CSE 431/531: Algorithm Analysis and Design (Spring 2021)
Graph Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm
@ Reverse-Kruskal's Algorithm
@ Prim’s Algorithm

Spanning Tree

Def. Given a connected graph G = (V, E), a spanning tree
T = (V,F) of G is a sub-graph of G that is a tree including all
vertices V.

Lemma Let 7' = (V, F) be a subgraph of G = (V, E). The
following statements are equivalent:

@ T is a spanning tree of G,

@ T is acyclic and connected;

@ T is connected and has n — 1 edges;

@ T is acyclic and has n — 1 edges;

@ T is minimally connected: removal of any edge disconnects it;
@ T is maximally acyclic: addition of any edge creates a cycle;
°

T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V| E) and edge weights w : £ — R
Output: the spanning tree T" of G with the minimum total weight

12

Recall: Steps of Designing A Greedy Algorithm
@ Design a “reasonable” strategy
@ Prove that the reasonable strategy is “safe” (key, usually done
by “exchanging argument”)
@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
e Kruskal's Algorithm
@ Prim’s Algorithm

Outline

@ Minimum Spanning Tree
@ Kruskal's Algorithm

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

@ Take a minimum spanning tree T’
Assume the lightest edge e¢* is not in T’
There is a unique path in 7" connecting v and v
Remove any edge e in the path to obtain tree 7"
w(e*) <w(e) = w(T") <w(T): T'is also a MST O

lightest edge e* ~ _

Is the Residual Problem Still a MST Problem?

@ Residual problem: find the minimum spanning tree that contains
edge (g,h)
e Contract the edge (g, h)

@ Residual problem: find the minimum spanning tree in the
contracted graph

Contraction of an Edge (u,v)

Remove u and v from the graph, and add a new vertex u*

Remove all edges (u,v) from E

For every edge (v, w) € E,w # u, change it to

°
°

@ For every edge (u,w) € E,w # v, change it to (u*,w)
° (u*, w)
°

May create parallel edges! E.g. : two edges (i, g*)

Greedy Algorithm

Repeat the following step until G contains only one vertex:
@ Choose the lightest edge e¢*, add e* to the spanning tree
@ Contract e* and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u,v) is removed if and only if there is a path connecting u
and v formed by edges we selected

Greedy Algorithm

MST-Greedy(G, w)

1. F+ 10

2: sort edges in E in non-decreasing order of weights w

3: for each edge (u,v) in the order do

4: if u and v are not connected by a path of edges in I’ then
5 F «+ FU{(u,v)}

6

. return (V, F')

Kruskal's Algorithm: Example

Sets: {a,b,c,i, f,q,h,d, e}

Kruskal's Algorithm: Efficient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)

F«10
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in S containing v
if S, # 5, then
F«+ FU{(u,v)}
5 S\{SI\{S} U {5, U S}
return (V, F)

O C R S N O o

._.
e

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

cF 0
S {{v}:veV}
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in S containing v
if 5, # 9, then
F +— FU{(u,v)}
5 S\{SI\ 1S} U{S.US.}
10: return (V) F)

PRI RWNE

Use union-find data structure to support @, @, @, @. ©.

Union-Find Data Structure

e V: ground set

@ We need to maintain a partition of V' and support following
operations:
o Check if w and v are in the same set of the partition
o Merge two sets in partition

o V={1,23,,16}
o Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4, 8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).

Union-Find Data Structure

SN

@ Q: how can we check if 4 and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root and r": par|r] < r'.

Union-Find Data Structure

root(v
root(v) (v)
i 1. if par[v] = L then
e par[v] = L then 2 return v
2: return v 3 else
3: else g
4 ar|v| < root(par|v
4. return root(par[v]) par{v] (par(v])
/5. return par|v]

@ Problem: the tree might too deep; running time might be large

@ Improvement: all vertices in the path directly point to the root,
saving time in the future.

Union-Find Data Structure

root(v)
L if par[v] = L then
2: return v
3: else
4: parfv] < root(par(v])
5; return par|v]

e

@)
W

® B O
©

MST-Kruskal(G, w)

._.
e

PR E

F+10
S+ {{v}:veV}
sort the edges of F in non-decreasing order of weights w
for each edge (u,v) € E in the order do
S, < the set in S containing u
Sy < the set in S containing v
if S, # 5, then
F «+ FU{(u,v)}
S S\ {Sup \ {S} U{S, US,}
return (V, F)

MST-Kruskal(G, w)

P+ 0
. for every v € V do: par[v] + L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u’ < root(u)
V' < root(v)
if ' # v then
F +— FU{(u,v)}
par[u’] 9
return (V. F)

PRI RPE

1

e

° ©.0.0.0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 10%.
@ Running time = time for @ = O(mlgn).

Assumption Assume all edge weights are different. J

Lemma An edge e € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge. J

@ (i,g) is not in the MST because of cycle (i, ¢, f, g)
@ (e, f) isin the MST because no such cycle exists

Outline

@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm

Two Methods to Build a MST

© Start from F < (), and add edges to F' one by one until we
obtain a spanning tree

@ Start from F' < E, and remove edges from F' one by one until
we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is
a MST that does not contain the heaviest non-bridge edge. J

Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+< F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5 F + F\{e}
6: return (V. F)

Reverse Kruskal's Algorithm: Example

Outline

@ Minimum Spanning Tree

@ Prim’s Algorithm

Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.

Lemma It is safe to include the lightest edge incident to a. |

lightest edge e* incident to a
/

Proof.
@ Let T"be a MST
Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component '

Let e be the edge in T" connecting a to C
T"=T\{e} U{e} is a spanning tree with w(71") < w(T) [

Prim’s Algorithm: Example

Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V/

2. F 0

3: while S # V do

4: (u,v) < lightest edge between S and V'\ S,
where u € Sandv e V'\ S

S+ Su{v}

F +— FU{(u,v)}

7: return (V. F)

2 &

@ Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ S maintain
o d(v) = minyes.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m(v) = arg minyeg.(uv)cr WU, v):
(m(v),v) is the lightest edge between v and S

(13,¢)

Prim’s Algorithm: Efficient Implementation of
Greedy Algorithm

For every v € V' \ S maintain

o d(v) = minyeg.(uv)er W(U, V):
the weight of the lightest edge between v and S

o m(v) = arg minyeg:(u,v)cr (U, v):
(m(v),v) is the lightest edge between v and S
In every iteration
e Pick uw € V'\ S with the smallest d(u) value
e Add (m(u),u) to F
@ Add u to S, update d and 7 values.

Prim’s Algorithm

MST-Prim(G, w)

_
e

PRI RWNE

s < arbitrary vertex in G
S<—(7) d(s) < 0 and d(v) < oo for every v € V' \ {s}
while S # V do

u <— vertex in V' \ .S with the minimum d(u)

S+ SuU{u}

for each v € V'\ S such that (u,v) € E do

if w(u,v) < d(v) then
d(v) w(u,v)
m(v) < u

return {(u, 7(u

~—

Jue V\{s}t}

Example

Prim’s Algorithm

For every v € V'\ S maintain

o d(v) = minyes.(uv)er W, v):
the weight of the lightest edge between v and S

o 7m(v) = argminyeg.(uv)cr WU, v):
(m(v),v) is the lightest edge between v and S

In every iteration

e Pick u € V'\ S with the smallest d(u) value extract_min
e Add (m(u),u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:
@ insert(v, key_value): insert an element v, whose associated key
value is key_value.
o decrease key(v, new_key_value): decrease the key value of an
element v in queue to new_key_value
@ extract_min(): return and remove the element in queue with the
smallest key value

Prim’s Algorithm

MST-Prim(G, w)
1: s < arbitrary vertex in G

2: S« 0,d(s) «+ 0 and d(v) < oo for every v € V' \ {s}
3:

4: while S #V do

5 u <— vertex in V' \ S with the minimum d(u)
6: S+ SuU{u}

7: for each v € V' \ S such that (u,v) € E do
8: if w(u,v) < d(v) then

o: d(v) « w(u,v)

10: m(v) u

Prim's Algorithm Using Priority Queue

MST-Prim(G, w)

1: s < arbitrary vertex in G

2: S+ 0,d(s) + 0 and d(v) + oo for every v € V' \ {s}
3:) < empty queue, for each v € V: Q.insert(v, d(v))
4: while S #V do

5: u < (.extract_min()

6: S+ SuU{u}

7: for each v € V'\ S such that (u,v) € E do

8: if w(u,v) < d(v) then

o: d(v) + w(u,v), Q.decrease key(v,d(v))
10: m(v) u

[y
—_

: return {(u, m(uw))|lu € V'\ {s}}

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) O(1) O(nlogn +m)

Assumption Assume all edge weights are different. J

Lemma (u,v) isin MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. J

(¢, f) is in MST because of cut ({a,b,c,i},V '\ {a,b,c,i})

°
@ (i,g) is not in MST because no such cut exists

“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different.

@ ¢ € MST < there is a cut in which e is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

Input: (directed or undirected) graph G = (V. E), s,t € V
w:FE— RZO
Output: shortest path from s to ¢

47/90

Single Source Shortest Paths
Input: directed graph G = (V,E), s€V
w: B — R
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with
two anti-parallel edges of the same weight

@ Shortest path from s to v may contain 2(n) edges
@ There are 2(n) different vertices v
@ Thus, printing out all shortest paths may take time Q(n?)

@ Not acceptable if graph is sparse

Shortest Path Tree
@ O(n)-size data structure to represent all shortest paths

@ For every vertex v, we only need to remember the parent of v:
second-to-last vertex in the shortest path from s to v (why?)

Input: directed graph G = (V, E), s €V
w:E — Ry
Output: 7(v),v € V' \ s: the parent of v
d(v),v € V'\ s: the length of shortest path from s to v

51/90

Q: How to compute shortest paths from s when all edges have
weight 17

|

A: Breadth first search (BFS) from source s

Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; 4 ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m(v) < vertex from which v is visited

4: d(v) < index of the level containing v

@ Problem: w(u,v) may be too large!

Shortest Path Algorithm by Running BFS Virtually
1. S« {s},d(s) <0
2: while S| < n do
3: find a v ¢ S that minimizes min {d(u) + w(u,v)}
u€eS:(u,w)eEE
S+ Su{v}
d(v) < minyes.wner{d(w) + w(u,v)}

OIS

Virtual BFS: Example

Time 10

Outline

@ Single Source Shortest Paths
@ Dijkstra's Algorithm

Dijkstra’s Algorithm

Dijkstra(G, w, s)

1: S« (,d(s) < 0 and d(v) < oo for every v € V' \ {s}
2: while S+ V do

3: u <— vertex in V' \ S with the minimum d(u)
4: add u to S

5 for each v € V'\ S such that (u,v) € E do
6: if d(u) + w(u,v) < d(v) then

7: d(v) « d(u) + w(u,v)

8:

m(v) «u
9: return (d,)

@ Running time = O(n?)

Improved Running Time using Priority Queue

Dijkstra(G, w, s)

0 S <+ 0,d(s) « 0 and d(v) < oo for every v € V' \ {s}
. @ < empty queue, for each v € V: Q.insert(v, d(v))
while S # V do
u < (Q.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E do
if d(u) + w(u,v) < d(v) then
d(v) « d(u) + w(u,v), Q.decrease key(v, d(v))
T(v) u
. return (7,d)

PRI RWNE

= =
= O

Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s < arbitrary vertex in G
: S« 0,d(s) «+ 0 and d(v) < oo for every v € V' \ {s}
. @ < empty queue, for each v € V: Q.insert(v, d(v))
while S # V do
u < (.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d(v) then
d(v) + w(u,v), Q.decrease key(v,d(v))
m(v) u
: return {(u, m(uw))|lu € V'\ {s}}

PRI RWNE

= =
= O

Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)

Outline

© Shortest Paths in Graphs with Negative Weights
@ Bellman-Ford Algorithm

Recall: Single Source Shortest Path Problem

Single Source Shortest Paths
Input: directed graph G = (V| E), s€ V
w:E—= Ry
Output: shortest paths from s to all other vertices v € V

@ Algorithm for the problem: Dijkstra's algorithm

Dijkstra’s Algorithm Using Priorty Queue

Dijkstra(G, w, s)

1. S« (,d(s) < 0 and d(v) < oo for every v € V' \ {s}
2: () < empty queue, for each v € V: Q.insert(v, d(v))
3: while S #V do
u <— (Q.extract_min()
S+ SuU{u}
for each v € V'\ S such that (u,v) € E do
if d(u) +w(u,v) < d(v) then
d(v) « d(u) + w(u,v), Q).decrease key(v,d(v))
o: m(v) «u
)

® N g

10: return (m,d

@ Running time = O(m + nlgn).

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), s€ V
assume all vertices are reachable from s
w:FEF—R
Output: shortest paths from s to all other vertices v € V/

@ In transition graphs, negative weights make sense

o If we sell a item: ‘having the item’ — ‘not having the item’,
weight is negative (we gain money)

@ Dijkstra’s algorithm does not work any more!

Dijkstra’s Algorithm Fails if We Have Negative
Weights

Q: What is the length of the shortest path from s to d?

A: —

Def. A negative cycle is a cycle in which the total weight of edges
is negative.

Dealing with Negative Cycles
@ assume the input graph does not contain negative cycles, or
@ allow algorithm to report “negative cycle exists”

Q: What is the length of the shortest simple path from s to d?

A: 1

@ Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.

Outline

© Shortest Paths in Graphs with Negative Weights
@ Bellman-Ford Algorithm

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V, E), sV
assume all vertices are reachable from s
w:FE—R
Output: shortest paths from s to all other vertices v € V

o first try: f[v]: length of shortest path from s to v

@ issue: do not know in which order we compute f[v]'s

o f'lv], £€{0,1,2,3--- ,n—1}, v € V : length of shortest path
from s to v that uses at most ¢ edges

o ffv], 0€{0,1,2,3--- ,n—1},veV:
length of shortest path from s to v that
uses at most ¢ edges

e f?la] =6
e f3a] =2

0 (=0,v=s
00 (=0,v+#s
£

min (>0
{ minu:(u,v)EE (fé—l[u] + w(u7 /U))

dynamic-programming(G, w,)
1. f9s] « 0 and fv] « oo for any v € V'\ {s}
2: for (< 1ton—1do

copy f*H — f*

4 for each (u,v) € E do

5 if f u] +w(u,v) < ffv] then

6: Fl = f)+ w(u, v)

.

- return (f"7Hv])er

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Dynamic Programming: Example

dynamic-programming(G, w, s)
1. fOs] + 0 and fO[v] + oo for any v € V' \ {s}
2: for { <~ 1ton—1do

copy [— f*

4 for each (u,v) € F do

5 if £ u] +w(u,v) < ff[v] then

6: Fo) = f]+ w(u, v)

;

- return ("7 Hv]) ey

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n — 1 edges

Q: What if there are negative cycles?

Dynamic Programming With Negative Cycle
Detection

dynamic-programming(G, w, s)

1: fYs] <~ 0 and fO[v] « oo for any v € V' \ {s}
2. for{ < 1ton—1do

32 copy f&«l— ff
for each (u,v) € E do

if £ u] +w(u,v) < ff[v] then
F] < £ u] + w(u, v)

. for each (u,v) € E do
if [u] + w(u,v) < "] then

9: report “negative cycle exists” and exit
10: return (f"1[v])pev

o N a0

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: f[s] <= 0 and f[v] - oo forany v € V'\ {s}
2: for { <~ 1ton—1do

3: for each (u,v) € E do

4: if flu] +w(u,v) < f[v] then

5: flv] + flu] + w(u,v)

6: return f

@ Issue: when we compute f[u] + w(u,v), f[u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges

f[v] is always the length of some path from s to v

(]

Bellman-Ford Algorithm

Bellman-Ford(G, w,)

1: f[s] <= 0 and f[v] = oo forany v € V'\ {s}
2: for { <~ 1ton—1do

3: for each (u,v) € E do

4; if flu] +w(u,v) < fv] then
5: flv] < flu] + w(u, v)
6: return f

@ After iteration ¢, f[v] is at most the length of the shortest path
from s to v that uses at most ¢ edges

e f[v] is always the length of some path from s to v

@ Assuming there are no negative cycles, after iteration n — 1,
f[v] = length of shortest path from s to v

Bellman-Ford Algorithm

Bellman-Ford(G, w,)

1: f[s] <= 0 and f[v] = oo forany v € V'\ {s}
2: for { <1 ton do

3 updated < false

4 for each (u,v) € FE do

5 if flu] +w(u,v) < f[v] then

6: flv] < flu] + w(u,v), 7[v] < u
7 updated < true
8 if not updated, then return f
9:

output “negative cycle exists”

@ 7[v]: the parent of v in the shortest path tree

@ Running time = O(nm)

Outline

© All-Pair Shortest Paths and Floyd-Warshall

Summary of Shortest Path Algorithms we learned

‘ graph ‘ weights ‘ SS? ‘ running time

algorithm
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph
AP = all pairs

@ SS = single source

U = undirected D = directed

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V, E),
w: E — R (can be negative)
Output: shortest path from u to v for every u,v € V

1: for every starting point s € V do
o run Bellman-Ford(G, w, s)

@ Running time = O(n?m)

Design a Dynamic Programming Algorithm

@ It is convenient to assume V ={1,2,3,--- ,n}
@ For simplicity, extend the w values to non-edges:

0 i=j
w(i, j) = { weight of edge (i,j) i +# j,(i,j) € E
o0 i#4.(i,5) ¢ E

@ For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
o First try: fli, j] is length of shortest path from i to j

@ Issue: do not know in which order we compute f[i, j]'s

e f¥[i,j]: length of shortest path from i to j that only uses
vertices {1,2,3,--- ,k} as intermediate vertices

Example for Definition of f*[i, j]'s

f7[1,4] = o0

fH1,4] = 00

fAL,4 =140 (1 —2—4)
fA1L,4=9 (1—=3—=2—=4)
1,4 =9 (1—=3—=2—=4)
fP[1,4)=60 (1 —=3—=5—4)

0 i=j
w(i, j) = { weight of edge (i,j) i#j,(i,j) € E
00 i#5,(4,5) ¢ £

e f¥[i,j]: length of shortest path from i to j that only uses
vertices {1,2,3,--- , k} as intermediate vertices

wli,) k=0

Plidl=1 £, L
m{ N 1 I

Floyd-Warshall(G, w)

1: fo —w

2: for k< 1tondo
3 copy f* = fF

4 for i < 1 ton do

5: for j « 1ton do

6 if fR7Li, k) + f*1k, 5] < f*[i, j] then
7 FElE 3] < 71 k) 4 R 4]

Floyd-Warshall(G, w)

I f7—w

2: for k< 1tondo

3 copy [= f

4 for i< 1ton do

5: for j < 1tondo

6 if 70,k + f [k, 4] < fli, 5] then
7 ol g fO R+ R 4]

Lemma Assume there are no negative cycles in GG. After iteration
k, fori,j € V, fli,j] is exactly the length of shortest path from i to
j that only uses vertices in {1,2,3,--- k} as intermediate vertices.

4

@ Running time = O(n?).

Recovering Shortest Paths

Floyd-Warshall(G, w)

L f« w, 7i,j] < L foreveryi,j eV
2: for k< 1 ton do
3: for i < 1 ton do
for j « 1 ton do
if fli,k]+ f[k,j] < f[i,j] then
fli 3] < fli, k1 + Ik, 5], 7wli, j] < &

& &8 o5

print-path(i, 7)
if 7[i, j] = L then then
if i # j then print(s,",")
else
print-path(i, [, j]), print-path(x[i, j], j)

2w n e

Detecting Negative Cycles

Floyd-Warshall(G, w)

L f <« w, w[i,j] < L foreveryi,j €V
2: for k< 1 ton do
for i < 1 ton do
for j « 1 ton do
if f[i, k] + f[k, j] < f[i.] then
fli, 5]« fli k] + flk, 5], =i, j] < k
: for k< 1ton do
for i <~ 1ton do
for j < 1ton do
10: if fli,k]+ f[k,j] < f[i, j] then
11: report “negative cycle exists” and exit

2P PR 2B

Summary of Shortest Path Algorithms

‘ graph ‘ weights ‘ SS? ‘ running time

algorithm
Simple DP DAG R SS O(n +m)
Dijkstra UD | Rso | SS | O(nlogn+m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed

	Minimum Spanning Tree
	Kruskal's Algorithm
	Reverse-Kruskal's Algorithm
	Prim's Algorithm

	Single Source Shortest Paths
	Dijkstra's Algorithm

	Shortest Paths in Graphs with Negative Weights
	Bellman-Ford Algorithm

	All-Pair Shortest Paths and Floyd-Warshall

