CSE 431/531: Algorithm Analysis and Design (Spring 2021)
Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

© Graphs

Examples of Graphs

Figure: Road Networks

% 1 Figure: Internet
‘ T 'l f’/ st @ Whita's checkmate @Bmmns

black white
' moves move: Draw

Figure: Social Networks Figure: Transition Graphs

(Undirected) Graph G = (V, E)

e V: set of vertices (nodes);
o V=1{1,2,3,4,5,6,7,8}
@ F: pairwise relationships among V;
o (undirected) graphs: relationship is symmetric, E' contains subsets
of size 2

o F={{1,2},{1,3},{2,3},{2,4},{2,5},{3,5},{3, 7}, {3, 8},
4,5}, {5,6},{7,8}}

Abuse of Notations

@ For (undirected) graphs, we often use (7, j) to denote the set
{i.j}

@ We call (i,7) an unordered pair; in this case (i, j) = (j,1).

(1) (1)
A

@ ©)
©
o E={(1,2),(1,3),(2,3),(2,4),(2,5),(3,5), (3,7), (3,8),

@ Social Network : Undirected
@ Transition Graph : Directed
@ Road Network : Directed or Undirected

@ Internet : Directed or Undirected

Representation of Graphs

6: [5]
7 [34+8]

e‘? © o

©

()
A’e

8: [B3—{7]

=
& [
& [
[+
=

@ Adjacency matrix
e n x n matrix, Alu,v] =1 if (u,v) € E and Afu,v] = 0 otherwise
o A is symmetric if graph is undirected

@ Linked lists

e For every vertex v, there is a linked list containing all neighbours of
.

Comparison of Two Representations

@ Assuming we are dealing with undirected graphs
@ n: number of vertices
e m: number of edges, assumingn — 1 <m <n(n—1)/2

@ d,: number of neighbors of v

Matrix | Linked Lists

memory usage O(n?) O(m)

time to check (u,v) € E O(1) O(d,)

time to list all neighbours of v | O(n) O(dy)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V
Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

e Breadth-First Search (BFS)
o Depth-First Search (DFS)

Breadth-First Search (BFS)

e Build Iayers Lo, Ll, LQ, Lg, ce

o LO = {S}
@ L, contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Implementing BFS using a Queue

BFS(s)
. head < 1,tail + 1, queue[l] + s
mark s as “visited” and all other vertices as “unvisited”
while head > tail do
v queueltail], tail < tail + 1
for all neighbours u of v do
if u is “unvisited” then
head < head + 1, queuelhead] = u
mark u as “visited”

PARRPRNWE

@ Running time: O(n + m).

Example of BFS via Queue

head

tail

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back
Travel through the next edge

If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbours u of v do
3: if u is unvisited then recursive-DFS(u)

Outline

© Connectivity and Graph Traversal
@ Testing Bipartiteness

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, we have either u € L,v € R
orve L,ue R.

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G’ contains multiple connected components, repeat above
algorithm for each component

Test Bipartiteness

bad edges!

Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited”

3: color[s] < 0

4: while head > tail do

5: v < queue[tail], tail < tail + 1

6: for all neighbours u of v do

7: if u is “unvisited” then

8: head < head + 1, queuelhead] = u
0: mark u as “visited”

10: coloru] < 1 — color[v]

11: else if color[u] = color[v] then

12: print(“G is not bipartite”) and exit

Testing Bipartiteness using BFS

mark all vertices as “unvisited”

: for each vertex v € V do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite™)

B 2R E

Obs. Running time of algorithm = O(n + m)

Outline

© Topological Ordering

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges,
then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d, of vertices

@ Maintain a queue (or stack) of vertices v with d, = 0

topological-sort(G)

: let d, < 0 for every v € V
2: for every v € V do

3 for every u such that (v,u) € E do
4: dy +—d, +1

5 S« {v:d,=0}i<+0

6: while S # () do
.
8
9

—_

v < arbitrary vertex in S, S < S\ {v}
i—i+1, 7(v) 1
for every u such that (v,u) € E do

10: dy+—d,—1

11: if d, =0then add uto S

12: if i < n then output “not a DAG"

@ S can be represented using a queue or a stack

@ Running time = O(n + m)

S as a Queue or a Stack

DS Queue Stack
Initialization | head < 0, tail < 1 | top <+ 0
Non-Empty? | head > tail top >0

Add(v) head < head + 1 top < top + 1
Slhead] < v Sltop] < v
Retrieve v | v < S[tail] v < S|[top)

tail < tail +1

top < top — 1

Example

head

queue:’a‘b‘c‘d‘f‘e‘g‘

tail

	Graphs
	Connectivity and Graph Traversal
	Testing Bipartiteness

	Topological Ordering

