CSE 431/531: Algorithm Analysis and Design (Spring 2021) Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

Topological Ordering

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

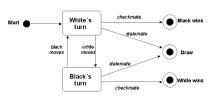
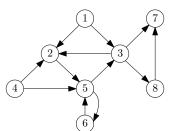


Figure: Transition Graphs

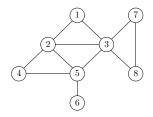
(Undirected) Graph G = (V, E)



- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$

Abuse of Notations

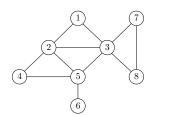
- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).



• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs



1: 2 • 3 6: 5
2: 1 • 3 • 4 • 5 7 8
3: 1 • 2 • 5 • 7 • 8
4: 2 • 5 8: 3 • 7

5: 2 → 3 → 4 → 6

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - ullet A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbours of v.

7/28

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbours of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- Graphs
- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness
- Topological Ordering

Connectivity Problem

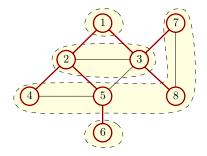
Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- ullet Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j



Implementing BFS using a Queue

mark u as "visited"

```
BFS(s)

1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \geq tail do

4: v \leftarrow queue[tail], tail \leftarrow tail + 1

5: for all neighbours u of v do

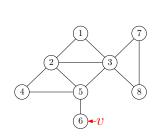
6: if u is "unvisited" then

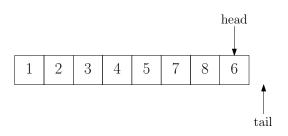
7: head \leftarrow head + 1, queue[head] = u
```

• Running time: O(n+m).

8:

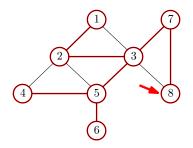
Example of BFS via Queue





Depth-First Search (DFS)

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back



Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: **for** all neighbours u of v **do**
- 3: **if** u is unvisited **then** recursive-DFS(u)

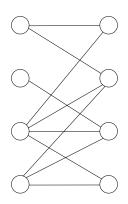
Outline

Graphs

- 2 Connectivity and Graph Traversal
 - Testing Bipartiteness

Testing Bipartiteness: Applications of BFS

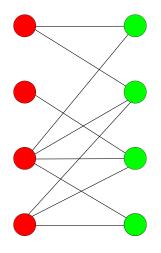
Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, we have either $u\in L,v\in R$ or $v\in L,u\in R$.

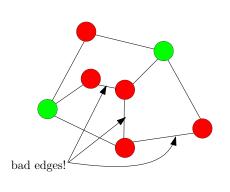


Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- o . . .
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness





Testing Bipartiteness using BFS

$\mathsf{BFS}(s)$

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s
 2: mark s as "visited" and all other vertices as "unvisited"
 3: color[s] \leftarrow 0
 4: while head > tail do
 5:
        v \leftarrow queue[tail], tail \leftarrow tail + 1
        for all neighbours u of v do
 6:
             if u is "unvisited" then
 7:
                 head \leftarrow head + 1, queue[head] = u
 8:
                 mark u as "visited"
 9:
                 color[u] \leftarrow 1 - color[v]
10:
             else if color[u] = color[v] then
11:
                 print("G is not bipartite") and exit
12:
```

Testing Bipartiteness using BFS

```
1: mark all vertices as "unvisited"

2: for each vertex v \in V do

3: if v is "unvisited" then

4: test-bipartiteness(v)

5: print("G is bipartite")
```

Obs. Running time of algorithm = O(n+m)

Outline

- Graphs
- Connectivity and Graph TraversalTesting Bipartiteness

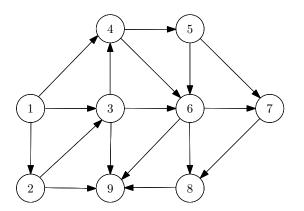
Topological Ordering

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

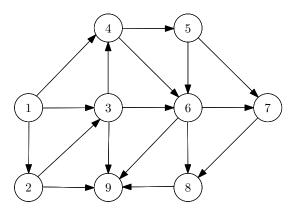
Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

 $\bullet \ \ \text{if} \ (u,v) \in E \ \text{then} \ \pi(u) < \pi(v)$



Topological Ordering

 Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.



Topological Ordering

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- ullet Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v=0$

topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: for every $v \in V$ do
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- 11: **if** $d_u = 0$ **then** add u to S
- 12: if i < n then output "not a DAG"
 - ullet S can be represented using a queue or a stack
 - Running time = O(n+m)

${\cal S}$ as a Queue or a ${\sf Stack}$

DS	Queue	Stack
Initialization	$head \leftarrow 0, tail \leftarrow 1$	$top \leftarrow 0$
Non-Empty?	$head \ge tail$	top > 0
Add(v)		$ top \leftarrow top + 1 $ $S[top] \leftarrow v $
Retrieve v	$v \leftarrow S[tail] \\ tail \leftarrow tail + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$

Example

