CSE 431/531: Algorithm Analysis and Design (Spring 2021) Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- 3 Asymptotic Notations
- Common Running times

CSE 431/531: Algorithm Analysis and Design

 Course Webpage (contains schedule, policies, homeworks and slides):

```
http://www.cse.buffalo.edu/~shil/courses/CSE531/
```

Please sign up course on Piazza via link on course webpage
 announcements, polls, asking/answering questions

CSE 431/531: Algorithm Analysis and Design

- Time
 - MoWeFr, 9:10am-10:00am
- All lectures are virtual
- Instructor:
 - Shi Li, shil@buffalo.edu
- TAs:
 - Xiangyu Guo
 - Alesandro Baccarini

You should already have/know:

- Mathematical Background
 - basic reasoning skills, inductive proofs
- Basic data Structures
 - linked lists, arrays
 - stacks, queues
- Some Programming Experience
 - C, C++, Java or Python

You Will Learn

- Classic algorithms for classic problems
 - Sorting, shortest paths, minimum spanning tree, · · ·
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - . .
- NP-completeness

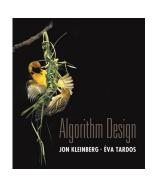
Tentative Schedule (42 Lectures)

See the course webpage.

Textbook

Textbook (Highly Recommended):

 Algorithm Design, 1st Edition, by Jon Kleinberg and Eva Tardos



Other Reference Books

 Introduction to Algorithms, Third Edition, Thomas Cormen, Charles Leiserson, Rondald Rivest, Clifford Stein

Reading Before Classes

- Highly recommended: read the correspondent sections from the textbook (or reference book) before classes
 - Sections for each lecture can be found on the course webpage.
- Slides and example problems for recitations will be posted on the course webpage before class

Grading

- 40% for theory homeworks
 - 8 points × 5 theory homeworks
- 20% for programming problems
 - 10 points × 2 programming problems
- 40% for final exam

For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussions
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with

For Homeworks, You Are Not Allowed to

- Use external resources
 - Can't Google or ask questions online for solutions
 - Can't read posted solutions from other algorithm course webpages
- Copy solutions from other students

For Programming Problems

- Need to implement the algorithms by yourself
- Can not copy codes from others or the Internet
- We use Moss (https://theory.stanford.edu/~aiken/moss/) to detect similarity of programs

Late Policy

- You have 1 "late credit", using it allows you to submit an assignment solution for three days
- With no special reasons, no other late submissions will be accepted

- Final Exam will be closed-book
- Per Departmental Policy on Academia Integrity Violations, penalty for AI violation is:
 - "F" for the course
 - lose financial support as TA/RA
 - case will be reported to the department and university

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

What is an Algorithm?

- Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
- Computational problem: specifies the input/output relationship.
- An algorithm solves a computational problem if it produces the correct output for any given input.

Examples

Greatest Common Divisor

Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:

Input: 210, 270

• Output: 30

- Algorithm: Euclidean algorithm
- $gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$
- $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$

Examples

Sorting

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

• Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

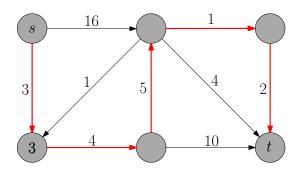
• Algorithms: insertion sort, merge sort, quicksort, ...

Examples

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G



Algorithm: Dijkstra's algorithm

Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

1: while b > 0 do

2: $(a,b) \leftarrow (b, a \mod b)$

3: return a

```
C++ program:
 int Euclidean(int a, int b){
       int c:
       while (b > 0)
          c = b:
         b = a \% b:
       a = c:
       return a;
```

Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
 - fundamental
 - it is fun!

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- 3 Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

• Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

Insertion-Sort

ullet At the end of j-th iteration, the first j numbers are sorted.

```
iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
```

Example:

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 15 21 35 53
- i

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Analysis of Insertion Sort

- Correctness
- Running time

Correctness of Insertion Sort

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

```
after j=1:53,12,35,21,59,15

after j=2:12,53,35,21,59,15

after j=3:12,35,53,21,59,15

after j=4:12,21,35,53,59,15

after j=5:12,21,35,53,59,15

after j=6:12,15,21,35,53,59
```

Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - \bullet Running time for size n= worst running time over all possible arrays of length n

Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

 Focus on growth of running-time as a function, not any particular value.

Asymptotic Analysis: O-notation

Informal way to define O-notation:

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

$$n^2/100 - 3n + 10 = O(n^2)$$

Asymptotic Analysis: *O*-notation

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n^2 + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - ullet program 1 requires 10 instructions, or 10^{-8} seconds
 - ullet program 2 requires 2 instructions, or 10^{-9} seconds
 - \bullet they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation

Asymptotic Analysis: *O*-notation

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- \bullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- ullet For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

Asymptotic Analysis of Insertion Sort

$\mathsf{insertion}\text{-}\mathsf{sort}(A,n)$

- 1: for $j \leftarrow 2$ to n do
- 2: $key \leftarrow A[j]$ 3: $i \leftarrow j - 1$
- 4: **while** i > 0 and A[i] > key **do**
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$
- Worst-case running time for iteration j of the outer loop? Answer: O(j)
- Total running time = $\sum_{j=2}^n O(j) = O(\sum_{j=2}^n j)$ = $O(\frac{n(n+1)}{2}-1) = O(n^2)$

Computation Model

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

• Remember to sign up for Piazza.

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Asymptotically Positive Functions

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

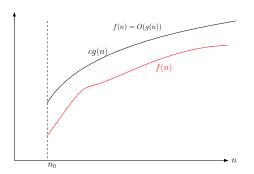
- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?
- We only consider asymptotically positive functions.

O-Notation: Asymptotic Upper Bound

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.



O-Notation: Asymptotic Upper Bound

O-Notation For a function g(n),

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

Proof.

Let c=4 and $n_0=50$, for every $n>n_0=50$, we have,

$$3n^{2} + 2n - c(n^{2} - 10n) = 3n^{2} + 2n - 4(n^{2} - 10n)$$
$$= -n^{2} + 40n \le 0.$$
$$3n^{2} + 2n < c(n^{2} - 10n)$$

$$O\text{-Notation}$$
 For a function $g(n)$,
$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that }$$

$$f(n) \le cg(n), \forall n \ge n_0$$
.

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- $n^{100} \in O(2^n)$
- $n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

Conventions

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

"=" is asymmetric! Following equalities are wrong:

- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

Ω -Notation: Asymptotic Lower Bound

$$O\text{-Notation For a function }g(n),$$

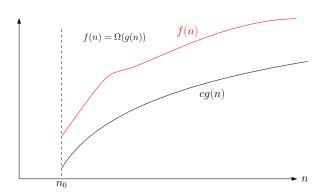
$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

$$\Omega$$
-Notation For a function $g(n)$,
$$\Omega(g(n)) = \{ \text{function } f: \exists c>0, n_0>0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\Omega$$
-Notation For a function $g(n)$,
$$\Omega(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \right\}.$$



Ω -Notation: Asymptotic Lower Bound

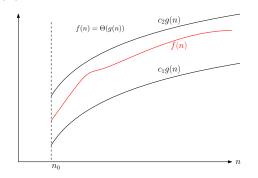
- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Theorem
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

⊖-Notation: Asymptotic Tight Bound

$\Theta ext{-Notation}$ For a function g(n), $\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".



⊖-Notation: Asymptotic Tight Bound

$$\Theta$$
-Notation For a function $g(n)$, $\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \}$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

•
$$2^{n/3+100} = \Theta(2^{n/3})$$

 $c_1q(n) < f(n) < c_2q(n), \forall n > n_0$.

Theorem
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \iff a \le b \text{ and } a \ge b$
- $a \le b$ or $a \ge b$

Correct Analogies

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$

Incorrect Analogy

$$\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(f(n))$$

$$f(n) = n^2$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

Recall: Informal way to define *O*-notation

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2-10n-5=O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.

Exercise

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

55/76

Asymptotic Notations	O	Ω	Θ	0	ω
Comparison Relations	\leq	\geq	=	<	>

Questions?

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- 3 Asymptotic Notations
- Common Running times

O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)

1: $S \leftarrow 0$

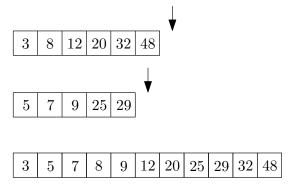
2: for $i \leftarrow 1$ to n

3: $S \leftarrow S + A[i]$

4: $\operatorname{return} S$

O(n) (Linear) Running Time

Merge two sorted arrays



O(n) (Linear) Running Time

```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i \leq n_1 and j \leq n_2 do
    if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
 5:
       else
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i \leq n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

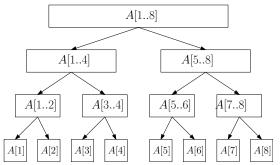
Running time = O(n) where $n = n_1 + n_2$.

$O(n \log n)$ Running Time

```
\begin{array}{ll} \operatorname{merge-sort}(A,n) \\ \text{1: if } n=1 \text{ then} \\ \text{2: } \operatorname{return} A \\ \text{3: else} \\ \text{4: } B \leftarrow \operatorname{merge-sort}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right) \\ \text{5: } C \leftarrow \operatorname{merge-sort}\left(A\big[\lfloor n/2\rfloor+1..n\big],n-\lfloor n/2\rfloor\right) \\ \text{6: return } \operatorname{merge}(B,C,\lfloor n/2\rfloor,n-\lfloor n/2\rfloor) \end{array}
```

$O(n \log n)$ Running Time

Merge-Sort



- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest



$O(n^2)$ (Quardatic) Running Time

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Output: the pair of points that are closest

closest-pair(x, y, n)

```
1: bestd \leftarrow \infty
```

- 2: **for** $i \leftarrow 1$ to n-1 **do**
- 3: **for** $j \leftarrow i + 1$ to n **do**
- 4: $d \leftarrow \sqrt{(x[i] x[j])^2 + (y[i] y[j])^2}$
- 5: **if** d < best d **then**
- 6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$
- 7: return (besti, bestj)

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

5:

6: return C

```
1: C \leftarrow \text{matrix of size } n \times n, with all entries being 0

2: for i \leftarrow 1 to n do

3: for j \leftarrow 1 to n do

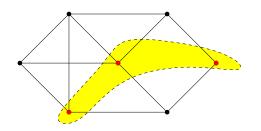
4: for k \leftarrow 1 to n do
```

 $C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$

65/76

$O(n^k)$ Running Time for Integer $k \geq 4$

Def. An independent set of a graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for every $u,v\in S$, we have $(u,v)\notin E$.



Independent set of size k

Input: graph G = (V, E)

Output: whether there is an independent set of size k

$O(n^k)$ Running Time for Integer $k \geq 4$

Independent Set of Size *k*

Input: graph G = (V, E)

Output: whether there is an independent set of size k

$\mathsf{independent}\mathsf{-set}(G=(V,E))$

- 1: **for** every set $S \subseteq V$ of size k **do**
- 2: $b \leftarrow \mathsf{true}$
- 3: **for** every $u, v \in S$ **do**
- 4: if $(u,v) \in E$ then $b \leftarrow$ false
- 5: if b return true
- 6: return false

Running time = $O(\frac{n^k}{k!} \times k^2) = O(n^k)$ (assume k is a constant)

Beyond Polynomial Time: 2^n

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

max-independent-set(G = (V, E))

- 1: $R \leftarrow \emptyset$
- 2: **for** every set $S \subseteq V$ **do** 3: $b \leftarrow \text{true}$
- 4: **for** every $u, v \in S$ **do**
- 5: if $(u,v) \in E$ then $b \leftarrow$ false
- b: If $(u,v) \in E$ then $0 \leftarrow \text{raise}$
- 6: if b and |S| > |R| then $R \leftarrow S$
- 7: return ${\cal R}$

Running time = $O(2^n n^2)$.

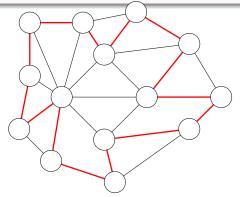
Beyond Polynomial Time: n!

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



Beyond Polynomial Time: n!

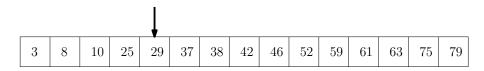
```
\mathsf{Hamiltonian}(G = (V, E))
```

```
1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: b \leftarrow true
3: for i \leftarrow 1 to n-1 do
4: if (p_i, p_{i+1}) \notin E then b \leftarrow false
5: if (p_n, p_1) \notin E then b \leftarrow false
6: if b then return (p_1, p_2, \cdots, p_n)
7: return "No Hamiltonian Cycle"
```

Running time = $O(n! \times n)$

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- ullet Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

Running time = $O(\log n)$

Comparing the Orders

- Sort the functions from smallest to largest asymptotically $\log n$, n, n^2 , $n \log n$, n!, 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n^2)n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)n^2 = O(2^n)$
- $2^n = O(n!)2^n = O(e^n)$
- \bullet $e^n = O(n!)$
- $\bullet \ n! = O(n^n)$

Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.