CSE 431/531: Algorithm Analysis and Design (Spring 2021)
 Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
 University at Buffalo

Outline

(1) Graphs
(2) Connectivity and Graph Traversal

- Testing Bipartiteness

(3) Topological Ordering

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph $G=(V, E)$

- V : set of vertices (nodes);
- E : pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph $G=(V, E)$

- V : set of vertices (nodes);
- $V=\{1,2,3,4,5,6,7,8\}$
- E: pairwise relationships among V;
- (undirected) graphs: relationship is symmetric, E contains subsets of size 2
- $E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\}$, $\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph $G=(V, E)$

- V : set of vertices (nodes);
- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph $G=(V, E)$

- V : set of vertices (nodes);
- $V=\{1,2,3,4,5,6,7,8\}$
- E : pairwise relationships among V;
- directed graphs: relationship is asymmetric, E contains ordered pairs
- $E=\{(1,2),(1,3),(3,2),(4,2),(2,5),(5,3),(3,7),(3,8)$, $(4,5),(5,6),(6,5),(8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case $(i, j)=(j, i)$.

- $E=\{(1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(3,7),(3,8)$, $(4,5),(5,6),(7,8)\}$
- Social Network: Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet: Directed or Undirected

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected

Representation of Graphs

- Adjacency matrix
- $n \times n$ matrix, $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ otherwise
- A is symmetric if graph is undirected
- Linked lists
- For every vertex v, there is a linked list containing all neighbours of v.

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$		
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v		

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v	$O(n)$	

Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n : number of vertices
- m : number of edges, assuming $n-1 \leq m \leq n(n-1) / 2$
- d_{v} : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O\left(n^{2}\right)$	$O(m)$
time to check $(u, v) \in E$	$O(1)$	$O\left(d_{u}\right)$
time to list all neighbours of v	$O(n)$	$O\left(d_{v}\right)$

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness

(3) Topological Ordering

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)

Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Implementing BFS using a Queue

BFS (s)

1: head $\leftarrow 1$,tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \geq tail do
4: $\quad v \leftarrow$ queue[tail], tail \leftarrow tail +1
5: for all neighbours u of v do
6 :
7:
8: \quad mark u as "visited"

- Running time: $O(n+m)$.

Example of BFS via Queue

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)

1: mark all vertices as "unvisited"
2: recursive-DFS(s)

recursive-DFS (v)

1: mark v as "visited"
2: for all neighbours u of v do
3: \quad if u is unvisited then recursive-DFS (u)

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness

(3) Topological Ordering

Testing Bipartiteness: Applications of BFS

Def. A graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Testing Bipartiteness using BFS

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \geq tail do
4: $\quad v \leftarrow$ queue[tail], tail \leftarrow tail +1
5: for all neighbours u of v do
6: if u is "unvisited" then
7:
8: head \leftarrow head +1 , queue $[$ head $]=u$ mark u as "visited"

Testing Bipartiteness using BFS

test-bipartiteness (s)
1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: color $[s] \leftarrow 0$
4: while head \geq tail do
5: $\quad v \leftarrow$ queue[tail], tail \leftarrow tail +1
6: for all neighbours u of v do
7: if u is "unvisited" then
8:
9:
head \leftarrow head +1 , queue $[$ head $]=u$
mark u as "visited"
10 :
11:
12:
color $[u] \leftarrow 1-$ color $[v]$
else if color $[u]=$ color $[v]$ then print(" G is not bipartite") and exit

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Testing Bipartiteness
(3) Topological Ordering

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_{v} of vertices
- Maintain a queue (or stack) of vertices v with $d_{v}=0$

topological-sort (G)

1: let $d_{v} \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $\quad d_{u} \leftarrow d_{u}+1$
5: $S \leftarrow\left\{v: d_{v}=0\right\}, i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $\quad v \leftarrow$ arbitrary vertex in $S, S \leftarrow S \backslash\{v\}$
8: $\quad i \leftarrow i+1, \pi(v) \leftarrow i$
9: \quad for every u such that $(v, u) \in E$ do
10: $\quad d_{u} \leftarrow d_{u}-1$
11: \quad if $d_{u}=0$ then add u to S
12: if $i<n$ then output "not a DAG"

- S can be represented using a queue or a stack
- Running time $=O(n+m)$

S as a Queue or a Stack

DS	Queue	Stack
Initialization	head $\leftarrow 0$, tail $\leftarrow 1$	top $\leftarrow 0$
Non-Empty?	head \geq tail	top >0
Add (v)	head \leftarrow head +1	top \leftarrow top +1
	$S[$ head $] \leftarrow v$	$S[$ top $] \leftarrow v$
Retrieve v	$v \leftarrow S[$ tail $]$	$v \leftarrow S[$ top $]$
	tail \leftarrow tail +1	top \leftarrow top -1

Example

Example

Example

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

Example

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

