CSE 431/531: Algorithm Analysis and Design (Spring 2021) Graph Algorithms

Lecturer: Shi Li

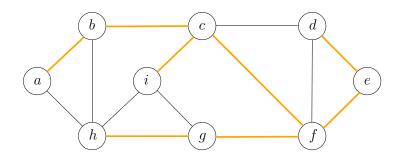
Department of Computer Science and Engineering University at Buffalo

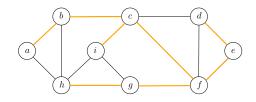
Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Spanning Tree

Def. Given a connected graph G=(V,E), a spanning tree T=(V,F) of G is a sub-graph of G that is a tree including all vertices V.





Lemma Let T = (V, F) be a subgraph of G = (V, E). The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has n-1 edges;
- T is acyclic and has n-1 edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- T has a unique simple path between every pair of nodes.

Minimum Spanning Tree (MST) Problem

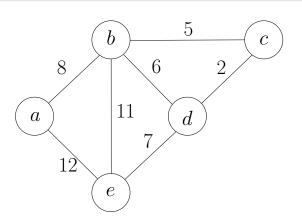
Input: Graph G = (V, E) and edge weights $w : E \to \mathbb{R}$

Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph G=(V,E) and edge weights $w:E\to\mathbb{R}$

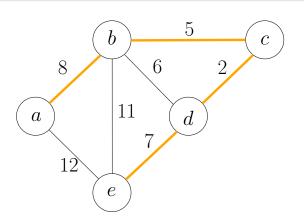
Output: the spanning tree T of G with the minimum total weight



Minimum Spanning Tree (MST) Problem

Input: Graph G=(V,E) and edge weights $w:E\to\mathbb{R}$

Output: the spanning tree T of G with the minimum total weight



Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

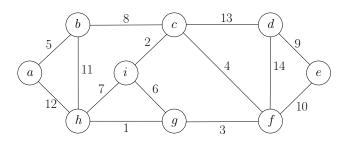
Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

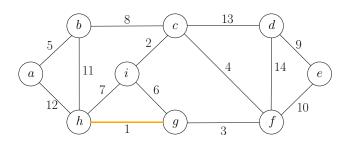
- Kruskal's Algorithm
- Prim's Algorithm

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall



Q: Which edge can be safely included in the MST?

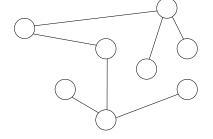


Q: Which edge can be safely included in the MST?

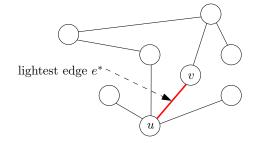
A: The edge with the smallest weight (lightest edge).

Proof.

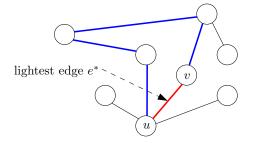
ullet Take a minimum spanning tree T



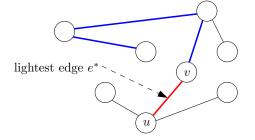
- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T



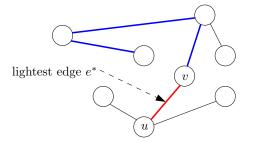
- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v

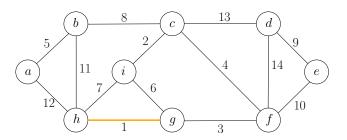


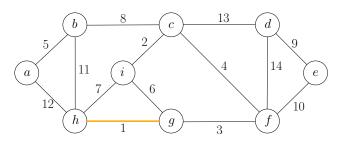
- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'



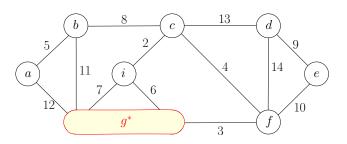
- ullet Take a minimum spanning tree T
- ullet Assume the lightest edge e^* is not in T
- ullet There is a unique path in T connecting u and v
- ullet Remove any edge e in the path to obtain tree T'
- $w(e^*) \le w(e) \implies w(T') \le w(T)$: T' is also a MST



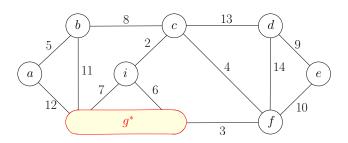




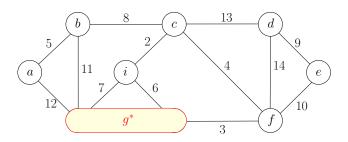
 \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)

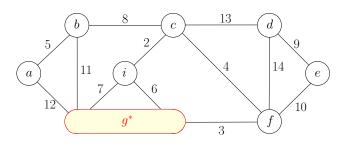


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)

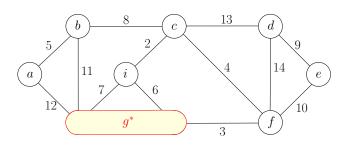


- \bullet Residual problem: find the minimum spanning tree that contains edge (g,h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

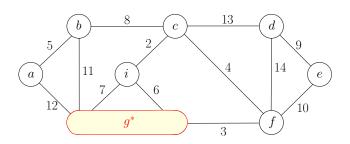




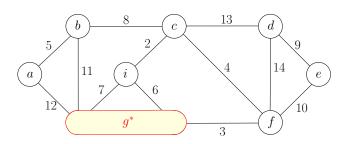
 \bullet Remove u and v from the graph, and add a new vertex u^*



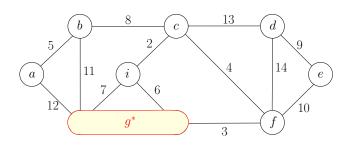
- ullet Remove u and v from the graph, and add a new vertex u^*
- ullet Remove all edges (u,v) from E



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u,w) \in E, w \neq v$, change it to (u^*,w)



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- \bullet For every edge $(v,w) \in E, w \neq u$, change it to (u^*,w)



- ullet Remove u and v from the graph, and add a new vertex u^*
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to (u^*, w)
- For every edge $(v, w) \in E, w \neq u$, change it to (u^*, w)
- May create parallel edges! E.g. : two edges (i, g^*)

Repeat the following step until G contains only one vertex:

- Choose the lightest edge e^* , add e^* to the spanning tree
- $oldsymbol{0}$ Contract e^* and update G be the contracted graph

Repeat the following step until G contains only one vertex:

- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- $oldsymbol{0}$ Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

Repeat the following step until G contains only one vertex:

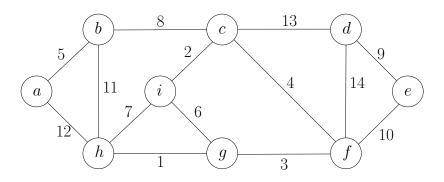
- lacktriangle Choose the lightest edge e^* , add e^* to the spanning tree
- f 2 Contract e^* and update G be the contracted graph

Q: What edges are removed due to contractions?

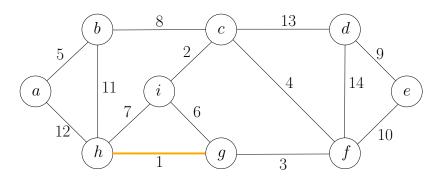
 $\mbox{\bf A:} \;\; \mbox{Edge}\;(u,v)$ is removed if and only if there is a path connecting u and v formed by edges we selected

$\mathsf{MST} ext{-}\mathsf{Greedy}(G,w)$

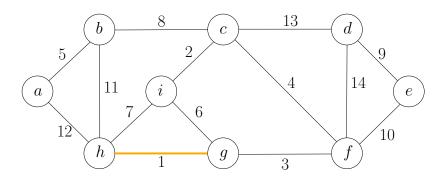
- 1: $F \leftarrow \emptyset$
- 2: sort edges in ${\cal E}$ in non-decreasing order of weights ${\it w}$
- 3: for each edge (u,v) in the order do
- 4: **if** u and v are not connected by a path of edges in F **then**
- 5: $F \leftarrow F \cup \{(u, v)\}$
- 6: **return** (V, F)



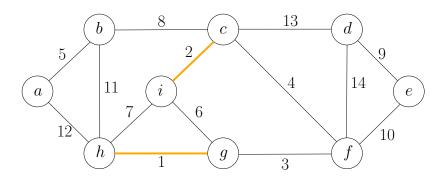
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



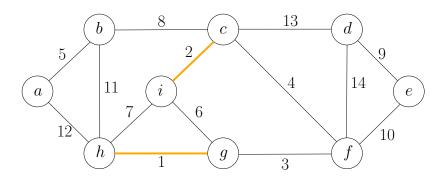
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$



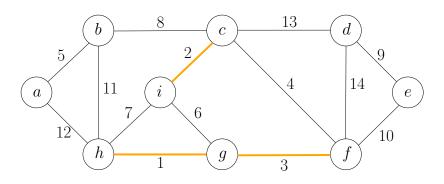
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



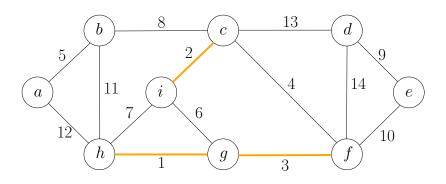
Sets: $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}, \{i\}$



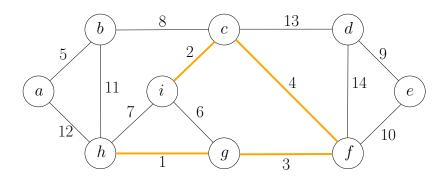
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



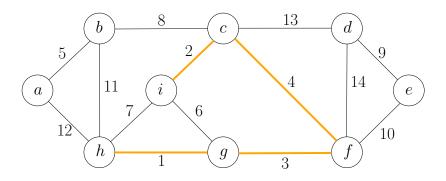
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f\}, \{g, h\}$



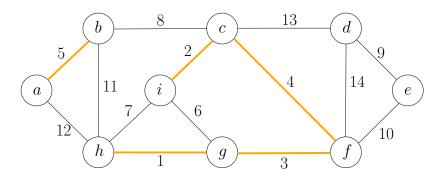
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



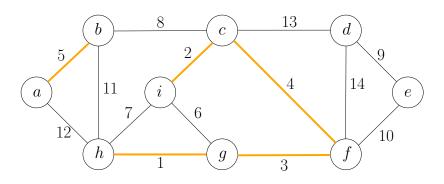
Sets: $\{a\}, \{b\}, \{c, i\}, \{d\}, \{e\}, \{f, g, h\}$



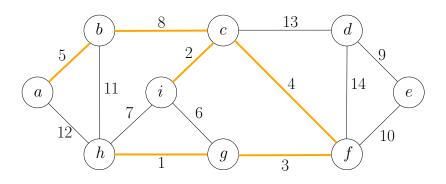
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



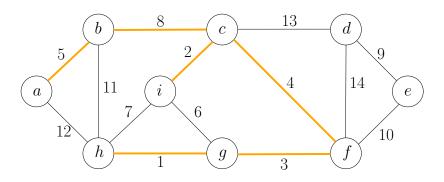
Sets: $\{a\}, \{b\}, \{c, i, f, g, h\}, \{d\}, \{e\}$



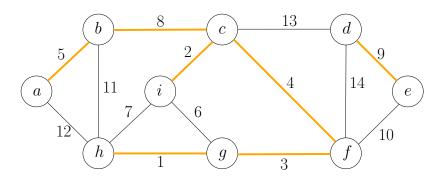
Sets: $\{a,b\},\{c,i,f,g,h\},\{d\},\{e\}$



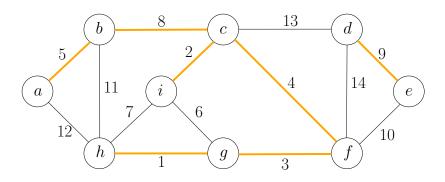
Sets: $\{a,b\},\{c,i,f,g,h\},\{d\},\{e\}$



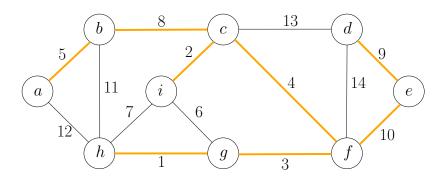
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



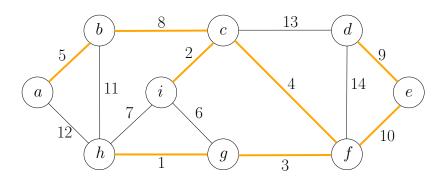
Sets: $\{a, b, c, i, f, g, h\}, \{d\}, \{e\}$



Sets: $\{a,b,c,i,f,g,h\},\{d,e\}$



Sets: $\{a,b,c,i,f,g,h\},\{d,e\}$



Sets: $\{a,b,c,i,f,g,h,d,e\}$

Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

```
\mathsf{MST}\text{-}\mathsf{Kruskal}(G, w)
```

```
1. F \leftarrow \emptyset
 2: \mathcal{S} \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
          S_u \leftarrow the set in \mathcal{S} containing u
 5:
 6: S_v \leftarrow the set in S containing v
 7: if S_u \neq S_v then
               F \leftarrow F \cup \{(u,v)\}
 8:
               \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
 9:
10: return (V, F)
```

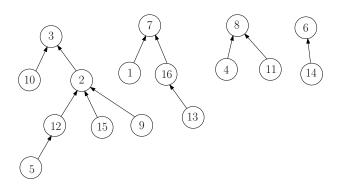
Running Time of Kruskal's Algorithm

```
MST-Kruskal(G, w)
 1: F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
 5:
         S_u \leftarrow the set in S containing u
 6: S_v \leftarrow the set in S containing v
 7: if S_u \neq S_v then
             F \leftarrow F \cup \{(u,v)\}
 8:
              \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_n\} \setminus \{S_n\} \cup \{S_n \cup S_n\}
 9:
10: return (V, F)
```

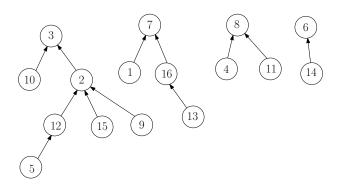
Use union-find data structure to support 2, 5, 6, 7, 9.

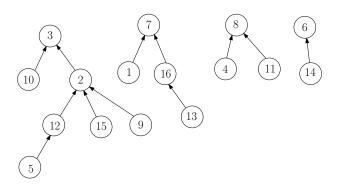
- ullet V: ground set
- ullet We need to maintain a partition of V and support following operations:
 - ullet Check if u and v are in the same set of the partition
 - Merge two sets in partition

- $V = \{1, 2, 3, \cdots, 16\}$
- Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

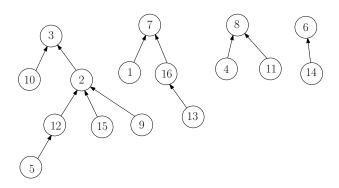


• par[i]: parent of i, $(par[i] = \bot \text{ if } i \text{ is a root})$.

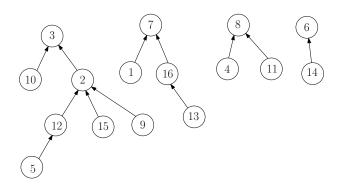




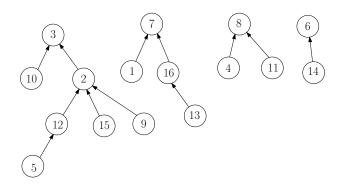
ullet Q: how can we check if u and v are in the same set?



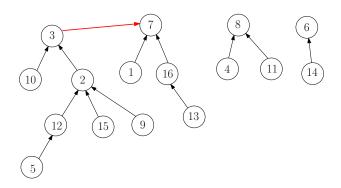
- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).



- ullet Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.



- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and r': $par[r] \leftarrow r'$.

root(v)

```
1: if par[v] = \bot then
```

- 2: return v
- 3: **else**
- 4: **return** root(par[v])

```
root(v)
```

```
1: if par[v] = \bot then
```

- 2: return v
- 3: **else**
- 4: **return** root(par[v])

Problem: the tree might too deep; running time might be large

```
root(v)
```

- 1: if $par[v] = \bot$ then
- 2: return v
- 3: **else**
- 4: **return** root(par[v])

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)

- 1: if $par[v] = \bot$ then
- 2: return v
- 3: **else**
- 4: **return** root(par[v])

root(v)

- 1: **if** $par[v] = \bot$ **then**
- 2: return v
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: **return** par[v]
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)

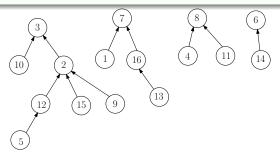
```
1: if par[v] = \bot then
```

2: return v

3: **else**

4: $par[v] \leftarrow root(par[v])$

5: **return** par[v]



root(v)

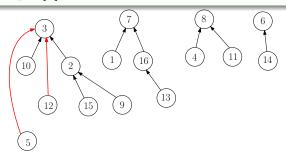
```
1: if par[v] = \bot then
```

v: return v

3: **else**

4: $par[v] \leftarrow root(par[v])$

5: **return** par[v]



MST-Kruskal(G, w)

```
1: F \leftarrow \emptyset
 2: S \leftarrow \{\{v\} : v \in V\}
 3: sort the edges of E in non-decreasing order of weights w
    for each edge (u, v) \in E in the order do
         S_u \leftarrow the set in S containing u
 5:
     S_v \leftarrow the set in S containing v
 6:
 7: if S_u \neq S_v then
              F \leftarrow F \cup \{(u,v)\}
 8:
              \mathcal{S} \leftarrow \mathcal{S} \setminus \{S_n\} \setminus \{S_n\} \cup \{S_n \cup S_n\}
 9:
10: return (V, F)
```

MST-Kruskal(G, w)

```
1: F \leftarrow \emptyset
 2: for every v \in V do: par[v] \leftarrow \bot
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
       u' \leftarrow \mathsf{root}(u)
 5:
 6: v' \leftarrow \text{root}(v)
 7: if u' \neq v' then
             F \leftarrow F \cup \{(u,v)\}
 8:
             par[u'] \leftarrow v'
 9:
10: return (V, F)
```

MST-Kruskal(G, w)

```
1: F \leftarrow \emptyset
 2: for every v \in V do: par[v] \leftarrow \bot
 3: sort the edges of E in non-decreasing order of weights w
 4: for each edge (u, v) \in E in the order do
    u' \leftarrow \mathsf{root}(u)
 5:
 6: v' \leftarrow \text{root}(v)
 7: if u' \neq v' then
             F \leftarrow F \cup \{(u,v)\}
 8:
             par[u'] \leftarrow v'
 9:
10: return (V, F)
```

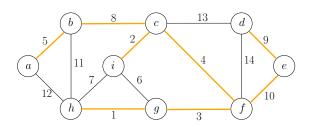
- **2**,**5**,**6**,**7**,**9** takes time $O(m\alpha(n))$
- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

$\mathsf{MST}\text{-}\mathsf{Kruskal}(G,\,w)$

- 1: $F \leftarrow \emptyset$ 2: **for** every $v \in V$ **do**: $par[v] \leftarrow \bot$ 3: sort the edges of E in non-decreasing order of weights w4: **for** each edge $(u, v) \in E$ in the order **do** $u' \leftarrow \mathsf{root}(u)$ 5: 6: $v' \leftarrow \text{root}(v)$ 7: if $u' \neq v'$ then $F \leftarrow F \cup \{(u,v)\}$ 8: $par[u'] \leftarrow v'$ 9: 10: return (V, F)
 - 2,5,6,7,9 takes time $O(m\alpha(n))$
 - $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.
 - Running time = time for $3 = O(m \lg n)$.

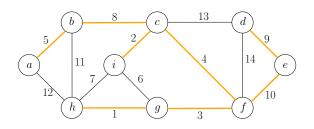
Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



Assumption Assume all edge weights are different.

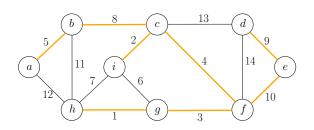
Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



• (i,g) is not in the MST because of cycle (i,c,f,g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is **not** in the MST, if and only if there is cycle C in G in which e is the heaviest edge.



- (i,g) is not in the MST because of cycle (i,c,f,g)
- \bullet (e, f) is in the MST because no such cycle exists

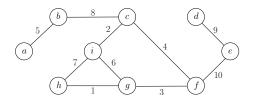
Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

 $\textbf{ § Start from } F \leftarrow \emptyset \text{, and add edges to } F \text{ one by one until we obtain a spanning tree}$

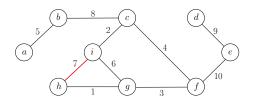
- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- ullet Start from $F\leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- $\textbf{ 9} \ \, \mathsf{Start} \,\, \mathsf{from} \,\, F \leftarrow \emptyset, \, \mathsf{and} \,\, \mathsf{add} \,\, \mathsf{edges} \,\, \mathsf{to} \,\, F \,\, \mathsf{one} \,\, \mathsf{by} \,\, \mathsf{one} \,\, \mathsf{until} \,\, \mathsf{we} \,\, \mathsf{obtain} \,\, \mathsf{a} \,\, \mathsf{spanning} \,\, \mathsf{tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



Q: Which edge can be safely excluded from the MST?

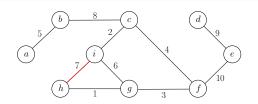
- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

- $\textbf{ 9} \ \, \mathsf{Start} \,\, \mathsf{from} \,\, F \leftarrow \emptyset, \, \mathsf{and} \,\, \mathsf{add} \,\, \mathsf{edges} \,\, \mathsf{to} \,\, F \,\, \mathsf{one} \,\, \mathsf{by} \,\, \mathsf{one} \,\, \mathsf{until} \,\, \mathsf{we} \,\, \mathsf{obtain} \,\, \mathsf{a} \,\, \mathsf{spanning} \,\, \mathsf{tree}$
- ② Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree



Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

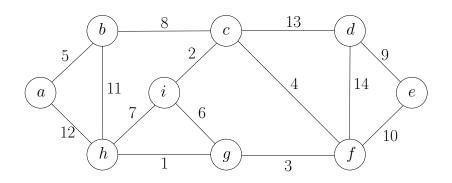
Def. A bridge is an edge whose removal disconnects the graph.

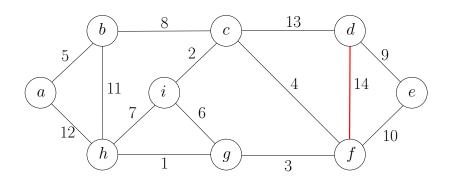
Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

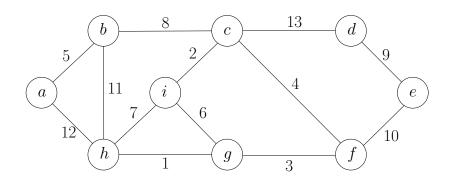
Reverse Kruskal's Algorithm

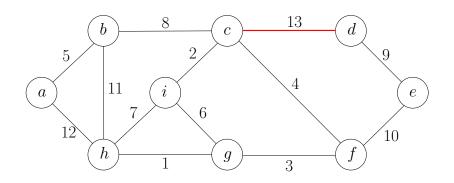
$\mathsf{MST} ext{-}\mathsf{Greedy}(G,w)$

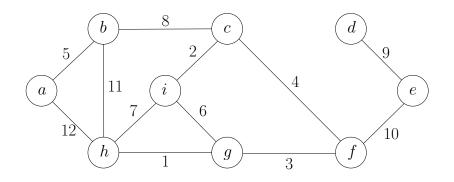
- 1: $F \leftarrow E$
- 2: sort E in non-increasing order of weights
- 3: **for** every e in this order **do**
- 4: **if** $(V, F \setminus \{e\})$ is connected **then**
- 5: $F \leftarrow F \setminus \{e\}$
- 6: **return** (V, F)

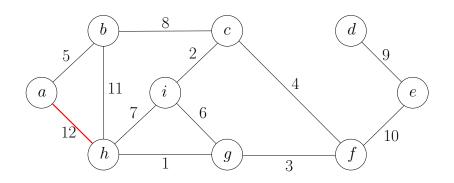


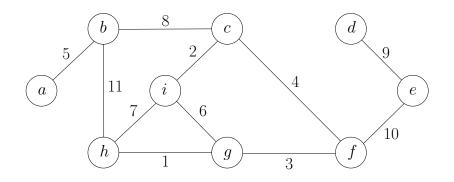


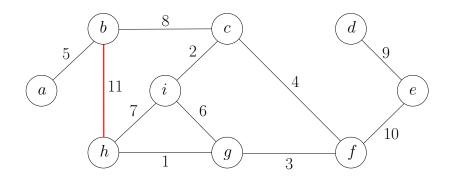


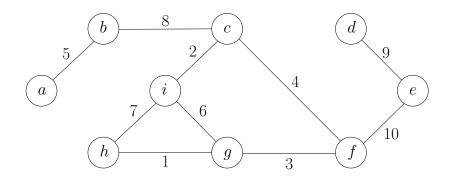


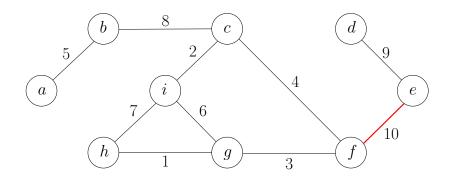


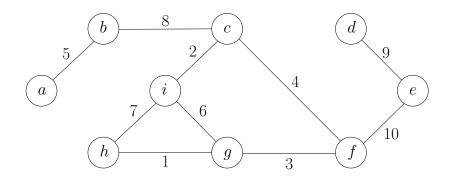


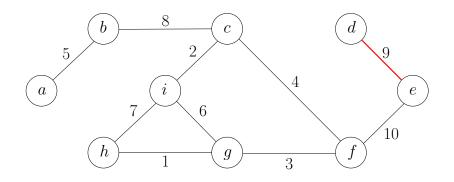


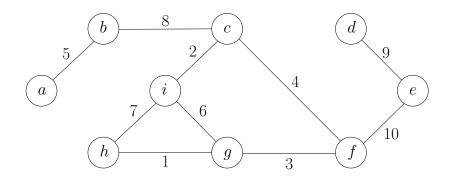


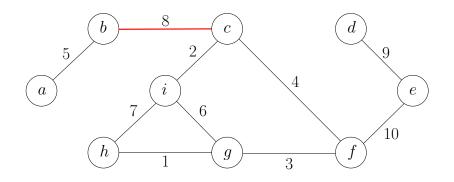


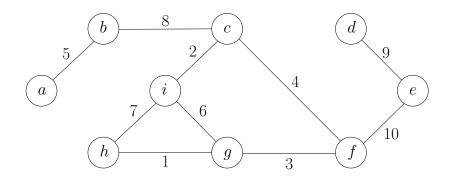


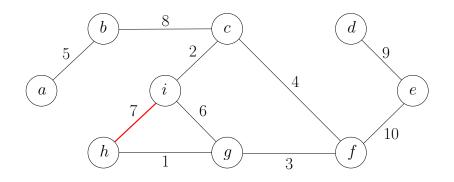


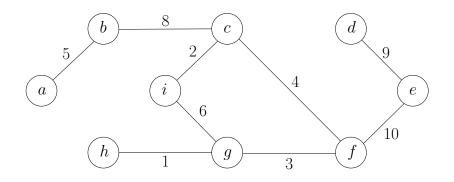


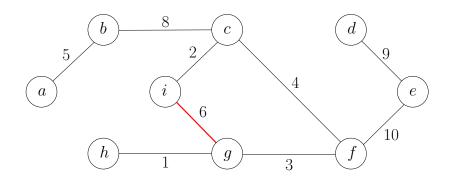


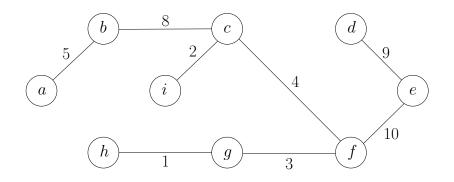










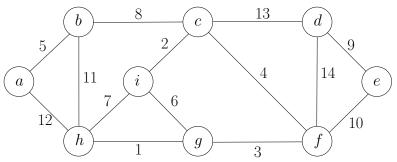


Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

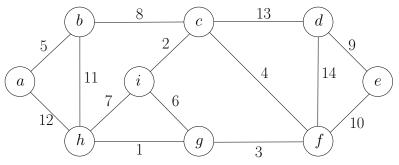
Design Greedy Strategy for MST

 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



Design Greedy Strategy for MST

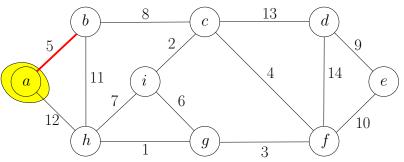
 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



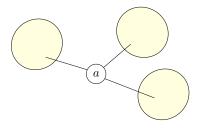
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.

Design Greedy Strategy for MST

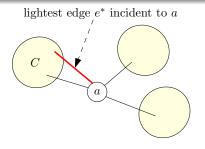
 Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.



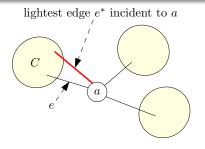
• Greedy strategy for Prim's algorithm: choose the lightest edge incident to a.



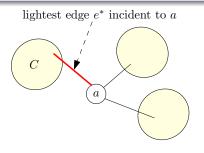
- \bullet Let T be a MST
- ullet Consider all components obtained by removing a from T



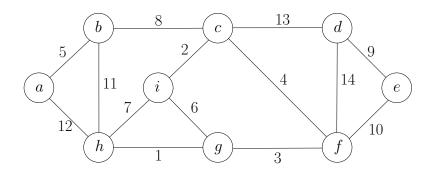
- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C

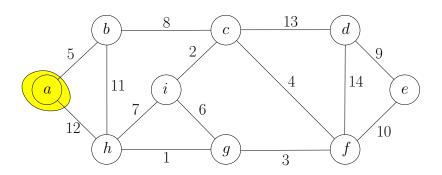


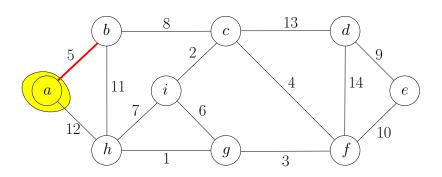
- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C

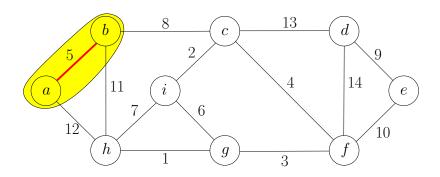


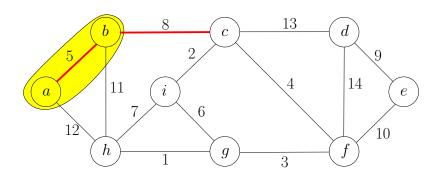
- Let T be a MST
- ullet Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- ullet Let e be the edge in T connecting a to C
- $T' = T \setminus \{e\} \cup \{e^*\}$ is a spanning tree with $w(T') \le w(T)$

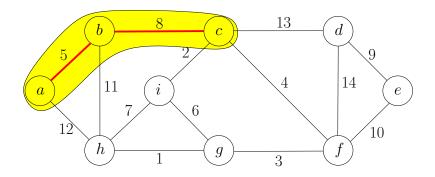


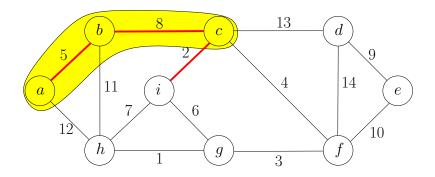


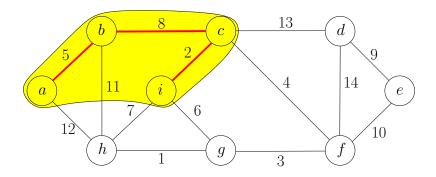


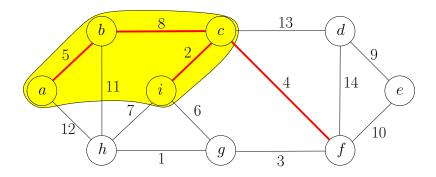


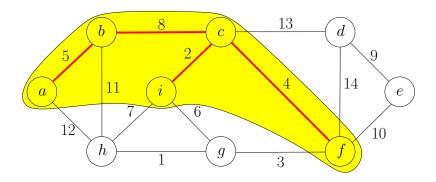


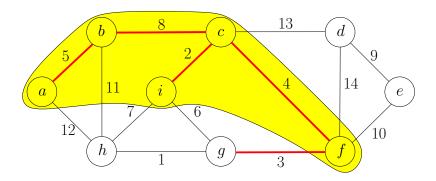


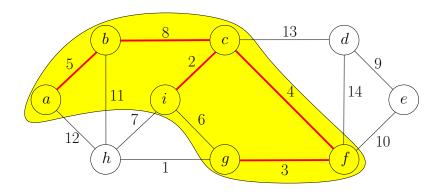


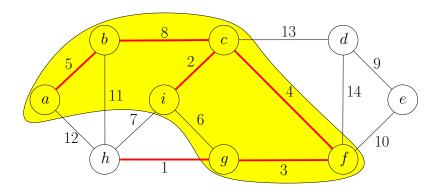


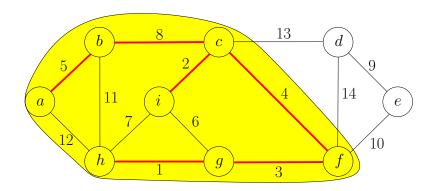


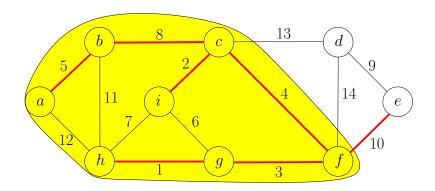


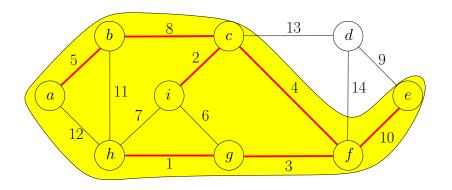


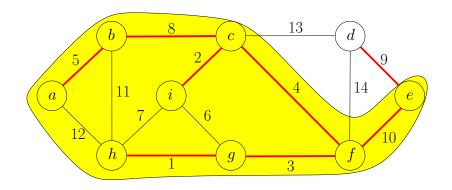


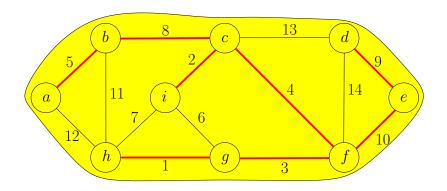












Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy1}(G,w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V 2: $F \leftarrow \emptyset$
- 3: while $S \neq V$ do
- 4: $(u,v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S,$ where $u \in S$ and $v \in V \setminus S$
- 5: $S \leftarrow S \cup \{v\}$
- 6: $F \leftarrow F \cup \{(u, v)\}$
- 7: return (V, F)

Greedy Algorithm

$\mathsf{MST}\text{-}\mathsf{Greedy1}(G,w)$

```
1: S \leftarrow \{s\}, where s is arbitrary vertex in V
2: F \leftarrow \emptyset
3: while S \neq V do
```

4: $(u,v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S,$ where $u \in S \text{ and } v \in V \setminus S$

5: $S \leftarrow S \cup \{v\}$ 6: $F \leftarrow F \cup \{(u,v)\}$

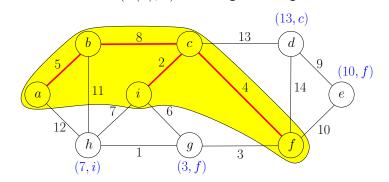
7: **return** (V, F)

• Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v)$ is the lightest edge between v and S



Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

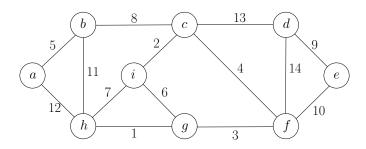
- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

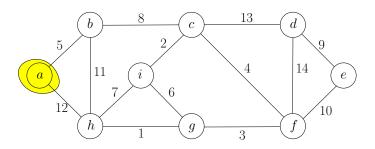
In every iteration

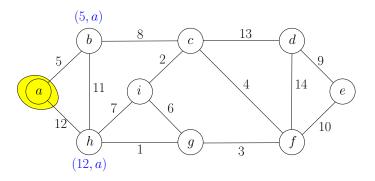
- Pick $u \in V \setminus S$ with the smallest d(u) value
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values.

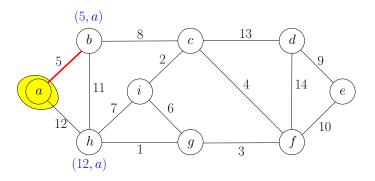
Prim's Algorithm

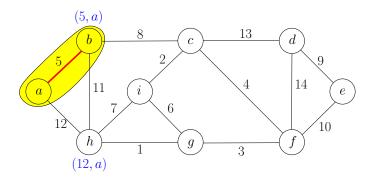
6: **for** each $v \in V \setminus S$ such that $(u, v) \in E$ **do**

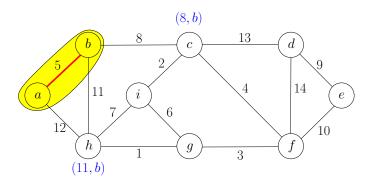


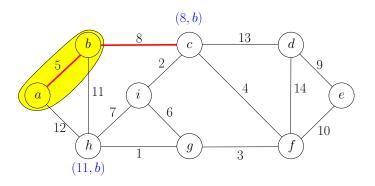


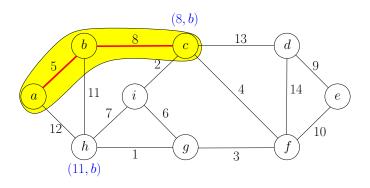


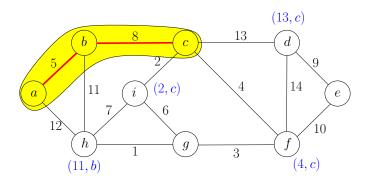


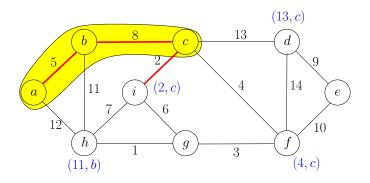


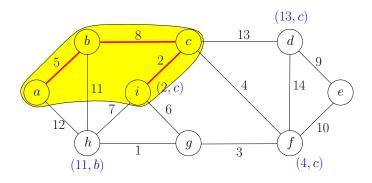


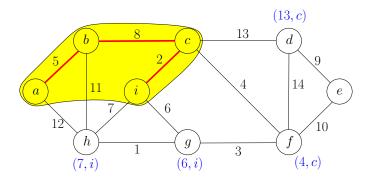


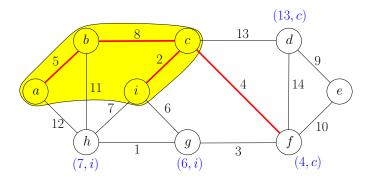


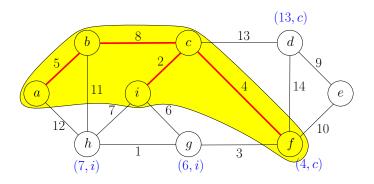


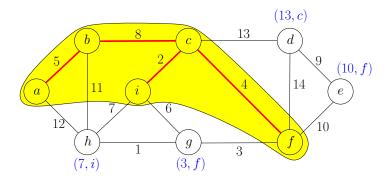


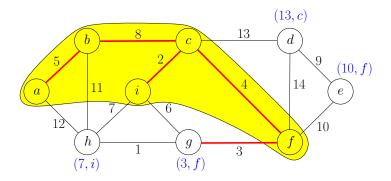


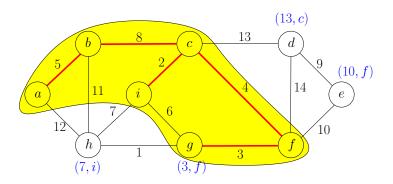


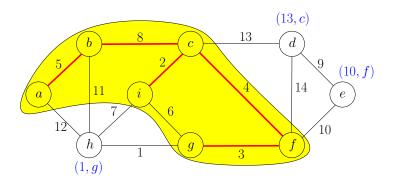


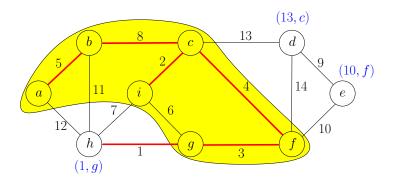


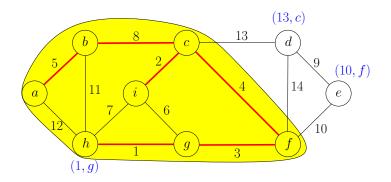


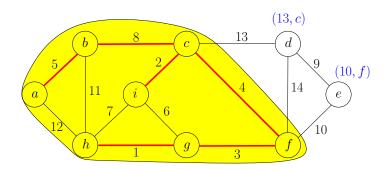


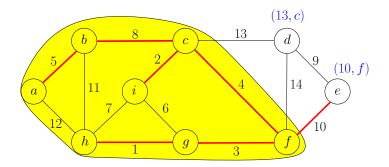


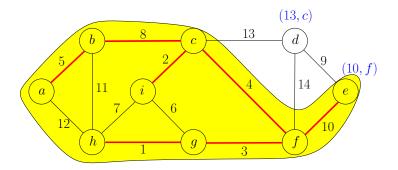


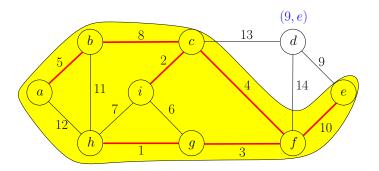


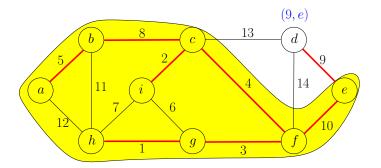


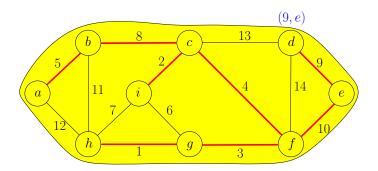


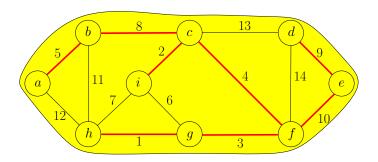












Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- Pick $u \in V \setminus S$ with the smallest d(u) value
- Add $(\pi(u), u)$ to F
- ullet Add u to S, update d and π values.

Prim's Algorithm

For every $v \in V \setminus S$ maintain

- $d(v) = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S
- $\pi(v) = \arg\min_{u \in S: (u,v) \in E} w(u,v)$: $(\pi(v),v) \text{ is the lightest edge between } v \text{ and } S$

In every iteration

- $\bullet \ \operatorname{Pick} \ u \in V \setminus S \ \text{with the smallest} \ d(u) \ \operatorname{value} \\ \bullet \ \operatorname{extract_min}$
- Add $(\pi(u), u)$ to F
- Add u to S, update d and π values. decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert (v, key_value) : insert an element v, whose associated key value is key_value .
- decrease_key (v, new_key_value) : decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value
- · · ·

Prim's Algorithm

```
\mathsf{MST}	ext{-}\mathsf{Prim}(G,w)
```

```
1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
 3:
 4: while S \neq V do
         u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)
 5:
 6: S \leftarrow S \cup \{u\}
     for each v \in V \setminus S such that (u, v) \in E do
 7:
               if w(u,v) < d(v) then
 8:
                    d(v) \leftarrow w(u,v)
 9:
                    \pi(v) \leftarrow u
10:
11: return \{(u, \pi(u))|u \in V \setminus \{s\}\}
```

Prim's Algorithm Using Priority Queue

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d(v))
 4: while S \neq V do
 5: u \leftarrow Q.\text{extract\_min()}
 6: S \leftarrow S \cup \{u\}
     for each v \in V \setminus S such that (u, v) \in E do
 7:
               if w(u,v) < d(v) then
 8:
                     d(v) \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9:
                     \pi(v) \leftarrow u
10:
11: return \{(u, \pi(u))|u \in V \setminus \{s\}\}
```

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times$ (time for extract_min) + $O(m) \times$ (time for decrease_key)

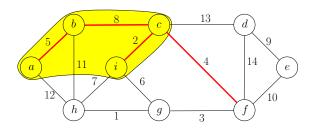
concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

Assumption Assume all edge weights are different.

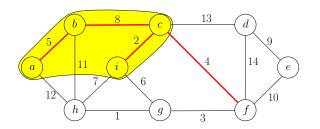
Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.



• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.



- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$
- (i,g) is not in MST because no such cut exists

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- ullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- ullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

s-t Shortest Paths

Input: (directed or undirected) graph G=(V,E), $s,t\in V$

 $w: E \to \mathbb{R}_{\geq 0}$

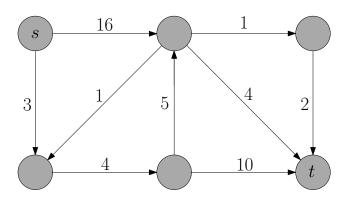
Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

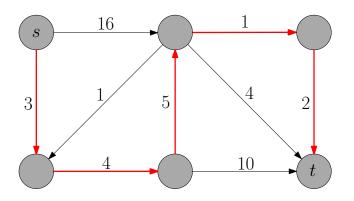


s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t



Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

 We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- ullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- ullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- ullet We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

 \bullet Shortest path from s to v may contain $\Omega(n)$ edges

- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v

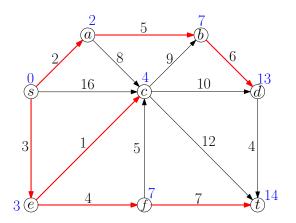
- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega(n^2)$

- Shortest path from s to v may contain $\Omega(n)$ edges
- There are $\Omega(n)$ different vertices v
- Thus, printing out all shortest paths may take time $\Omega(n^2)$
- Not acceptable if graph is sparse

 \bullet O(n)-size data structure to represent all shortest paths

- O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)

- ullet O(n)-size data structure to represent all shortest paths
- For every vertex v, we only need to remember the parent of v: second-to-last vertex in the shortest path from s to v (why?)



Single Source Shortest Paths

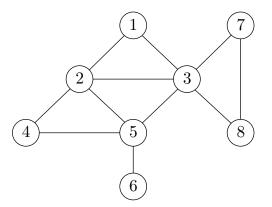
Input: directed graph G = (V, E), $s \in V$

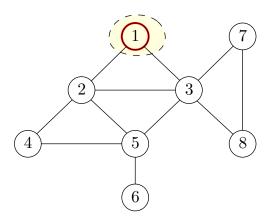
 $w: E \to \mathbb{R}_{>0}$

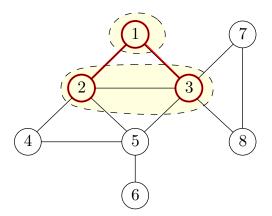
Output: $\pi(v), v \in V \setminus s$: the parent of v

 $d(v), v \in V \setminus s$: the length of shortest path from s to v

 $\mathbf{Q}\text{:}\ \ \text{How to compute shortest paths from }s$ when all edges have weight 1?

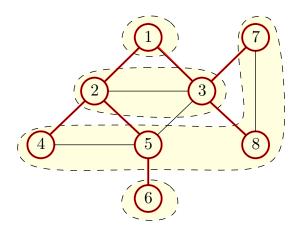








A: Breadth first search (BFS) from source \boldsymbol{s}



 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi(v) \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d(v) \leftarrow \text{index of the level containing } v$

 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi(v) \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d(v) \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

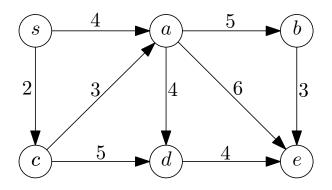
 \bullet An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

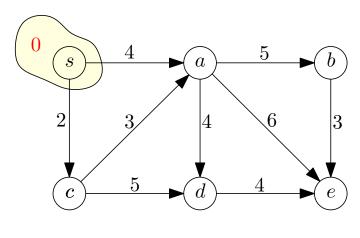
Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS virtually
- 3: $\pi(v) \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d(v) \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

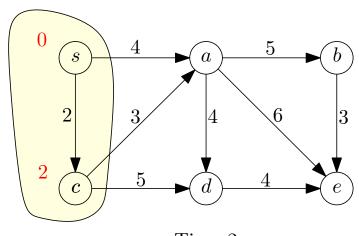
Shortest Path Algorithm by Running BFS Virtually

- 1: $S \leftarrow \{s\}, d(s) \leftarrow 0$
- 2: while |S| < n do
- 3: find a $v \notin S$ that minimizes $\min_{u \in S: (u,v) \in E} \{d(u) + w(u,v)\}$
- 4: $S \leftarrow S \cup \{v\}$
- 5: $d(v) \leftarrow \min_{u \in S:(u,v) \in E} \{d(u) + w(u,v)\}$

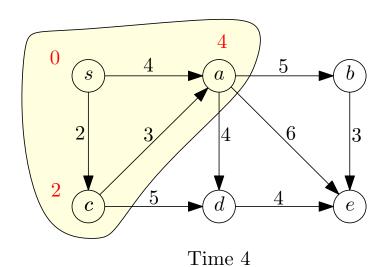


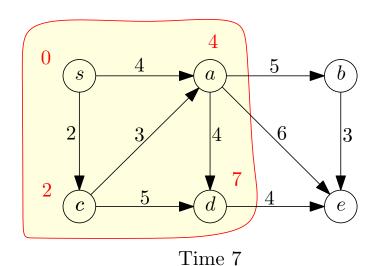


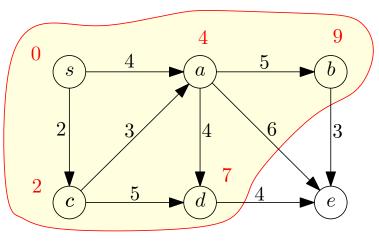
Time 0



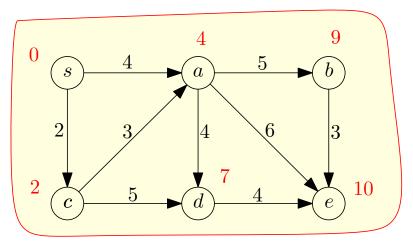
 ${\rm Time}\ 2$







Time 9



Time 10

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

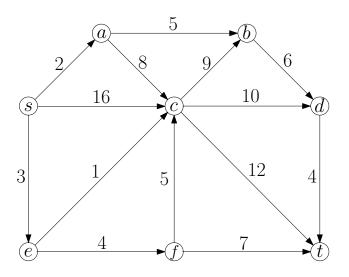
Dijkstra's Algorithm

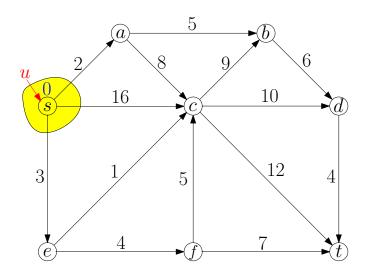
```
Dijkstra(G, w, s)
 1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
     while S \neq V do
          u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)
 3:
      add u to S
 4:
         for each v \in V \setminus S such that (u, v) \in E do
 5:
               if d(u) + w(u, v) < d(v) then
 6:
                    d(v) \leftarrow d(u) + w(u, v)
 7:
                    \pi(v) \leftarrow u
 8:
 9: return (d, \pi)
```

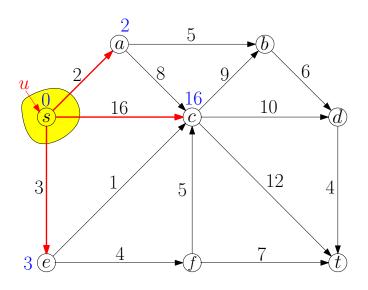
Dijkstra's Algorithm

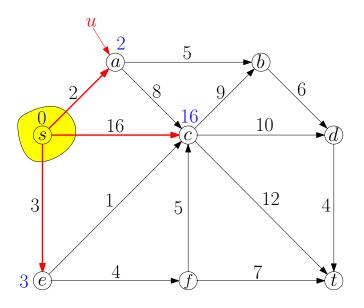
```
Dijkstra(G, w, s)
 1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
     while S \neq V do
         u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d(u)
 3:
     add u to S
 4:
     for each v \in V \setminus S such that (u, v) \in E do
 5:
               if d(u) + w(u, v) < d(v) then
 6:
                   d(v) \leftarrow d(u) + w(u, v)
 7:
                   \pi(v) \leftarrow u
 8:
 9: return (d, \pi)
```

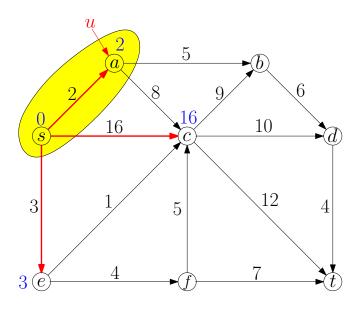
• Running time = $O(n^2)$

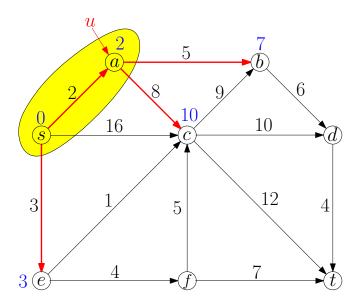


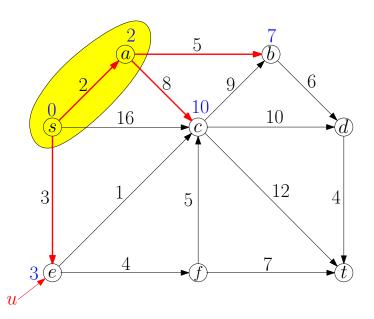


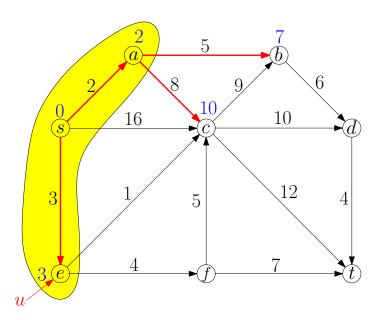


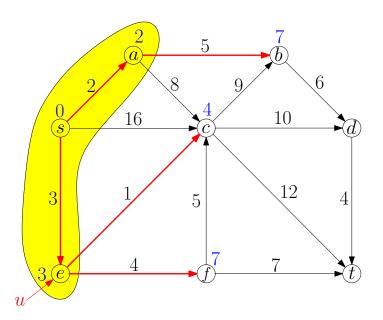


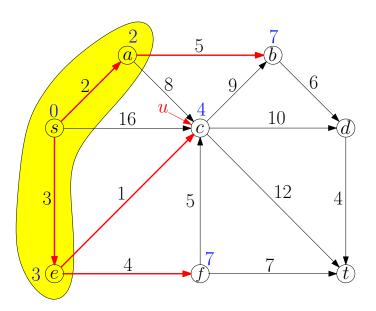


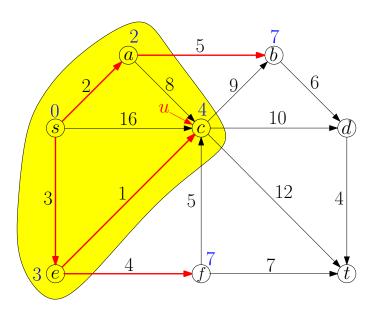


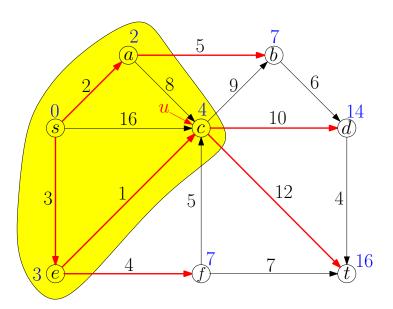


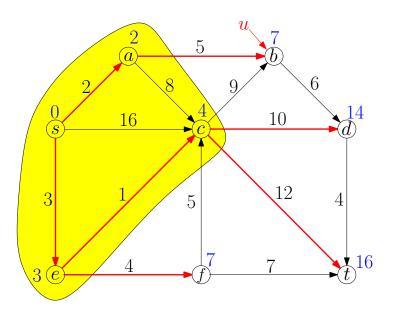


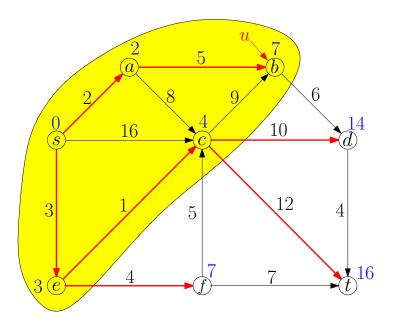


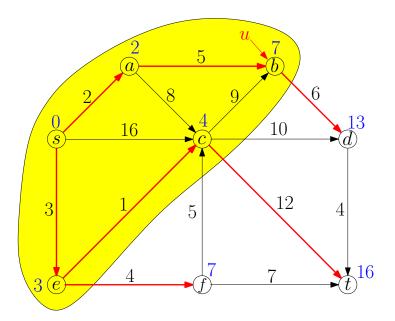


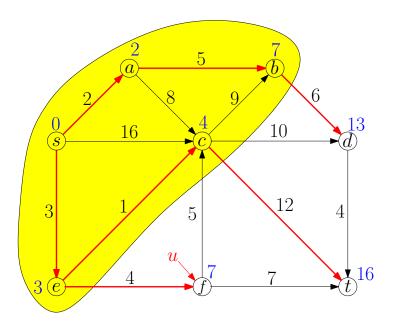


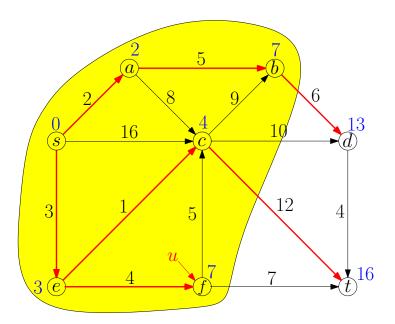


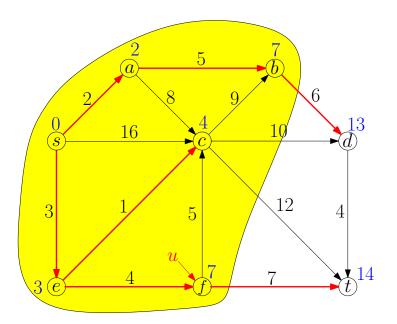


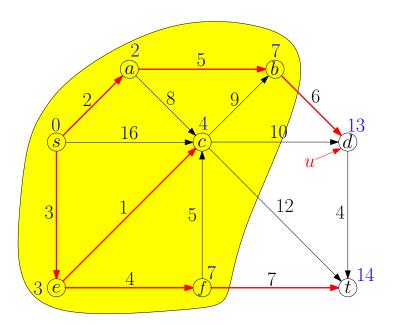


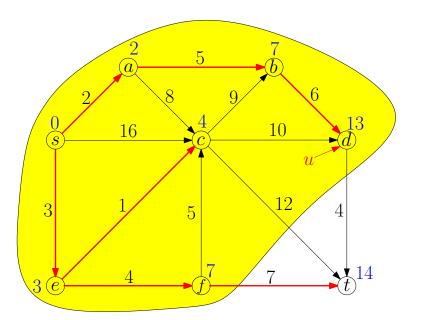


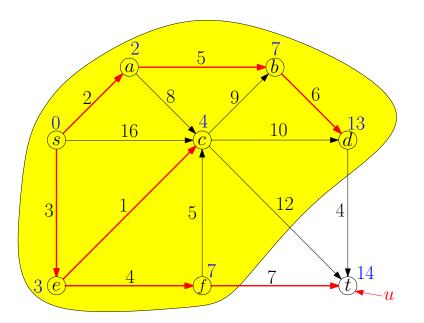


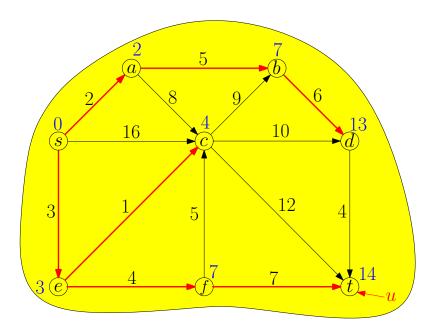












Improved Running Time using Priority Queue

```
Dijkstra(G, w, s)
 1:
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d(v))
 4: while S \neq V do
    u \leftarrow Q.\mathsf{extract\_min}()
 5:
 6: S \leftarrow S \cup \{u\}
     for each v \in V \setminus S such that (u, v) \in E do
 7:
               if d(u) + w(u, v) < d(v) then
 8:
                    d(v) \leftarrow d(u) + w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9:
                    \pi(v) \leftarrow u
10:
11: return (\pi, d)
```

Recall: Prim's Algorithm for MST

```
\mathsf{MST}\text{-}\mathsf{Prim}(G,w)
 1: s \leftarrow arbitrary vertex in G
 2: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
 3: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d(v))
 4: while S \neq V do
 5: u \leftarrow Q.\text{extract\_min()}
 6: S \leftarrow S \cup \{u\}
     for each v \in V \setminus S such that (u, v) \in E do
 7:
               if w(u,v) < d(v) then
 8:
                     d(v) \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 9:
                     \pi(v) \leftarrow u
10:
11: return \{(u, \pi(u))|u \in V \setminus \{s\}\}
```

Improved Running Time

Running time:

 $O(n) \times (\mathsf{time\ for\ extract_min}) + O(m) \times (\mathsf{time\ for\ decrease_key})$

Priority-Queue	extract_min	decrease_key	Time
Неар	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

Recall: Single Source Shortest Path Problem

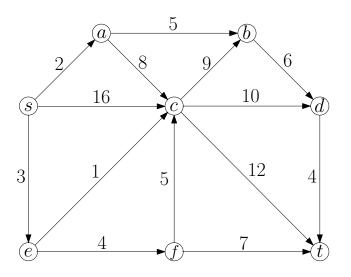
Single Source Shortest Paths

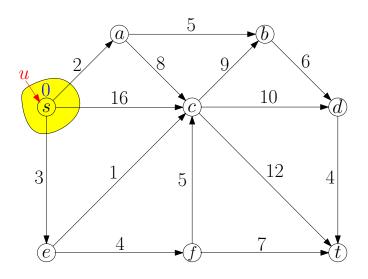
Input: directed graph G = (V, E), $s \in V$

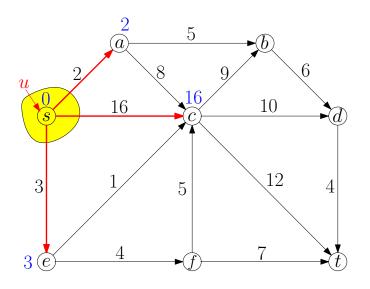
 $w: E \to \mathbb{R}_{>0}$

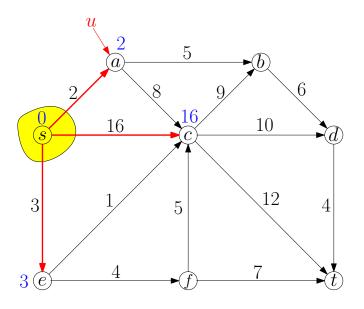
Output: shortest paths from s to all other vertices $v \in V$

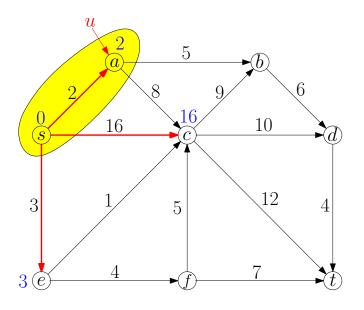
• Algorithm for the problem: Dijkstra's algorithm

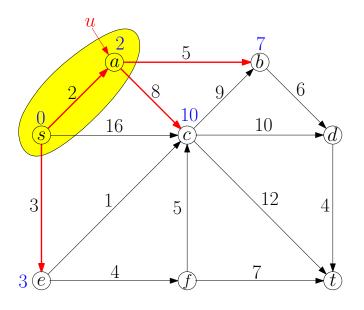


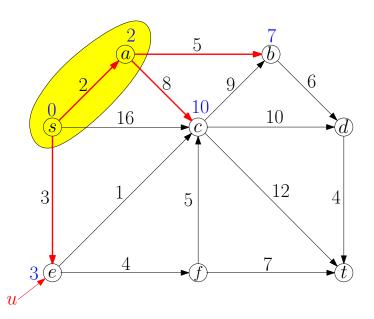


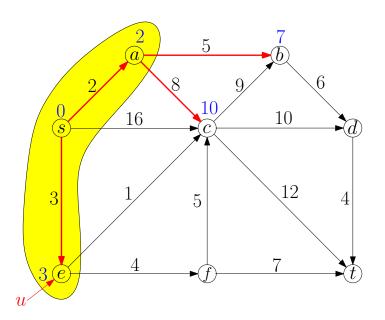


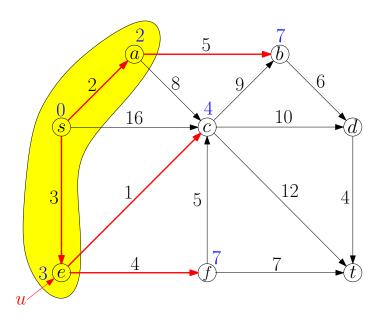


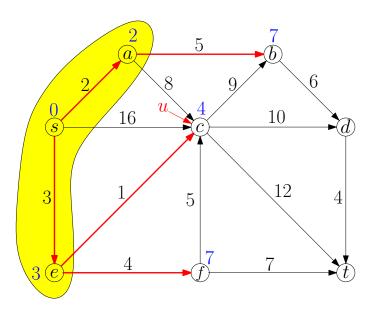


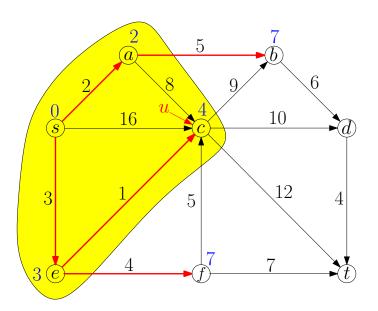


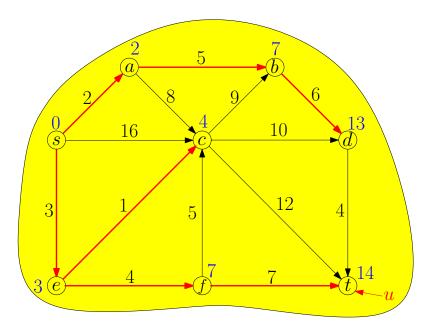












Dijkstra's Algorithm Using Priorty Queue

```
Dijkstra(G, w, s)
 1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d(v) \leftarrow \infty for every v \in V \setminus \{s\}
 2: Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d(v))
 3: while S \neq V do
     u \leftarrow Q.\mathsf{extract\_min}()
 4:
 5: S \leftarrow S \cup \{u\}
     for each v \in V \setminus S such that (u, v) \in E do
 6:
               if d(u) + w(u, v) < d(v) then
 7:
                    d(v) \leftarrow d(u) + w(u, v), Q.\mathsf{decrease\_key}(v, d(v))
 8:
                    \pi(v) \leftarrow u
 9:
10: return (\pi, d)
```

• Running time = $O(m + n \lg n)$.

Single Source Shortest Paths

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Single Source Shortest Paths

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s

 $w: E \to \mathbb{R}$

Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s

assume all vertices are reachable nor

 $w: E \to \mathbb{R}$

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

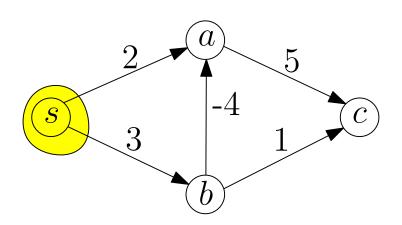
In transition graphs, negative weights make sense

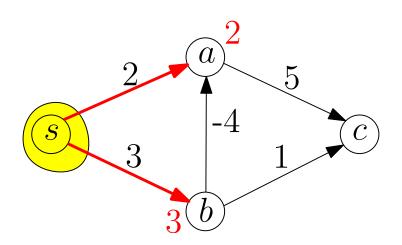
Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

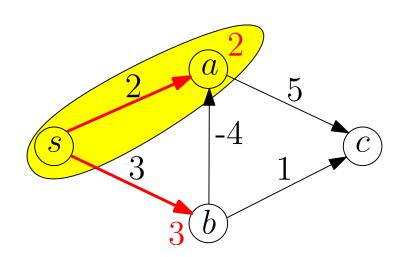
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)

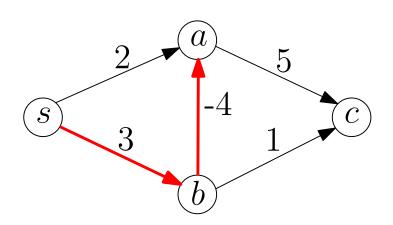
Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

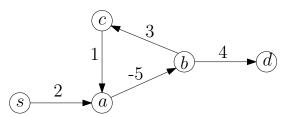
- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' → 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

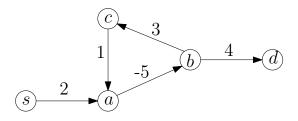


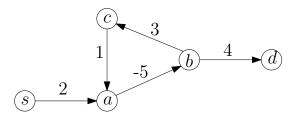


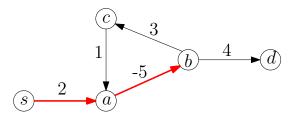


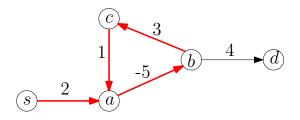


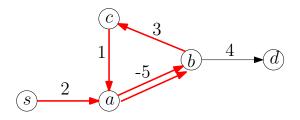


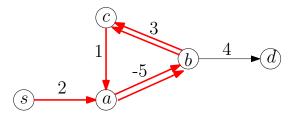


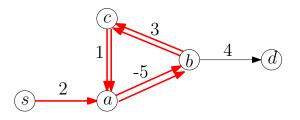


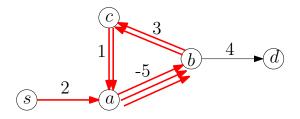


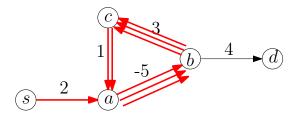


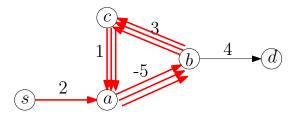


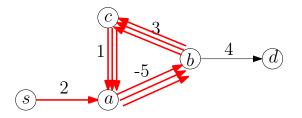






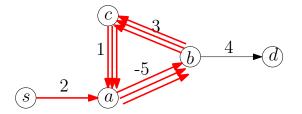






A: $-\infty$

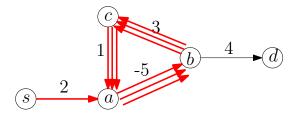
Def. A negative cycle is a cycle in which the total weight of edges is negative.



A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

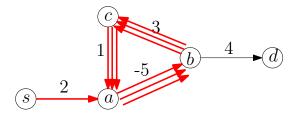


A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

• assume the input graph does not contain negative cycles, or

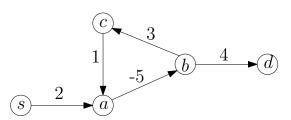


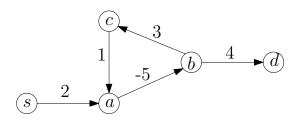
A: $-\infty$

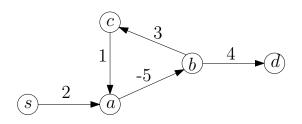
Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

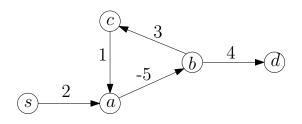
- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"







A: 1



A: 1

 Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- 4 All-Pair Shortest Paths and Floyd-Warshall

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Single Source Shortest Paths, Weights May be Negative

Input: directed graph G = (V, E), $s \in V$

assume all vertices are reachable from \boldsymbol{s}

 $w: E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

ullet first try: f[v]: length of shortest path from s to v

Single Source Shortest Paths, Weights May be Negative

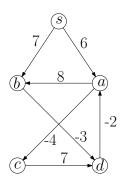
Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

- first try: f[v]: length of shortest path from s to v
- ullet issue: do not know in which order we compute f[v]'s

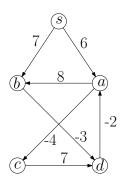
Single Source Shortest Paths, Weights May be Negative

Input: directed graph G=(V,E), $s\in V$ assume all vertices are reachable from s $w:E\to\mathbb{R}$

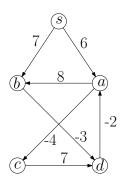
- first try: f[v]: length of shortest path from s to v
- \bullet issue: do not know in which order we compute $f[v]\mbox{'s}$
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges



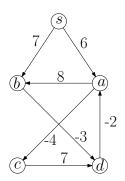
• $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges



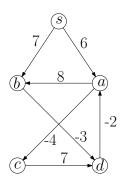
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] =$



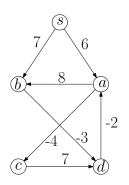
- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] =$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

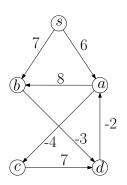
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \left\{ \right.$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

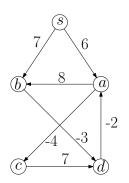
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

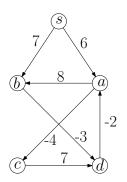
•
$$f^2[a] = 6$$

• $f^3[a] = 2$

•
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



•
$$f^{\ell}[v]$$
, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges

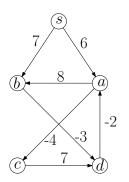
•
$$f^2[a] = 6$$

•
$$f^2[a] = 6$$

• $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$

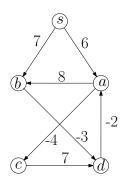
$$f^{\ell}[v] = \begin{cases} 0 \\ \infty \\ \min \end{cases}$$

$$\ell = 0, v = s$$

$$\ell = 0, v \neq s$$

$$f^{\ell-1}[v]$$

$$\ell > 0$$



- $f^{\ell}[v]$, $\ell \in \{0, 1, 2, 3 \cdots, n-1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^2[a] = 6$ $f^3[a] = 2$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \end{cases}$$

$$\min \begin{cases} f^{\ell-1}[v] & \ell > 0 \end{cases}$$

${\sf dynamic\text{-}programming}(G,w,s)$

```
1: f^{0}[s] \leftarrow 0 and f^{0}[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

${\sf dynamic\text{-}programming}(G,w,s)$

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

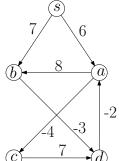
4: for each (u,v) \in E do

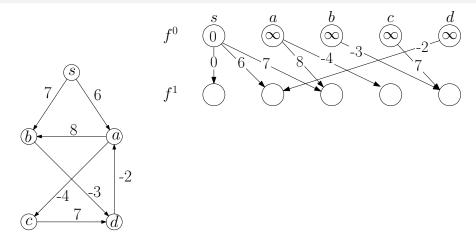
5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

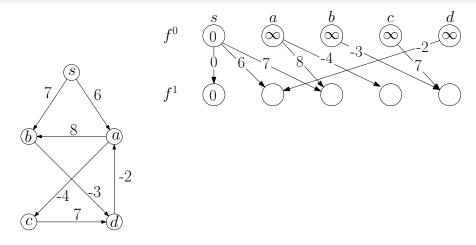
6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

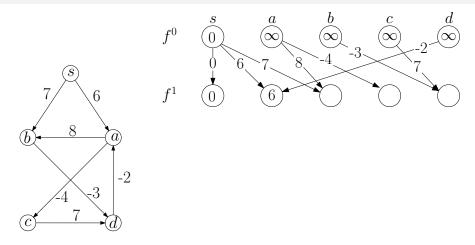
7: return (f^{n-1}[v])_{v \in V}
```

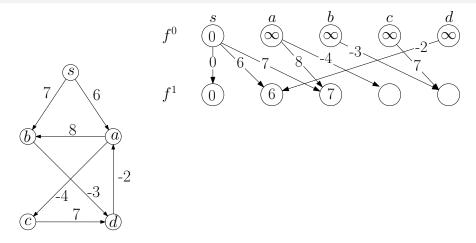
Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

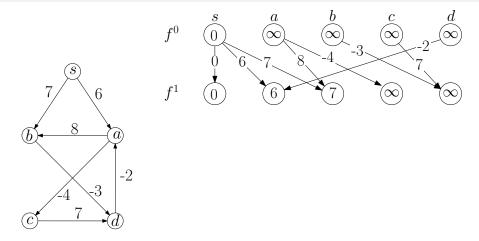


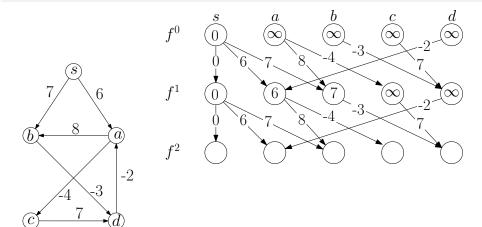


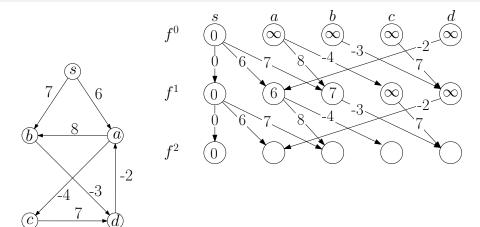


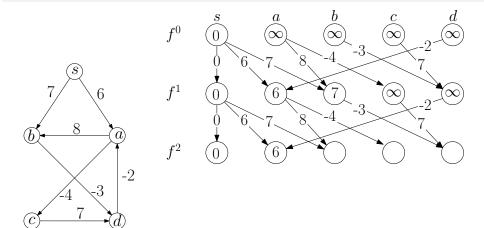


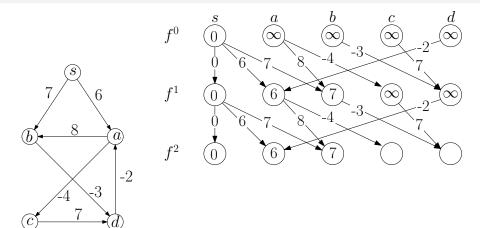


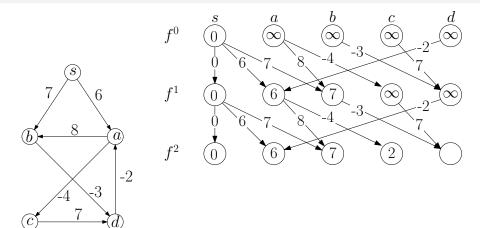


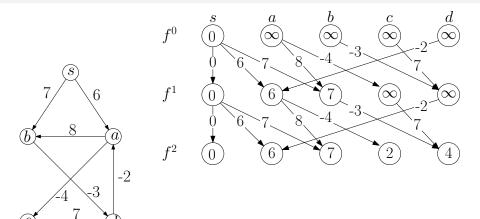


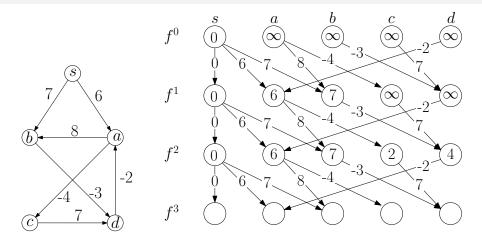


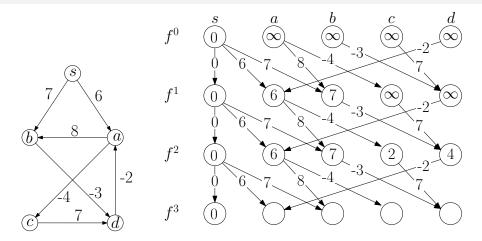


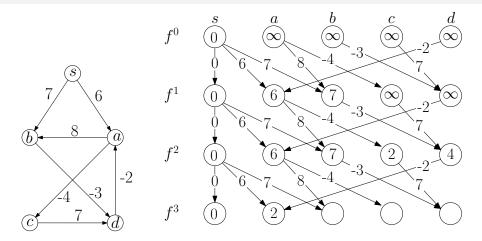


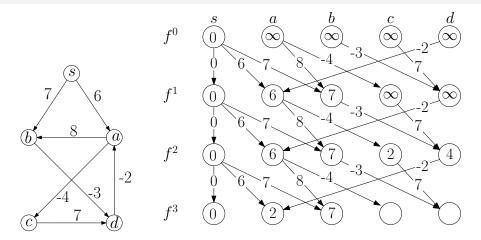


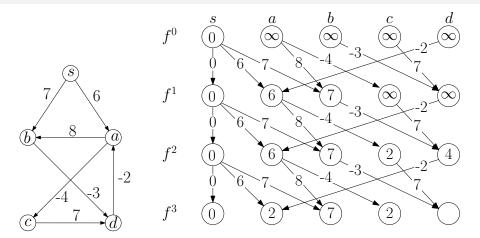


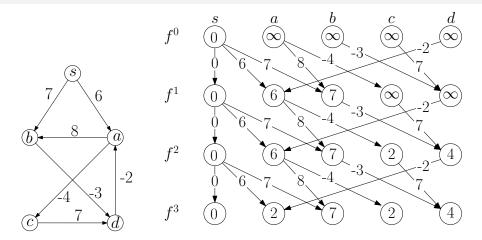


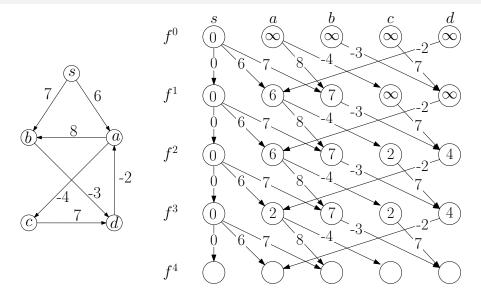


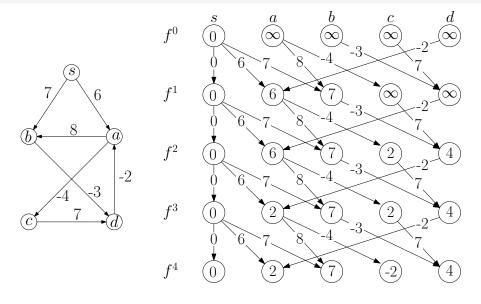












${\sf dynamic\text{-}programming}(G,w,s)$

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

${\sf dynamic\text{-}programming}(G,w,s)$

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Q: What if there are negative cycles?

Dynamic Programming With Negative Cycle Detection

```
dynamic-programming (G, w, s)
 1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}
 2: for \ell \leftarrow 1 to n-1 do
        copy f^{\ell-1} \to f^{\ell}
 3:
 4: for each (u, v) \in E do
             if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then
 5:
                  f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)
 6:
 7: for each (u, v) \in E do
         if f^{n-1}[u] + w(u,v) < f^{n-1}[v] then
 8:
             report "negative cycle exists" and exit
 9:
10: return (f^{n-1}[v])_{v \in V}
```

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

```
\begin{array}{l} \text{1: } f^{\mathsf{old}}[s] \leftarrow 0 \text{ and } f^{\mathsf{old}}[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s\} \\ \text{2: } \mathbf{for } \ell \leftarrow 1 \text{ to } n-1 \text{ do} \\ \text{3: } \operatorname{copy } f^{\mathsf{old}} \rightarrow f^{\mathsf{new}} \\ \text{4: } \mathbf{for } \operatorname{each } (u,v) \in E \text{ do} \\ \text{5: } \mathbf{if } f^{\mathsf{old}}[u] + w(u,v) < f^{\mathsf{new}}[v] \text{ then} \\ \text{6: } f^{\mathsf{new}}[v] \leftarrow f^{\mathsf{old}}[u] + w(u,v) \\ \text{7: } \operatorname{copy } f^{\mathsf{new}} \rightarrow f^{\mathsf{old}} \\ \text{8: } \mathbf{return } f^{\mathsf{old}} \end{array}
```

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

```
\begin{array}{l} \text{dynamic-programming}(G,w,s) \\ \text{1: } f[s] \leftarrow 0 \text{ and } f[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s\} \\ \text{2: } \textbf{for } \ell \leftarrow 1 \text{ to } n-1 \text{ do} \end{array}
```

```
2: For \ell \leftarrow 1 to n-1 do
3: \operatorname{copy} f \to f
4: for \operatorname{each} (u,v) \in E do
5: if f[u] + w(u,v) < f[v] then
6: f[v] \leftarrow f[u] + w(u,v)
7: \operatorname{copy} f \to f
8: return f
```

- ullet only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

${\sf dynamic\text{-}programming}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

• Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration

Bellman-Ford(G, w, s)

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford(G, w, s)

- 1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
- 2: **for** $\ell \leftarrow 1$ to n-1 **do** 3: **for** each $(u,v) \in E$ **do**
- 4: **if** f[u] + w(u, v) < f[v] **then**
- 5: $f[v] \leftarrow f[u] + w(u, v)$
- 6: **return** f
- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v
- Assuming there are no negative cycles, after iteration n-1, $f[v]=\mbox{length of shortest path from }s\mbox{ to }v$

7: 8: $updated \leftarrow \mathsf{true}$

if not updated, then return f

9: output "negative cycle exists"

Bellman-Ford(G, w, s)1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$ 2: **for** $\ell \leftarrow 1$ to n **do**3: $updated \leftarrow false$ 4: **for** each $(u, v) \in E$ **do**5: **if** f[u] + w(u, v) < f[v] **then**6: $f[v] \leftarrow f[u] + w(u, v)$

```
\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
2: for \ell \leftarrow 1 to n do
       updated \leftarrow false
3:
   for each (u,v) \in E do
4:
             if f[u] + w(u,v) < f[v] then
5:
                  f[v] \leftarrow f[u] + w(u,v), \, \pi[v] \leftarrow u
6:
                  updated \leftarrow \mathsf{true}
7:
8:
        if not updated, then return f
9: output "negative cycle exists"
```

• $\pi[v]$: the parent of v in the shortest path tree

```
\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n do

3: updated \leftarrow \text{false}

4: for each (u,v) \in E do

5: if f[u] + w(u,v) < f[v] then

6: f[v] \leftarrow f[u] + w(u,v), \pi[v] \leftarrow u

7: updated \leftarrow \text{true}

8: if not updated, then return f

9: output "negative cycle exists"
```

- $\pi[v]$: the parent of v in the shortest path tree
- Running time = O(nm)

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- 2 Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths and Floyd-Warshall

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)
- Running time = $O(n^2m)$

• It is convenient to assume $V = \{1, 2, 3, \dots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V = \{1, 2, 3, \cdots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

ullet First try: f[i,j] is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

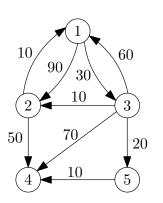
$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

• For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s
- $f^k[i,j]$: length of shortest path from i to j that only uses vertices $\{1,2,3,\cdots,k\}$ as intermediate vertices

Example for Definition of $f^k[i,j]$'s



$$\begin{split} f^0[1,4] &= \infty \\ f^1[1,4] &= \infty \\ f^2[1,4] &= 140 \qquad (1 \to 2 \to 4) \\ f^3[1,4] &= 90 \qquad (1 \to 3 \to 2 \to 4) \\ f^4[1,4] &= 90 \qquad (1 \to 3 \to 2 \to 4) \\ f^5[1,4] &= 60 \qquad (1 \to 3 \to 5 \to 4) \end{split}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases}$$

$$k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases} \qquad f^{k-1}[i,j] \qquad k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] & k = 1, 2, \dots, n \end{cases} \end{cases}$$

Floyd-Warshall(G, w)

```
1: f^0 \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{k-1} \to f^k

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{k-1}[i,k] + f^{k-1}[k,j] < f^k[i,j] then

7: f^k[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]
```

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f^{\text{old}} \leftarrow w

2: \mathbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \mathbf{do}

3: \operatorname{copy} \ f^{\text{old}} \rightarrow f^{\text{new}}

4: \mathbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \mathbf{do}

5: \mathbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \mathbf{do}

6: \mathbf{if} \ f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j] \ \mathbf{then}

7: f^{\text{new}}[i,j] \leftarrow f^{\text{old}}[k,j]
```

Floyd-Warshall(G, w)

```
1: f^{\text{old}} \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{\text{old}} \to f^{\text{new}}

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j] then

7: f^{\text{new}}[i,j] \leftarrow f^{\text{old}}[i,k] + f^{\text{old}}[k,j]
```

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f \to f

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f[i,k] + f[k,j] < f[i,j] then

7: f[i,j] \leftarrow f[i,k] + f[k,j]
```

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Floyd-Warshall(G, w)

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

Recovering Shortest Paths

6:

Floyd-Warshall(G, w)1: $f \leftarrow w$, $\pi[i, j] \leftarrow \bot$ for every $i, j \in V$ 2: for $k \leftarrow 1$ to n do 3: for $i \leftarrow 1$ to n do 4: for $j \leftarrow 1$ to n do 5: if f[i, k] + f[k, j] < f[i, j] then

 $f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k$

Recovering Shortest Paths

Floyd-Warshall(G, w)1: $f \leftarrow w$, $\pi[i, j] \leftarrow \bot$ for every $i, j \in V$ 2: for $k \leftarrow 1$ to n do 3: for $i \leftarrow 1$ to n do 4: for $j \leftarrow 1$ to n do 5: if f[i, k] + f[k, j] < f[i, j] then 6: $f[i, j] \leftarrow f[i, k] + f[k, j]$, $\pi[i, j] \leftarrow k$

```
\mathsf{print}	ext{-}\mathsf{path}(i,j)
```

```
1: if \pi[i,j] = \bot then then
2: if i \neq j then print(i,",")
3: else
```

4: print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

Detecting Negative Cycles

```
\mathsf{Floyd}	ext{-}\mathsf{Warshall}(G,w)
```

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V
 2: for k \leftarrow 1 to n do
    for i \leftarrow 1 to n do
 3:
              for i \leftarrow 1 to n do
 4:
                  if f[i, k] + f[k, j] < f[i, j] then
 5:
                       f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
 6:
 7. for k \leftarrow 1 to n do
     for i \leftarrow 1 to n do
 8:
              for i \leftarrow 1 to n do
 9:
                  if f[i, k] + f[k, j] < f[i, j] then
10:
                       report "negative cycle exists" and exit
11:
```

Summary of Shortest Path Algorithms

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- SS = single source AP = all pairs