6 7 8
-3

7
-2

-40

f 0

f 4

f 3

f 2

f 1 6 7 ∞ ∞

6 7 2 4

2 7 2 4
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dynamic-programming(G,w, s)

1: f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n− 1 do
3: copy f `−1 → f `

4: for each (u, v) ∈ E do
5: if f `−1[u] + w(u, v) < f `[v] then
6: f `[v]← f `−1[u] + w(u, v)

7: return (fn−1[v])v∈V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n− 1 edges

Q: What if there are negative cycles?
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Dynamic Programming With Negative Cycle

Detection

dynamic-programming(G,w, s)

1: f 0[s]← 0 and f 0[v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n− 1 do
3: copy f `−1 → f `

4: for each (u, v) ∈ E do
5: if f `−1[u] + w(u, v) < f `[v] then
6: f `[v]← f `−1[u] + w(u, v)

7: for each (u, v) ∈ E do
8: if fn−1[u] + w(u, v) < fn−1[v] then
9: report “negative cycle exists” and exit

10: return (fn−1[v])v∈V
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1: f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n− 1 do
3: for each (u, v) ∈ E do
4: if f [u] + w(u, v) < f [v] then
5: f [v]← f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1: f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n− 1 do
3: for each (u, v) ∈ E do
4: if f [u] + w(u, v) < f [v] then
5: f [v]← f [u] + w(u, v)

6: return f

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

Assuming there are no negative cycles, after iteration n− 1,
f [v] = length of shortest path from s to v
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)

1: f [s]← 0 and f [v]←∞ for any v ∈ V \ {s}
2: for `← 1 to n do
3: updated← false
4: for each (u, v) ∈ E do
5: if f [u] + w(u, v) < f [v] then
6: f [v]← f [u] + w(u, v), π[v]← u
7: updated← true

8: if not updated, then return f

9: output “negative cycle exists”

π[v]: the parent of v in the shortest path tree

Running time = O(nm)
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights
Bellman-Ford Algorithm

4 All-Pair Shortest Paths and Floyd-Warshall
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Summary of Shortest Path Algorithms we learned

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E → R (can be negative)

Output: shortest path from u to v for every u, v ∈ V

1: for every starting point s ∈ V do
2: run Bellman-Ford(G,w, s)

Running time = O(n2m)
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Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =


0 i = j

weight of edge (i, j) i 6= j, (i, j) ∈ E
∞ i 6= j, (i, j) /∈ E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

fk[i, j]: length of shortest path from i to j that only uses
vertices {1, 2, 3, · · · , k} as intermediate vertices
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Example for Definition of f k[i, j]’s

1

2 3

4 5

10
90

60

30

50 70
20

10

10

f 0[1, 4] =∞
f 1[1, 4] =∞
f 2[1, 4] = 140 (1→ 2→ 4)

f 3[1, 4] = 90 (1→ 3→ 2→ 4)

f 4[1, 4] = 90 (1→ 3→ 2→ 4)

f 5[1, 4] = 60 (1→ 3→ 5→ 4)
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w(i, j) =


0 i = j

weight of edge (i, j) i 6= j, (i, j) ∈ E
∞ i 6= j, (i, j) /∈ E

fk[i, j]: length of shortest path from i to j that only uses
vertices {1, 2, 3, · · · , k} as intermediate vertices

fk[i, j] =


w(i, j) k = 0

min

{
fk−1[i, j]

fk−1[i, k] + fk−1[k, j]
k = 1, 2, · · · , n



86/90

Floyd-Warshall(G,w)

1: f 0 ← w
2: for k ← 1 to n do
3: copy fk−1 → fk

4: for i← 1 to n do
5: for j ← 1 to n do
6: if fk−1[i, k] + fk−1[k, j] < fk[i, j] then
7: fk[i, j]← fk−1[i, k] + fk−1[k, j]



87/90

Floyd-Warshall(G,w)

1: f old ← w
2: for k ← 1 to n do
3: copy f old → fnew

4: for i← 1 to n do
5: for j ← 1 to n do
6: if f old[i, k] + f old[k, j] < fnew[i, j] then
7: fnew[i, j]← f old[i, k] + f old[k, j]

Lemma Assume there are no negative cycles in G. After iteration
k, for i, j ∈ V , f [i, j] is exactly the length of shortest path from i to
j that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).



88/90

Recovering Shortest Paths

Floyd-Warshall(G,w)

1: f ← w, π[i, j]← ⊥ for every i, j ∈ V
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j]← f [i, k] + f [k, j], π[i, j]← k

print-path(i, j)

1: if π[i, j] = ⊥ then then
2: if i 6= j then print(i,“,”)

3: else
4: print-path(i, π[i, j]), print-path(π[i, j], j)
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Detecting Negative Cycles

Floyd-Warshall(G,w)

1: f ← w, π[i, j]← ⊥ for every i, j ∈ V
2: for k ← 1 to n do
3: for i← 1 to n do
4: for j ← 1 to n do
5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j]← f [i, k] + f [k, j], π[i, j]← k

7: for k ← 1 to n do
8: for i← 1 to n do
9: for j ← 1 to n do
10: if f [i, k] + f [k, j] < f [i, j] then
11: report “negative cycle exists” and exit
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Summary of Shortest Path Algorithms

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R≥0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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