CSE 431/531: Algorithm Analysis and Design (Spring 2021)
Greedy Algorithms

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

J

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

e f(n)is a polynomial if f(n) = O(n*) for some constant k > 0.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

e f(n)is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

e f(n)is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

e f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best
one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

e f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

@ Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

@ Greedy Algorithms
@ Divide and Conquer

@ Dynamic Programming

Common Paradigms for Algorithm Design

@ Greedy Algorithms
@ Divide and Conquer

@ Dynamic Programming

@ Greedy algorithms are often for optimization problems.

Common Paradigms for Algorithm Design

Greedy Algorithms

Divide and Conquer

Dynamic Programming

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity.

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Greedy Algorithm
@ Build up the solutions in steps
@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

Outline

0 Toy Example: Box Packing

Box Packing
Input: n boxes of capacities ¢q,co, -+ , ¢,
m items of sizes S1, 82, , Sm
Can put at most 1 item in a box
ltem j can be put into box ¢ if 5; < ¢;

Output: A way to put as many items as possible in the boxes.

Box Packing
Input: n boxes of capacities ¢q,co, -+ , ¢,
m items of sizes S1, 82, , Sm
Can put at most 1 item in a box
ltem j can be put into box ¢ if 5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16

e Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 1?

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

.

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

v

@ Intuition: putting the item gives us the easiest residual problem.

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

v

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.
@ Otherwise, assume this is what happens in S:
box 1

5 o6 o 0o

item 7

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.
@ Otherwise, assume this is what happens in S:
box 1
S e

oo o 0

item 5§/ item j

@ s;; < sj, and swapping gives another solution S’

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.
@ Otherwise, assume this is what happens in S:
box 1
S e

5o & &

item 5§/ item j

@ s;; < sj, and swapping gives another solution S’

e S’ is also an optimum solution. In S, j is put into Box 1. O

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

@ Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
LT+ {1,2,3,--- ,m}
2: for i + 1 ton do
3: if some item in T" can be put into box 7 then
J < the largest item in T" that can be put into box i
print(“put item j in box ")
T T\ {j}

2 & 2

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

@ Greedy strategy is safe: we will not miss the optimum solution

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

@ Greedy strategy is safe: we will not miss the optimum solution

@ Greedy stretegy is not safe: we will miss the optimum solution
for some instance, since the choices we made are irrevocable.

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe”

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem

Def. A strategy is “safe” if there is always an optimum solution
that is “consistent” with the decision made according to the
strategy.

Exchange argument: Proof of Safety of a Strategy

@ let S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

@ let S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

@ The procedure is not a part of the algorithm.

Outline

© Interval Scheduling

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: A maximum-size subset of mutually compatible jobs

16,80

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, f;) and [s;, f;) are disjoint

Output: A maximum-size subset of mutually compatible jobs

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!
@ Schedule the job conflicting with smallest number of other jobs?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

2 3 4 o 6 7 8 9
L —1

l

i

B)
I L
B e Vo)

it

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

2 3 4 o 6 7 8 9
L —1

l

i

B)
I L
B e Vo)

it

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

2 3 4 o 6 7 8 9
L —1

l

i

B)
I L
B e Vo)

L

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

2 3 4 o 6 7 8 9
L |]

H

i

B)
I L
B e Vo)

i

ﬂ

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9 ,

- r 1 4

- = e
- Be—

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9 ,
- r 1 4
- = e

— 0 Be—

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled. |

Proof.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled. |

Proof.

@ Take an arbitrary optimum solution S

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.
@ Take an arbitrary optimum solution S

e If it contains j, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.
@ Take an arbitrary optimum solution S

e If it contains j, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.

@ Take an arbitrary optimum solution S

e If it contains j, done
@ Otherwise, replace the first job in S with j to obtain another
optimum schedule S". O

S: I | | | | |]
L ——

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.
@ Take an arbitrary optimum solution S
e If it contains j, done
@ Otherwise, replace the first job in S with j to obtain another

optimum schedule S". O

S: I | | | | |]

L ——
s | | | |]

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57
@ Is it another instance of interval scheduling problem?

6 7 8 9

“] ot

0

AN

0L 2 3 4
L
]
——

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57
@ Is it another instance of interval scheduling problem? Yes!

6 7 8 9

“] ot

0

AN

0L 2 3 4
L
]
——

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57
@ Is it another instance of interval scheduling problem? Yes!

3 4 5 6 7 8 9

-

s R s

AN

01 2
i 3

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

@ What is the remaining task after we decided to schedule 57
@ Is it another instance of interval scheduling problem? Yes!

0 1 2 3 4 5 6 7 8 9

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A {1,2,--- n}, S0
2: while A # () do

3: J < argminjica fjr

4

5

[y

S SUu{j}; A« {j'eA:sy > f;}
. return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A {1,2,--- n} S0
while A # () do

J ¢ argminjica fjr
return S

—

22/80

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)
A {1,2,--- n} S0

—

2: while A # () do
3: J ¢ argminjica fjr
4 S+ SU{j},A—{jeA:sy>f}
5: return S
3 4 o5 6 7 8 9 .

22/80

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A {1,2,--- n} S0
while A # () do

J ¢ argminjica fjr
return S

—

-
-0t
(e
I b |
- 00
aNe

01 2 3

22/80

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: J ¢ argminjica fjr

4 S—Su{jl; A« {j'eA:sy > f;}
5

- return S

0 1 2 3 4 5 6 7 8 9

llllllli‘l:l‘
| | .
| PR ———

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S+ 0

2: while A # () do

3: j < arg ITliIlj/eA fj’

4 S—Su{jl; A« {j'eA:sy > f;}
5

- return S

0 1 2 3 4 5 6 7 8 9

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

LA+ {1,2,--- n}, S« 0

2: while A # () do

3: J argminj/GA fj’

4 S« Su{j}, A« {j/eA:s;y>f;}
5. return S

Running time of algorithm?

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

1A+ {1,2,--- ,n},5« 0
2: while A # () do

3: J argminj/GA fj’

4 S« Su{j}, A« {j/eA:s;y>f;}
5: return S

Running time of algorithm?

@ Naive implementation: O(n?) time

Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

1A+ {1,2,--- ,n},5« 0
2: while A # () do

3: J argminj/GA fj’

4 S« Su{j}, A« {j/eA:s;y>f;}
5: return S

Running time of algorithm?
@ Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

. sort jobs according to f values

10,510

if s; >t then
S+ Su{j}
t< Jf

return S

: for every j € [n] according to non-decreasing order of f; do

|

01 2.3 456 7 809
| |

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N 2 RN

10,510

if s; >t then
S+ Su{j}
t< Jf

return S

sort jobs according to f values

: for every j € [n] according to non-decreasing order of f; do

|

01 2.3 456 7 809
| |

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1:

N 2 RN

10,510

if s; >t then
S+ Su{j}
t< Jf

return S

sort jobs according to f values

: for every j € [n] according to non-decreasing order of f; do

|

01 2.3 456 7 809
| |

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j} t

6: L f; 1

7: return S 0 1 2 3

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)
1: sort jobs according to f values
2264 0,5«
3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then
5: S+ Su{j}
6.
;

. return S 0 1 2

t
L f; 1
3

—-—
|
|

1567 8 9

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j} t
6: L f; 1
7: return S 0 1 2 3

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j} t
6: L f; 1
7: return S 0 1 2 3

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j} t
6: L f; 1
7: return S 0 1 2 3

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)
1: sort jobs according to f values
10,510

2

3: for every j € [n] according to non-decreasing order of f; do
4: if s; >t then
5
6
7

S« SuU{j} ¢

t< Jf l
. return S 0 1 2 3 4 5 6 7 8 9
| | I

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j}

6: L f;

7: return S 0 1 2 3 4

- U —

1o

D
I |
[0/e)

=

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j}

6: L f;

7: return S 0 1 2 3 4

- U —

1o

D
I |
[0/e)

=

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j}

6: L f;

7: return S 0 1 2 3 4

- U —

1o

D
I |
[0/e)

=

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do
4 if s; >t then

5: S+ Su{j}

6: L f;

7: return S 0 1 2 3 4

- U —

1o

D
I |
[0/e)

=

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do

4 if s; >t then

5 S+ Su{j} t

7. return S 012 3 4 5 6 7 89
| l | [

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,5+ 0

3: for every j € [n] according to non-decreasing order of f; do

4 if s; >t then

5 S+ Su{j} t

7. return S 012 3 4 5 6 7 89
| l | [

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2: 10,5« 10

3: for every j € [n] according to non-decreasing order of f; do

4 if s; >t then

5 S+ Su{j} t

7. return S 012 3 4 5 6 7 89
| l . E3

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2: 10,5« 10

3: for every j € [n] according to non-decreasing order of f; do

4 if s; >t then

5 S+ Su{j} t

7. return S 012 3 4 5 6 7 89
| l . E

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2: 10,5« 10

3: for every j € [n] according to non-decreasing order of f; do

4 if s; >t then

5 S+ Su{j} t

7. return S 012 3 4 5 6 7 89
| l . E

Outline

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

Offline Caching

@ Cache that can store k pages

@ Sequence of page requests

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence
@ Sequence of page requests 1

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence
@ Sequence of page requests !
@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence:

@ Sequence of page requests %
@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing

page if necessary.

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence:

x [0

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache
page
° gache that can store k pages sqtonce. D D D
@ Sequence of page requests 3 X
cx][

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

X

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence
x [
x B0

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

sequence

x [
x B0
X

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

(=] [ee] [eo] [e] [ro] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages page ninin

o xWO0
9 x+@0C
xIDD

@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

HHHHHHHH

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

cache

L

Cx [0
x B0
x 4[]
X

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

cache

L

x [0
x B0
x 4[]
x4 2]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

cache

L

x [0
x B0
x 4[]
x4 2]
X

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X %
(=] [#] [=] [=] [-]

OO0 0g
0

[ro] [re]
EEININ

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X ¥ 8

(=] [=] [=] []

o] o] [][]

EEININ

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X ¥ 8

cache
L
AL
Hin
4L
4] 2]]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if

requested page already in
cache.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X X X
(=] [=] (=] [~] [

[ro] fro] [eo] [][]

] [LT LT L

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if

requested page already in
cache.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X X X
(=]] [=] (2] [~] [

o] [eo] 2] [eo] [][]

(o] [eo] [LT LT]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if

requested page already in
cache.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X ¥ 8

x

cache
L
AL
Hin
4L
4] 2]]

Offline Caching

@ Cache that can store k pages
@ Sequence of page requests

@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if

requested page already in
cache.

page
sequence:

(=] [ee] [eo] [e] [ro] [=] [] [=]

X X X X ¥ 8

Offline Caching

cache
° gache that fcan store k pages Sef(’i;éeeﬁcei D D D
@ Sequence of page requests 2l % [1
@ Cache miss happens if D D
requested page not in cache. X L
We need bring the page into X L]
cache, and evict some existing 5] | 113
page if necessary. x u
e Cache hit happens if X
requested page already in X
cache.
X

misses = 7

Offline Caching

@ Cache that can store k pages page (1] D

sequence:
@ Sequence of page requests !
@ Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.
@ Cache hit happens if

requested page already in
cache.

X X X X ¥ 8

@ Goal: minimize the number of
cache misses.

(=] [ee] [eo] [e] [ro] [=] [] [=]

- x [1][2][3]

misses = 7

A Better Solution for Example

cache cache
sequence] [LI 1 T[]
x OO0« DI
x B0 % B0
Cx LI % [B][4][]
% (4] [2][] | % [5][4][2]
x4 [2][5] | v
x 4] [2][3]) | % [5][3] 2]
v 428
x [1][2][3] % [1][3][2]

misses =7 misses = 6

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,--- ,n}.

P1, P2, 03, , pr € [n]: sequence of requests

Output: iy, 14,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3, -+, n}.

P1, P2, 03, , pr € [n]: sequence of requests

Output: iy, 14,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

e Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Offline Caching Problem

Input: £ : the size of cache
We use [n] for {1,2,3,--- ,n}.

n : number of pages
P15 P2, P3,° -, pr € [n]: sequence of requests

Output: iy, 14,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

e Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3, -+, n}.

P1, P2, 03, , pr € [n]: sequence of requests

Output: iy, 14,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

e Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

o Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before

seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the

“competitive ratio” of online algorithms

Offline Caching: Potential Greedy Algorithms

@ FIFO(First-In-First-Out): always evict the first page in cache

Offline Caching: Potential Greedy Algorithms

@ FIFO(First-In-First-Out): always evict the first page in cache

o LRU(Least-Recently-Used): Evict page whose most recent
access was earliest

Offline Caching: Potential Greedy Algorithms

@ FIFO(First-In-First-Out): always evict the first page in cache
o LRU(Least-Recently-Used): Evict page whose most recent
access was earliest

o LFU(Least-Frequently-Used): Evict page that was least
frequently requested

Offline Caching: Potential Greedy Algorithms

@ FIFO(First-In-First-Out): always evict the first page in cache

o LRU(Least-Recently-Used): Evict page whose most recent
access was earliest

o LFU(Least-Frequently-Used): Evict page that was least
frequently requested

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can
not be optimum.

FIFO is not optimum

FIFO

i

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

FIFO

i

=
@

Ne
=
@D
0
t
n

x

=] [o] [o] |

FIFO is not optimum

FIFO

- Lot
s [1][][]

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

FIFO

- U
x [)0
X

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

FIFO

- U
x [)0
x [1][2][]

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

FIFO

- U
x [)0
x [1][2][]
X

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

FIFO

RN
x [)0
x [1][2][]
x [1][2] 3]

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO is not optimum

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO

i

x [1][T[]
x [1][2][]
x [1][2] 3]
X

FIFO is not optimum

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO

i

% [][]
x [1][2][]
x [1][2] 3]
x [4][2][3]

FIFO is not optimum

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO

i

% [][]
x [1][2][]
x [1][2] 3]
x [4][2][3]
X

FIFO is not optimum

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO

i

% [][]
x [1][2]][]
x [1][2] 3]
x [4][2][3]
x [4][1][3]

FIFO is not optimum

=
@

Ne
=
@D
0
t
n

=] [o] [o] |

FIFO

i

% [][]
x [1][2][]
x [1][2] 3]
x [4][2][3]
x [4][1]]3]

misses = 5

FIFO is not optimum

—
@

o)
=
@D
0
=+
n

=]] o] [o] |

FIFO

i

% [][]
x [1][2][]
x [1][2] 3]
x [4][2][3]
x [4][1]]3]

misses = 5

Furthest-in-Future

L

x [][]
x [1[2][]
x [1][2][3]
x [1] [4] [3]

misses = 4

Optimum Offline Caching

Furthest-in-Future (FF)

@ Algorithm: every time, evict the item that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

Furthest-in-Future (FF)

—
@

Qo
e
@D
wn
=+
n

=] 2] (o] 2] [

FIFO

LT

% [][]
Cx]2l
x 1] [2][5]
- x [4][2][5]
x4 1] 8]

misses = 5

Furthest-in-Future

N

cx][]
Cx [2]]
x [1][2][3]
- x [1][4] [3]

misses = 4

Example

requests

,,, >

Example

requests

,,, >

Example

requests
16 HNEEEDBOEOE
X X X

Example

requests
16 HNEEEDBOEOE

,,

OO

O

BRI

TR
(]

Example

requests

,,

Example

requests

-]
(]
[+]
[]

,,, >

OO
O

BRI
TR -

Example

requests

-]
(]
[+]
[]

,,

OO
O
BRI
TR

Example

requests

-]
(]
[+]
[]
(]

,,

OO
O
BRI
TR
EREINTIE

Example

requests

-]
(]
[+]
[]
(]

,,

OO
O
(]
(]
EREINTIE

Example

requests

-]
(]
[+]
[]
(]
[e]

,,

OO
O

(]

(]
EREINTIE
EEI IR
ENEINTIE

[e]

Example

requests

-]
(]
[+]
[]
(]
[e]
[~o]

,,

X X X X v Xv v
L) O 0 O 2] 2]
L) U) [8] [5] [s] [3) [3] [3
[T DT 1 Tal T4l fa] [a] 4] [4]

Example

requests

-]
(]
[+]
[]
(]
[e]
[~o]
[+]

,,

X X X X v XV vV
IR Y A U IR EA RN N PY AR P RN FARRFY
L U) (8] [5] (5] [8] [3] [8) [3]
[T DT DT Tl Taf fa] 4] [a] [a] [4]

Example

requests

-]
(]
[+]
[]
(]
[e]
[~o]
[+]

,,

OO
O
BRI
TR
EREINTIE
EEI IR
ENEINTIE
[e2]
[e]
(<]

Example

requests

-]
(]
[+]
[]
(]
[e]
[~o]
[+]
[e]
(]

5] (3)

,,

OO
O
BRI
TR
EREINTIE

Example

requests

o]] [2] [(3] [20 [[s] (3] 5] (&)
L) O 00 O 2R R[]I R O
L) U) B8] [s] (5] [3] (3] [8) [3] [8]
[T DT 1 Taf T4l fa] [al [af 4] [a] [4]

ERCIETR

Example

requests

-]
(]
[+]
[]
(]
[e]
[~o]
[+]
[e]
-]
[]
—
B
o

,,

EREINTIE
EEI IR
ENEINTIE
ECI ST
ECI ST
ECI IR
o] =]
[e]

[e]

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps
@ At each step, make an irrevocable decision using a “reasonable”
strategy |

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Offline Caching Problem
Input: k : the size of cache
n : number of pages
P1, 02,03, ,PT € [n] sequence of requests
Output: 4,149,143, -, € {hit,empty} U [n]

e empty stands for an empty page
e “hit" means evicting no pages

Offline Caching Problem
Input: £ : the size of cache

n : number of pages

P1, P2, 03, , pr € [n]: sequence of requests
p1,D2, Dk € {empty} U [n]: initial set of pages in
cache

Output: iy, 49,143, ,4; € {hit,empty} U [n]
e empty stands for an empty page
e "hit" means evicting no pages

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

v

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

,,,,,,

Proof.

@ S: any optimum solution
© p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

,,,,,,

Proof.

@ S: any optimum solution

© p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

© Assume S evicts some p’ # p* at time 1; otherwise done.
o In the example, p’ = 2.

Proof.

@ S: any optimum solution

© p*: page in cache not requested until furthest in the future.
o In the example, p* = 3.

© Assume S evicts some p’ # p* at time 1; otherwise done.
o In the example, p’ = 2.

39/80

o]]96

1]
S’:l
El

Q Create S’. 9’ evicts p*(=3) instead of p'(=2) at time 1.

39/80

o]e]]9

1]
S’:l
El

Q Create S’. 9’ evicts p*(=3) instead of p'(=2) at time 1.

39/80

]
o]
<]
v

- X
] [
s: [2] [4]
BIE
X
] [
s':[2] [4]
3] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

]
o]
<]
v

- X
] [
s: [2] [4]
BIE
X
] [
s':[2] [4]
3] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

[~]
&
=
=
v

X

] [

s: [2] [4]

BIE

X
] [
s':[2] [4]

3] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

[~]
B
=
=
v

X X
115
S: 2] 4] 14
3] 13] [3]
o
1)1
S':l2) 4]
3] 2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
1] [1][5]
s: [2] [4] [4]
BIBIE
X X
1] [1][5]
s [2] [4] [4]
5] 2] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X
1] [1][5]
s: [2] [4] [4]
BIBIE
X X
1] [1][5]
s [2] [4] [4]
5] 2] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4l s[4l 2] [8] |
X X
1) 1] 5]]5]
Scl2] 414} 4]
EIREIREIRE)
X X
115
':2] 4] |4]
13 [2] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X v
(1] [1][5] [5]
s: 2] [4] [4] [4]
BIEIEIB
X X v
1] [1][5] [5]
s': 2] [4] [4] [4]
5] 21 [2] 2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,,
X X v
(1] [1][5] [5]
s: 2] [4] [4] [4]
BIEIEIB
X X v
1] [1][5] [5]
s': 2] [4] [4] [4]
5] 21 [2] 2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, (4 [5][a]fe] [2] [8]

X Xv X

1] (1] [5] [5] [5]
S:|2] 4] [4][4] 4

3] [3] [3] [3] [6]

- X X v

1] (1] 5] [5]
s 2] [4] [4] [4]

3] [2] [2] [2]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

,,,,,, [4][5][4l[6] 2] [81 .

X Xv X

1] (1] [5] [5] [5]
S:|2|[4)[4]]4] 4

3] [3] [3] [3] [6]

X XvX

11 [s]|5] 5]
S22 |4 4]]4]]4]

13 [2] [2] [2] 6]

Proof.

Q Create S’. S’ evicts p*(=3) instead of p/(=2) at time 1.

© After time 1, cache status of S and that of S’ differ by only 1
page. S contains p'(=2) and S contains p*(=3).

@ From now on, S will “copy” S.

=]
[=]

[e18]i=] +[=] =[]
FISEE] S]]
o [[=[] o[=[]
= R[=[=]=] R ~[=[~]

I] Ik Ll

0 0

40,80

,,,,,, [4][5][4l[6] 2] [81 .

X Xv X

11 [s] 5] 5]
S:|2] 4]]4]]4]]4]

EREIRERERD

- X Xv X

11 [s]|5] 5]
S'i|2] (4] 4]]4]]4]

13 [2] [2] [2] [6]

Proof.

@ If S evicted the page p/, S’ will evict the page p*. Then, the
cache status of S and that of S’ will be the same. S and S” will
be exactly the same from now on.

,,,,,,
X X v
(1] [1][5] [5]
s: 2] [4] [4] [4]
BIEIEIB
X X v
1] [1][5] [5]
s': 2] [4] [4] [4]
5] 21 [2] 2]

Proof.

@ If S evicted the page p/, S’ will evict the page p*. Then, the
cache status of S and that of S’ will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p'(=2) before we see p'(=2).

,,,,,,
- X Xv
] [1][5] [5] - [e]
s: (2] [4] [4)[4] [8]
BIEIEEREE
- XX
1] [1][5] [5] - [e]
s':[2] [4] [4)[4] [8]
Gl RIRIE] - 2

Proof.

@ If S evicted the page p/, S’ will evict the page p*. Then, the
cache status of S and that of S’ will be the same. S and S” will
be exactly the same from now on.

@ Assume S did not evict p'(=2) before we see p'(=2).

E Eﬂﬂ

l«i «i
=[] KA
S8 SEET

=[] (=]

0 0

41/80

=]

E Eﬂﬂ

l«i «i
ST SEE
S8 SEET

=[] (=]

0 0

41/80

=]

le Slelela
[EER E

l«i «i
=[] KA
S8 SEET

=[] (=]

0 0

41/80

SIS SEEE
o] [&) [co] = [[0])

EEEIEEEN

SIEIEIN

1]
S/:l
El

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum.
Assume otherwise.

,,,,,,
- X Xv
] [1][5] [5] - [e]
s: (2] [4] [4)[4] [8]
BIEIEEREE
- XX
1] [1][5] [5] - [e]
s':[2] [4] [4)[4] [8]
Gl RIRIE] - 2

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum.
Assume otherwise.

,,,,,,
X X v
(1] [1][5] [5] -
s: 2] [4] [4] [4]
BIBIEIEE
X X v
1] [1][5] [5] -
s': 2] [4] [4] [4]
5] 221 [] -

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum.
Assume otherwise.

SIS SEEE
o] [&) [co] = [[0])

EEEIEEEN

SIEIEIN

1]
S/:l
El

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum.
Assume otherwise.

,,,,,,
X Xv X
(1] [1][5] [5] - [6] [2]
s: (2] [4] [4][4] [s]]8]
B EIEIE] - BB
XX v
(1] [1][5] [5] -+ [6] [e]
s':[2] [a] [4] [4] [s]]8]
Gl EIRIE] - B2

Proof.

Q If S evicts p*(=3) for p'(=2), then S won't be optimum.
Assume otherwise.

@ So far, S’ has 1 less page-miss than S does.

,,,,,, [4l[s][a]--- [l [81 .

X Xv X

1] [a] [5] [5] - [6]]2
S:|2)4)[4)]4] [8]8

EREIEEIRERENE

X Xv

1] (1] [5] [5] - [6][6]
S':l2)[4)4)4] [8]8

3] [2] [2] [2] - [2]]2

Proof.

Q If S evicts p*(=3) for p/(=2), then S won't be optimum.
Assume otherwise.

@ So far, S’ has 1 less page-miss than S does.
@ The status of S’ and that of S only differ by 1 page.

=]

lx_z_s_s_ Sefe]]
E E

l«i SR
ST SEE
S8 SEET

=[] (=]

0 0

42/80

,,,,,, [4l[s][a]--- [l [81 .
X Xv X
1) [s] 5] - 6] 2]
S:l2 |44}]4] I8} 8]
EREIEERNENRE
XX Vv
1 s] 5] 6] [6]
§':|2] 4] 14} 4] I8} 8]
30 (2] (2] [2] - [2]]2]

Proof.

@ We can then guarantee that S’ make at most the same number
of page-misses as S does.

[e]=]=Jos: [[=[~fo%]=]
EEE IEEE

1]
S/:i
13

Proof.
@ We can then guarantee that S’ make at most the same number
of page-misses as S does.

o Idea: if S has a page-hit and S’ has a page-miss, we use the
opportunity to make the status of S’ the same as that of S. O

@ Thus, we have shown how to create another solution S” with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. There is an optimum solution
in which p* is evicted at time 1.

@ Thus, we have shown how to create another solution S” with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

@ Thus, we have shown how to create another solution S” with the
same number of page-misses as that of the optimum solution S.
Thus, we proved

Lemma Assume at time 1 a page fault happens and there are no
empty pages in the cache. Let p* be the page in cache that is not
requested until furthest in the future. It is safe to evict p* at time 1.

Theorem The furthest-in-future strategy is optimum.

1: fort < 1toT do

2 if p; is in cache then do nothing

3 else if there is an empty page in cache then

4: evict the empty page and load p; in cache

5 else

6 p* < page in cache that is not used furthest in the future
7 evict p* and load p; in cache

Q: How can we make the algorithm as fast as possible?)

A:

45/80

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).
@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.

Q: How can we make the algorithm as fast as possible?

A:
@ The running time can be made to be O(n + T'log k).
@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.
o We can find the next time a page is requested easily.

Q

: How can we make the algorithm as fast as possible?

A:

@ The running time can be made to be O(n + T log k).

@ For each page p, use a linked list (or an array with dynamic size)
to store the time steps in which p is requested.
o We can find the next time a page is requested easily.

@ Use a priority queue data structure to hold all the pages in
cache, so that we can easily find the page that is requested
furthest in the future.

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

Pt | 1110 priority queue

po. (47 pages priority
: values

P3: |69 (12

P4: | 3|8

P5 | 2]5 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

pt- |1 110 priority queue

po. [217 pages priority
: values

P3: |69 (12

P4: | 3|8

P5: |25 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

pt- |1 110 priority queue

po. [217 pages priority
: values

P3: |69 (12

P4: | 3|8

P5: |25 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue
po. [217 pages priority

: values
P3: [6]9]12 Pl 10
P4: | 3|8

P5: |25 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue
po. [217 pages priority

: values
P3: [6]9]12 Pl 10
P4: | 3|8

P5: |25 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue
po. [217 pages priority
: values
P3: [6]9]12 Pl 10
P5 5)
P4: | 3|8

P5: |25 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

p1- |1 110 priority queue
po. [217 pages priority
: values
P3: [6]9]12 Pl 10
P5 5)
P4: | 3|8

P5: |25 |11

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXX

p1- |1 110 priority queue
po. [217 pages priority
: values
P3: |69 |12 Pl 10
P5 5

P5: |25 |11

v

time [0 [1]2]3 \4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXX

p1- |1 110 priority queue
po. [217 pages priority
: values
P3: |69 |12 Pl 10
P5 5

P5: |25 |11

v

time [0 [1]2]3 \4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXX

p1- |1 110 priority queue
po. [217 pages priority
: values
P3: |69 (12
P5 5)

P5: |25 |11

v

time [0 [1]2]3 \4\5\6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XX XX
p1- |1 110 priority queue
n i e [
P3:. | 6|9 12 P2 7
P5 5
Ps: |38 - 2
p5: | 2|5 |11

time [0] 1]2]3]4 \5\6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XX XX
p1- |1 110 priority queue
n i e [
P3:. | 6|9 12 P2 7
P5 5
Ps: |38 - 2
p5: | 2|5 |11

time [0] 1]2]3]4 \5\6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV
p1- |1 110 priority queue
po. (a7 pages priority
values
P3:. | 6|9 12 P2 7
P5 11
Pa: |38 ~ 2
P5: | 2511

time [0 1]2]3]4]5 \6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV
p1- |1 110 priority queue
po. (a7 pages priority
values
P3:. | 6|9 12 P2 7
P5 11
Pa: |38 ~ 2
P5: | 2511

time [0 1]2]3]4]5 \6\7\8\9\10\11\12\

pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV

P1: 1 [10 priority queue

SN s [t

P3:. | 6|9 12 P2 7

Ps: |38 - 2

P5: | 2|5 |11

time [0 1]2]3]4]5 \6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV X
p1- |1 110 priority queue
n i e [
P3. | 6]9]|12 P2 7
P3 9
Ps: |38 -~ 2
P5: | 2|5 |11

v

time [0 1]2]3]4]5 \6\7\8\9\10\11\12\
pages | |P1|P5|P \P2\P5\P3\P2\P4\P3\P1\P5\P3\
XXXXV X
p1- |1 110 priority queue
n i e [
P3. | 6]9]|12 P2 7
P3 9
Ps: |38 -~ 2
P5: | 2|5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

p1- |1 110 priority queue
po. (47 pages priority
: values
P3: [6|9 |12 P2 e
P3 9

P5: | 2]5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

p1- |1 110 priority queue
po. (47 pages priority
: values
P3: [6|9 |12 P2 e
P3 9

P5: | 2]5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [6|9 |12 P2 e
P3 9
P5. | 2|5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [6|9 |12 P2 e
P3 9
P5. | 2|5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [69|12 P2 e
P3 12
P5. | 2|5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [69|12 P2 e
P3 12
P5. | 2|5 |11

v

time | 0] 1 2\3\4\5\6\7\8\9\10\11\12\

pages | [Pl P5\P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV/ XV

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: |6]9 |12
P3 12
P5. | 2|5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXKV XYV XK

Pt | 1110 priority queue
po. (47 pages priority
: values
P3: [69|12 Pl o0
P3 12

P5: | 2]5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXKV XYV XK

Pt | 1110 priority queue
po. (47 pages priority
: values
P3: [69|12 Pl o0
P3 12

P5: | 2]5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXKV XYV XK

P1: [1110 priority queue
P2: 4|7 pages priority
' values
P3: | 6912
P3 12
P4: | 3|8 P =

P5: | 2]5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV XYV VKK

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [69|12 P5 e
P3 12

P5 | 2]5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXXV XYV VKK

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [69|12 P5 e
P3 12

P5 | 2]5 |11

v

time | 0] 112 3\4\5\6\7\8\9\10\11\12\

pages | |P1|P5 P4\P2\P5\P3\P2\P4\P3\P1\P5\P3\

XXXKYV XV XK

P1:- 11110 priority queue
po. (47 pages priority
: values
P3: [69|12 P5 e
P3 o0

P5 | 2]5 |11

1: for every p <~ 1 ton do

2: times[p] < array of times in which p is requested, in
increasing order > put oo at the end of array

3: pointer[p] + 1

4: () < empty priority queue

5: for every t < 1 to T do

6: pointer|p:| < pointer|p] + 1

7: nexttimelp;] < times[p;, pointer|[p]]

8: if p; € Q) then

0: (Q).increase-key(p:, nexttime|[p;]), print “hit", continue

10: if Q.size() <k then

11: print “load p; to an empty page "

12: else

13: p < Q.extract-max(), print “evict p and load p,"

14: Q.insert(p,, nexttime[p;])
nexttimelpy]

> add p; to) with key value

4

Outline

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

@ Let V be a ground set of size n.

Def. A priority queue is an abstract data structure that maintains a
set U C V of elements, each with an associated key value, and
supports the following operations:
@ insert(v, key_value): insert an element v € V' \ U, with
associated key value key_value.
o decrease key(v, new_key value): decrease the key value of an
element v € U to new_key_value
@ extract-min(): return and remove the element in U with the
smallest key value

Simple Implementations for Priority Queue

@ n = size of ground set V'

data structures

insert

extract_min

decrease_key

array

sorted array

Simple Implementations for Priority Queue

@ n = size of ground set V'

data structures

insert

extract_min

decrease_key

array

o)

O(n)

o)

sorted array

Simple Implementations for Priority Queue

@ n = size of ground set V'

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

Simple Implementations for Priority Queue

@ n = size of ground set V'

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Heap

The elements in a heap is organized using a complete binary tree:

Nodes are indexed as {1,2,3,--- ,s}
Parent of node i: [i/2]

Left child of node i: 2i

Right child of node i: 2i + 1

e 6 o o

Heap

A heap H contains the following fields
@ s: size of U (number of elements in the heap)
e Ali],1 <i < s: the element at node i of the tree
@ p[v],v € U: the index of node containing v

@ keylv],v € U: the key value of element v

@ s=5

o A: (Lf77(g7’éc7’(e7’ Lb?)

o p['f1=1plg]=2p[c]=3,
ple’] =4,p['b'] =5

Heap

The following heap property is satisfied:

e for any two nodes 7, j such that ¢ is the parent of j, we have
key[A[]] < key[A[j]].

A heap. Numbers in the circles denote key values of elements.

insert(v, key value)

insert(v, key value)

insert(v, key value)

insert(v, key value)

insert(v, key value)

heapify-up(7)

insert(v, key value) 1. while i > 1 do
I s+ s+1 2: J <« li/2]
2. Als] v 3: if key[Ali]] < key[A[j]] then
3: plv] + s 4: swap A[i] and Alj]
4: keylv] < key_value 5: plA[i]] < 4, p[A[j]] < j
5: heapify_up(s) 6: i3
7: else break

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

1 ret < A[l]

2: A[1] «+ Als]
3 plA[1]] «+ 1
4:
5
6
7

s+ s—1

- if s> 1 then

heapify_down(1)

. return ret

4

decrease key(v, key val

1. key[v] < key_value
2:

heapify-up(p[v])

heapify-down (%)
1: while 2: < s do
2: if 20 = s or
key[A[2i]] < key[A[2i + 1]] then
]2
else
je2i+1
if key[A[j]] < key[A[i]] then
swap A[i] and A[j]
plA[d]] « i, plA[j]] « j
147

10: else break

@ Running time of heapify_up and heapify_down: O(Ilgn)

@ Running time of heapify_up and heapify_down: O(Ilgn)

@ Running time of insert, exact_min and decrease_key: O(lgn)

@ Running time of heapify_up and heapify_down: O(Ilgn)

@ Running time of insert, exact_min and decrease_key: O(lgn)

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Two Definitions Needed to Prove that the
Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A]i]] is too
big if we can decrease key[A[i]] to make H a heap.

Outline

@ Data Compression and Huffman Code

Encoding Letters Using Bits

@ 8 letters a,b,c,d,e, f,g,h in a language
@ need to encode a message using bits
@ idea: use 3 bits per letter
a | b|ec|d|e|flgl|h

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

deacfg — 011100000010101110

Q: Can we have a better encoding scheme?

@ Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

)

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient. |

Idea

@ using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00 J

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c. J

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of letters is a function
v S — {0,1}* such that for two distinct z,y € S, y(x) is not a
prefix of v(y).

Prefix Codes

Def. A prefix code for a set S of letters is a function
v S — {0,1}* such that for two distinct z,y € S, y(x) is not a
prefix of v(y).

a b c d
001 | 0000 | 0001 | 100
e f g h
11 | 1010 | 1011 | 01

2N
' 46
V\@ @VY

db &b

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b c d
001 | 0000 | 0001 | 100
e f g h
11 | 1010 | 1011 | 01

2NN
ANt
ANFe

db &b

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d

001

0000

0001

100

e

f

9

h

11

e 0001001100000001011110100001001

1010

1011

01

2NN
ANt
ANFe

db &b

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001/001100000001011110100001001

@ C

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001/001,/100000001011110100001001

@ Ca

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001/001/100/000001011110100001001

@ cad

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 %/ig) 5
db db

e 0001/001/100/0000/01011110100001001

@ cadb

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001/001/100/0000/01/011110100001001

@ cadbh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b c d /\
001 | 0000 | 0001 | 100 YN 3/\%.
e f g h ’(V\1@ 0 1
11 | 1010 | 1011 | 01

0/ \1 0/ \1
g &b
e 0001,/001/100/0000/01/01/1110100001001
@ cadbhh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b c d / \
001 | 0000 | 0001 | 100 YN E/\lh
e f g h ’(V\1@ 0/ \1 ©
11 | 1010 | 1011 | 01

0, 1 0 1
g &b
e 0001,/001/100/0000/01/01/11/10100001001
@ cadbhhe

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a b c d /%/ \Q\
001 | 0000 | 0001 | 100 YN E/\lh
e f g h ’(V\1@ 0/ \1 ©
11 | 1010 | 1011 | 01

0, 1 0 1
g &b
e 0001,/001/100/0000/01/01/11/1010/0001001
@ cadbhhef

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001/001/100/0000/01/01/11/1010,/0001,/001
@ cadbhhefc

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

a

b

C

d PN

001

0000

0001

e

f

9

1? N b

11

1010

1011

01 V\l@ 5
db db

e 0001,/001/100/0000/01/01/11/1010/0001/001/
@ cadbhhefca

Properties of Encoding Tree
PN
N
y%égw%
R

Properties of Encoding Tree

% \ o Rooted binary tree
4 }@ o/ %

C o &)
§b &b

Properties of Encoding Tree

% \ @ Rooted binary tree

@ Left edges labelled 0 and right

Y EL) 14 % edges labelled 1
(Y &
db &b

Properties of Encoding Tree

% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ / edges labelled 1

@ A leaf corresponds to a code
\@) 0/ for some letter

Properties of Encoding Tree

% \ @ Rooted binary tree

@ Left edges labelled 0 and right
/ / edges labelled 1
@ A leaf corresponds to a code
for some letter
@ If coding scheme is not
1 wasteful: a non-leaf has
exactly two children

Properties of Encoding Tree

% \ @ Rooted binary tree

@ Left edges labelled 0 and right
y / edges labelled 1
@ A leaf corresponds to a code
for some letter
@ If coding scheme is not
1 wasteful: a non-leaf has
exactly two children

Best Prefix Codes
Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the
message

example

a c e
frequencies 1834|610

AN

@/\
S S

PPPPPP

example

letters a [blc|d]| e

frequencies 1834|610
scheme 1 length || 2 |3 |3 |2 | 2 | total =89
scheme 2 length || 1 |33 |3 | 3 | total =87
scheme 3 length || 1 |4 |4 |3 | 2 | total = 84

AN SN <7

\
O A i

scheme 1 scheme 2 scheme 3

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

&
b

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

&
b

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

best to put the two least

éQg /,/,/'frenquent symbols here!

Which Two Letters Can Be Safely Put Together
As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least

/ *__---frenquent symbols here!
o)

Lemma It is safe to make the two least frequent letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? J

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? J

A: Yes, though it is not immediate to see why.]

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jadz
. >
= Z fxdx + fxldazl + fxzdIQ

zeS\{z1,z2}

= Y faloF (for + fro)da,

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jadz
. >
= Z fxdx + fxldazl + fxzdIQ

zeS\{z1,z2}

= Y faloF (for + fro)da,

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jadz
. >
= Z fxdx + fxldazl + fxzdIQ

zeS\{z1,72}

= Y folot (for + fr)da,

z€S\{z1,22}

()
@ @

Def:](1’ = fI1 + flz

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jadz
. >
= Z fxdx + fxldazl + fxzdl“Q

zeS\{z1,72}

= Y folot (for + fr)da,

zeS\{z1,z2}

@ = Z f:l:d.'l: + f”l:’(d:p’ + 1)
zeS\{z1,z2}
@y @

Def:]lg/ = fl’l + fx2

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jadz
. >
= Z fxdx + led:m + fxzdl“Q

zeS\{z1,72}

= Y folot (for + fr)da,

z€S\{z1,22}

@ = Z f.’I:d:I: + fflf’(dl" + 1)

zeS\{z1,22}
@ @ T

ze€S\{z1,z2}U{x'}

Def:]lg/ = fxl + fCCZ

@ f,: the frequency of the letter x in the support.
@ r, and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

> fads
O ves
= Y fodot forday + frada,
encoding tree for z€S\{z1,22}
S\ {1, 22} U {2’} = Y folot (for + fr)da,

zeS\{z1,z2}

@ - Z fmd:z: + ffrz’(drlz’ + 1)

@ @ zeS\{z1,z2}

= > fedat fo
— i — zeS\{z1,z2}U{z’'}
Def: f:c’ - fm + fm

In order to minimize

> foda,

€S

we need to minimize

> fuda

z€S\{z1,z2 }U{z’}

subject to that d is the depth function for an encoding tree of
S \ {1'1, il?g}.

@ This is exactly the best prefix codes problem, with letters
S\ {z1, 22} U {2’} and frequency vector f!

Example

Example

@27 15 @11 @9 @&5

Example

. 20 13

Example

Example

Example

Example

Example

: 00

MmO QW

Def. The codes given the greedy algorithm is called the Huffman J
codes.

Def. The codes given the greedy algorithm is called the Huffman
codes.

Huffman(sS, f)

while |S| > 1 do
let z1, x5 be the two letters with the smallest f values
introduce a new letter =’ and let f,, = fo, + fa,
let z; and 25 be the two children of 2’
S+ S\ {x1,z} U{2'}

6: return the tree constructed

P RPNV E

Algorithm using Priority Queue

Huffman(S, f)

1: @ < build-priority-queue(S)

2: while ().size > 1 do

3 x1 < @Q.extract-min()

4 Ty < Q.extract-min()

5: introduce a new letter =’ and let f,, = fo, + fa,
6 let z; and 25 be the two children of 2’

7 ().insert(z’)

8

. return the tree constructed

Outline

© Summary

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps
@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

@ Offline Caching: evict the page that is used furthest in the future

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

@ Offline Caching: evict the page that is used furthest in the future
@ Huffman codes: make the two least frequent letters brothers

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with" the decision made according to the strategy.

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

@ So assume S does not agree with decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

o Interval scheduling problem: exchange j* with the first job in an
optimal solution

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy,
done

@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
o Offline caching: a complicated “copying” algorithm
e Huffman codes: move the two least frequent letters to the deepest
leaves.

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with

e Offline caching: trivial

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Prove that the reasonable strategy is “safe” (key)

@ Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually

easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with
e Offline caching: trivial

@ Huffman codes: merge two letters into one

	Toy Example: Box Packing
	Interval Scheduling
	Offline Caching
	Heap: Concrete Data Structure for Priority Queue

	Data Compression and Huffman Code
	Summary

